1
|
Zhang W, Zhu G, Sun H, Jiang C. NLRC3 affects the development of psoriasis by modulating the NF-κB signaling pathway mediated inflammatory response through its interaction with TRAF6. Immunol Lett 2025; 272:106949. [PMID: 39615555 DOI: 10.1016/j.imlet.2024.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE The function and mechanism of NOD-like receptor family CARD-containing 3 (NLRC3) in psoriasis are not yet reported, even though it plays a crucial role in innate and adaptive immunity by inhibiting inflammation. Therefore, this research aims to investigate the role and mechanism of NLRC3 in psoriasis. METHODS HaCaT cells were induced to form a psoriasis cell model using 20 ng/mL IL-1β, 20 ng/mL IL-17A, 20 ng/mL IL-23, 50 ng/mL TNF-α, and 20 ng/mL oncostatin M. Cell Counting Kit-8 (CCK-8) assay and flow cytometry were assessed to determine the proliferation, cell cycle, and apoptosis of HaCaT cells. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was utilized to measure the knockdown efficiency of NLRC3 and TRAF6 interfering RNA in HaCaT cells. Western blot analysis was performed to determine the expression levels of NLRC3, TRAF6, and proteins associated with the NF-κB signaling pathway. A mouse model of psoriasis-like dermatitis was established by evenly applying miquimod cream (62.5 mg/day) to both ears. Hematoxylin-eosin staining was used to measure ear thickness and inflammatory infiltrates in mice. Histological analysis, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL were performed to detect cell proliferation and apoptosis. Interactions between NLRC3 and TRAF6 were predicted using the STRING database (https://cn.string-db.org/). Co-Immunoprecipitation was used to confirm interactions between NLRC3 and TRAF6. Ubiquitination of TRAF6 was assessed by Western blot. RESULTS Knockdown of NLRC3 expression promoted cell proliferation and inhibited cell apoptosis in HaCaT cells. In vivo, knockdown of NLRC3 expression significantly increased the infiltration of inflammatory cells and the proliferation of Ki-67 positive cells within mouse ear epidermis, while decreasing the number of apoptotic cells. NLRC3 interacted with TRAF6 and influenced its K63 ubiquitination level. Knockdown of TRAF6 expression resulted in increased cell proliferation and decreased cell apoptosis in HaCaT cells. In vivo, knockdown of TRAF6 expression led to a significant increase in inflammatory cell infiltration and Ki-67 positive cells in mouse ear epidermis, and a decrease in apoptotic cells. Inhibiting the NF-κB signaling pathway alleviated the progression of psoriasis, and interfering with TRAF6 activated the NF-κB signaling axis, contributing to the onset and advancement of psoriasis. CONCLUSION NLRC3 affects the occurrence of psoriasis by regulating TRAF6 and influencing the NF-κB signaling axis-mediated inflammatory response. This finding offers a theoretical foundation for the treatment of psoriasis.
Collapse
Affiliation(s)
- Wanlu Zhang
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China
| | - Gege Zhu
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China
| | - Huiya Sun
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China
| | - Congjun Jiang
- Department of Dermatology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, PR China.
| |
Collapse
|
2
|
Su QY, Gao HY, Duan YR, Luo J, Wang WZ, Qiao XC, Zhang SX. The immunologic role of IL-23 in psoriatic arthritis: a potential therapeutic target. Expert Opin Biol Ther 2024; 24:1119-1132. [PMID: 39230202 DOI: 10.1080/14712598.2024.2401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a debilitating chronic condition characterized by inflammation of the joints, bones, enthesis, and skin. The pivotal role of interleukin-23 (IL-23) in the pathogenesis of PsA has become increasingly evident. This proinflammatory cytokine is markedly elevated in patients with PsA, suggesting its potential as a therapeutic target. Consequently, IL-23 inhibitors have emerged as promising first-line biologic treatments for PsA. AREAS COVERED This review delves into the immunopathogenic mechanisms of IL-23 at the cellular and molecular levels in PsA. Furthermore, it provides the recent efficacy and safety profiles of IL-23 inhibitors. We conducted a literature search in PubMed for the following terms: 'IL-23 and psoriatic arthritis,' 'Ustekinumab,' 'Guselkumab,' 'Risankizumab,' and 'Tildrakizumab.' In addition, we retrieved clinical trials involving IL-23 inhibitors registered in ClinicalTrials.gov, EudraCT, and ICTRP. EXPERT OPINION Despite the promising outcomes observed with IL-23 inhibitors, several challenges persist. The long-term effects of these agents require further investigation through prospective studies, and their limited accessibility worldwide necessitates urgent attention. Additionally, ongoing research is warranted to explore other potential drug targets within the IL-23/IL-23 R axis. The development of reliable biomarkers could greatly enhance early detection, tailored management strategies, and personalized treatment approaches for patients with PsA.
Collapse
Affiliation(s)
- Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Heng-Yan Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Yue-Ru Duan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jing Luo
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Wei-Ze Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xi-Chao Qiao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi medical university, Taiyuan, China
| |
Collapse
|
3
|
Li J, Wei Y, Liu C, Guo X, Liu Z, Zhang L, Bao S, Wu X, Wang X, Zhang J, Dong W. 2'-Fucosyllactose restores the intestinal mucosal barrier in ulcerative colitis by inhibiting STAT3 palmitoylation and phosphorylation. Clin Nutr 2024; 43:380-394. [PMID: 38150914 DOI: 10.1016/j.clnu.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND & AIMS 2'-Fucosyllactose (2'-FL), the primary constituent of human milk oligosaccharides, has been identified as a potential regulator of inflammation in inflammatory bowel disease. Despite this recognition, the specific mechanisms through which 2'-FL alleviates ulcerative colitis (UC) remain ambiguous. This study seeks to investigate the potential anti-inflammatory properties of 2'-FL concerning intestinal inflammation and uncover the associated mechanisms. METHODS C57BL/6J mice were orally administered a daily dose of 500 mg/kg 2'-FL for 11 consecutive days, followed by the induction of colitis using 3 % (wt/vol) dextran sulfate sodium (DSS) for the final 6 days. Subsequently, a comprehensive range of techniques, including an Acyl-biotin exchange assay, fluorescein-isothiocyanate-labeled dextran assay, histopathology, ELISA, quantitative real-time PCR, Western blot, immunofluorescence staining, immunohistochemistry staining, Alcian blue-periodic acid schiff staining, TdT-mediated dUTP nick end labeling, transmission electron microscopy, iTRAQ quantitative proteomics, bioinformatics analysis, and the generation of signal transducer and activator of transcription 3 (STAT3) knockout mice, were employed to explore the relevant molecular mechanisms. RESULTS Administration of 2'-FL significantly ameliorated DSS-induced colitis in mice and enhanced the integrity of the intestinal mucosal barrier. 2'-FL downregulated the phosphorylation of STAT3 and inhibited STAT3-related signaling pathways in colon tissues, which, in turn, reduced inflammatory responses. Interestingly, knockdown of STAT3 attenuated the protective effects of 2'-FL, highlighting that 2'-FL-mediated inflammatory attenuation is dependent on STAT3 expression. Additionally, 2'-FL could influence STAT3 activation by modulating the palmitoylation and depalmitoylation of STAT3. CONCLUSIONS 2'-FL promotes the recovery of the intestinal mucosal barrier and suppresses inflammation in ulcerative colitis by inhibiting the palmitoylation and phosphorylation of STAT3.
Collapse
Affiliation(s)
- Jinting Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yuping Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xingzhou Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhengru Liu
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luyun Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shenglan Bao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaohan Wu
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Dainichi T, Matsumoto R, Sakurai K, Kabashima K. Necessary and sufficient factors of keratinocytes in psoriatic dermatitis. Front Immunol 2024; 15:1326219. [PMID: 38312837 PMCID: PMC10834637 DOI: 10.3389/fimmu.2024.1326219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Miki-cho, Japan
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Sakurai
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (ASRL), A*STAR, Singapore, Singapore
| |
Collapse
|
5
|
Dainichi T, Iwata M. Inflammatory loops in the epithelial-immune microenvironment of the skin and skin appendages in chronic inflammatory diseases. Front Immunol 2023; 14:1274270. [PMID: 37841246 PMCID: PMC10568311 DOI: 10.3389/fimmu.2023.1274270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
The epithelial-immune microenvironment (EIME) of epithelial tissues has five common elements: (1) microbial flora, (2) barrier, (3) epithelial cells, (4) immune cells, and (5) peripheral nerve endings. EIME provides both constant defense and situation-specific protective responses through three-layered mechanisms comprising barriers, innate immunity, and acquired immunity. The skin is one of the largest organs in the host defense system. The interactions between the five EIME elements of the skin protect against external dangers from the environment. This dysregulation can result in the generation of inflammatory loops in chronic inflammatory skin diseases. Here, we propose an understanding of EIME in chronic skin diseases, such as atopic dermatitis, psoriasis, systemic lupus erythematosus, alopecia areata, and acne vulgaris. We discuss the current treatment strategies targeting their inflammatory loops and propose possible therapeutic targets in the future.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | | |
Collapse
|
6
|
Chalalai T, Kamiyama N, Saechue B, Sachi N, Ozaka S, Ariki S, Dewayani A, Soga Y, Kagoshima Y, Ekronarongchai S, Okumura R, Kayama H, Takeda K, Kobayashi T. TRAF6 signaling in dendritic cells plays protective role against infectious colitis by limiting C. rodentium infection through the induction of Th1 and Th17 responses. Biochem Biophys Res Commun 2023; 669:103-112. [PMID: 37269592 DOI: 10.1016/j.bbrc.2023.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/05/2023]
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) plays a pivotal role in the induction of inflammatory responses not only in innate immune cells but also in non-immune cells, leading to the activation of adaptive immunity. Signal transduction mediated by TRAF6, along with its upstream molecule MyD88 in intestinal epithelial cells (IECs) is crucial for the maintenance of mucosal homeostasis following inflammatory insult. The IEC-specific TRAF6-deficient (TRAF6ΔIEC) and MyD88-deficient (MyD88ΔIEC) mice exhibit increased susceptibility to DSS-induced colitis, emphasizing the critical role of this pathway. Moreover, MyD88 also plays a protective role in Citrobacter rodentium (C. rodentium) infection-induced colitis. However, its pathological role of TRAF6 in infectious colitis remains unclear. To investigate the site-specific roles of TRAF6 in response to enteric bacterial pathogens, we infected TRAF6ΔIEC and dendritic cell (DC)-specific TRAF6-deficient (TRAF6ΔDC) mice with C. rodentium and found that the pathology of infectious colitis was exacerbated with significantly decreased survival rates in TRAF6ΔDC mice, but not in TRAF6ΔIEC mice, compared to those in control mice. TRAF6ΔDC mice showed increased bacterial burdens, marked disruption of epithelial and mucosal structures with increased infiltration of neutrophils and macrophages, and elevated cytokine levels in the colon at the late stages of infection. The frequencies of IFN-γ producing Th1 cells and IL-17A producing Th17 cells in the colonic lamina propria were significantly reduced in TRAF6ΔDC mice. Finally, we demonstrated that TRAF6-deficient DCs failed to produce IL-12 and IL-23 in response to C. rodentium stimulation, and to induce both Th1 and Th17 cells in vitro. Thus, TRAF6 signaling in DCs, but not in IECs, protects against colitis induced by C. rodentium infection by producing IL-12 and IL-23 that induce Th1 and Th17 responses in the gut.
Collapse
Affiliation(s)
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Japan.
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Japan
| | - Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Japan
| | - Astri Dewayani
- Department of Infectious Disease Control, Faculty of Medicine, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Japan
| | - Yomei Kagoshima
- Department of Infectious Disease Control, Faculty of Medicine, Japan
| | | | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hisako Kayama
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Japan; Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University, Oita, Japan.
| |
Collapse
|
7
|
Dutta A, Hung CY, Chen TC, Hsiao SH, Chang CS, Lin YC, Lin CY, Huang CT. An IL-17-EGFR-TRAF4 axis contributes to the alleviation of lung inflammation in severe influenza. Commun Biol 2023; 6:600. [PMID: 37270623 DOI: 10.1038/s42003-023-04982-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Excessive inflammation is a postulated cause of severe disease and death in respiratory virus infections. In response to severe influenza virus infection, adoptively transferred naïve hemagglutinin-specific CD4+ T cells from CD4+ TCR-transgenic 6.5 mice drive an IFN-γ-producing Th1 response in wild-type mice. It helps in virus clearance but also causes collateral damage and disease aggravation. The donor 6.5 mice have all the CD4+ T cells with TCR specificity toward influenza hemagglutinin. Still, the infected 6.5 mice do not suffer from robust inflammation and grave outcome. The initial Th1 response wanes with time, and a prominent Th17 response of recent thymic emigrants alleviates inflammation and bestows protection in 6.5 mice. Our results suggest that viral neuraminidase-activated TGF-β of the Th1 cells guides the Th17 evolution, and IL-17 signaling through the non-canonical IL-17 receptor EGFR activates the scaffold protein TRAF4 more than TRAF6 during alleviation of lung inflammation in severe influenza.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Department of Pathology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Division of Hematology and Oncology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan
- Division of Hepatogastroenterology, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan-33333, Taoyuan City, Taiwan.
- Division of Infectious Diseases, College of Medicine, Chang Gung University, Guishan-33302, Taoyuan City, Taiwan.
| |
Collapse
|
8
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
9
|
Yang W, He R, Qu H, Lian W, Xue Y, Wang T, Lin W, Zhu P, Xia M, Lai L, Wang Q. FXYD3 enhances IL-17A signaling to promote psoriasis by competitively binding TRAF3 in keratinocytes. Cell Mol Immunol 2023; 20:292-304. [PMID: 36693922 PMCID: PMC9971024 DOI: 10.1038/s41423-023-00973-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease characterized by inflammatory cell infiltration and epidermal hyperplasia. However, the regulatory complexity of cytokine and cellular networks still needs to be investigated. Here, we show that the expression of FXYD3, a member of the FXYD domain-containing regulators of Na+/K+ ATPases family, is significantly increased in the lesional skin of psoriasis patients and mice with imiquimod (IMQ)-induced psoriasis. IL-17A, a cytokine important for the development of psoriatic lesions, contributes to FXYD3 expression in human primary keratinocytes. FXYD3 deletion in keratinocytes attenuated the psoriasis-like phenotype and inflammation in an IMQ-induced psoriasis model. Importantly, FXYD3 promotes the formation of the IL-17R-ACT1 complex by competing with IL-17R for binding to TRAF3 and then enhances IL-17A signaling in keratinocytes. This promotes the activation of the NF-κB and MAPK signaling pathways and leads to the expression of proinflammatory factors. Our results clarify the mechanism by which FXYD3 serves as a mediator of IL-17A signaling in keratinocytes to form a positive regulatory loop to promote psoriasis exacerbation. Targeting FXYD3 may serve as a potential therapeutic approach in the treatment of psoriasis.
Collapse
Affiliation(s)
- Wenjuan Yang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Rukun He
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Wenwen Lian
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yue Xue
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Tao Wang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
| | - Wenlong Lin
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Peishuo Zhu
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Meng Xia
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Lihua Lai
- Department of Pharmacology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China.
| |
Collapse
|
10
|
Zhang L, Ma X, Shi R, Zhang L, Zhao R, Duan R, Qin Y, Gao S, Li X, Duan J, Li J. Allicin ameliorates imiquimod-induced psoriasis-like skin inflammation via disturbing the interaction of keratinocytes with IL-17A. Br J Pharmacol 2023; 180:628-646. [PMID: 36355777 DOI: 10.1111/bph.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is an inflammatory skin disease of chronic recurrence mediated by the interaction between IL-17 and keratinocytes, which sustains a vicious circle of inflammation. Safe and effective natural medicine is a potential strategy for the clinical treatment of psoriasis. Given its prominent anti-proliferative and anti-inflammatory properties, we investigated the actions of allicin in improving psoriasis. EXPERIMENTAL APPROACH Pharmacodynamic studies were carried out in mice after topical administration of allicin against psoriasis-like lesions induced by imiquimod. Skin sensitization tests were evaluated on guinea pigs. Toxicological studies and skin irritation tests were assessed by consecutive topical allicin alone on the skin of rabbits. RNA-seq probed transcriptomic changes following allicin. Western blot explored the actions of allicin on the interaction between IL-17A and keratinocytes. Changes in inflammatory factor expression were analysed by qPCR and immunohistochemistry. KEY RESULTS Allicin significantly improved the epidermal structure by inhibiting the excessive proliferation and reduced apoptosis of keratinocytes. Furthermore, allicin reduced the secretion of inflammatory cytokines (IL-17A/F, IL-22, IL-12, and IL-20), chemokines (CXCL2, CXCL5, and CCL20), and anti-bacterial peptides (S100a8/9). Mechanistically, allicin directly inhibited the IL-17-induced TRAF6/MAPK/NF-κB and STAT3/NF-κB signalling cascades in keratinocytes, thus breaking the positive inflammatory feedback and alleviating imiquimod-induced psoriasis-like dermatitis in mice. Importantly, topical administration of allicin did not cause skin allergy, and the safety and adaptability of long-term application were verified. CONCLUSIONS AND IMPLICATIONS Interfering with IL-17 signalling in keratinocytes with allicin is a promising strategy for treating psoriasis, given its safety and effectiveness.
Collapse
Affiliation(s)
- Lu Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Xuehong Ma
- College of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Rongmei Shi
- College of Pharmacy, Xinjiang Medical University, Urumqi, China.,Key Laboratory of Garlic Medicinal Research in Xinjiang, Urumqi, China
| | - Libo Zhang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ruolin Zhao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ran Duan
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Qin
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sijia Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xinxia Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, China.,Key Laboratory of Garlic Medicinal Research in Xinjiang, Urumqi, China
| | - Jingjing Duan
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jianguang Li
- Xinjiang University of Science and Technology, Korla, China
| |
Collapse
|
11
|
Zhang Y, Xu X, Cheng H, Zhou F. AIM2 and Psoriasis. Front Immunol 2023; 14:1085448. [PMID: 36742336 PMCID: PMC9889639 DOI: 10.3389/fimmu.2023.1085448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide, with multiple systemic complications, which seriously affect the quality of life and physical and mental health of patients. The pathogenesis of psoriasis is related to the environment, genetics, epigenetics, and dysregulation of immune cells such as T cells, dendritic cells (DCs), and nonimmune cells such as keratinocytes. Absent in melanoma 2 (AIM2), a susceptibility gene locus for psoriasis, has been strongly linked to the genetic and epigenetic aspects of psoriasis and increased in expression in psoriatic keratinocytes. AIM2 was found to be activated in an inflammasome-dependent way to release IL-1β and IL-18 to mediate inflammation, and to participate in immune regulation in psoriasis, or in an inflammasome-independent way by regulating the function of regulatory T(Treg) cells or programming cell death in keratinocytes as well as controlling the proliferative state of different cells. AIM2 may also play a role in the recurrence of psoriasis by trained immunity. In this review, we will elaborate on the characteristics of AIM2 and how AIM2 mediates the development of psoriasis.
Collapse
Affiliation(s)
- Yuxi Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiaoqing Xu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hui Cheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Fusheng Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.,Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
12
|
Adachi A, Honda T. Regulatory Roles of Estrogens in Psoriasis. J Clin Med 2022; 11:jcm11164890. [PMID: 36013129 PMCID: PMC9409683 DOI: 10.3390/jcm11164890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease of the interleukin (IL)-23/IL-17 axis. The severity of psoriasis has been reported as higher in men than in women. The immunoregulatory role of female sex hormones has been proposed to be one of the factors responsible for sex differences. Among female sex hormones, estrogens have been suggested to be significantly involved in the development of psoriasis by various epidemiological and in vitro studies. For example, the severity of psoriasis is inversely correlated with serum estrogen levels. In vitro, estrogens suppress the production of psoriasis-related cytokines such as IL-1β and IL-23 from neutrophils and dendritic cells, respectively. Furthermore, a recent study using a mouse psoriasis model indicated the inhibitory role of estrogens in psoriatic dermatitis by suppressing IL-1β production from neutrophils and macrophages. Understanding the role and molecular mechanisms of female sex hormones in psoriasis may lead to better control of the disease.
Collapse
Affiliation(s)
- Akimasa Adachi
- Department of Dermatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo 130-8575, Japan
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Correspondence:
| |
Collapse
|
13
|
Russo I, Sartor E, Fagotto L, Colombo A, Tiso N, Alaibac M. The Zebrafish model in dermatology: an update for clinicians. Discov Oncol 2022; 13:48. [PMID: 35713744 PMCID: PMC9206045 DOI: 10.1007/s12672-022-00511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
Recently, the zebrafish has been established as one of the most important model organisms for medical research. Several studies have proved that there is a high level of similarity between human and zebrafish genomes, which encourages the use of zebrafish as a model for understanding human genetic disorders, including cancer. Interestingly, zebrafish skin shows several similarities to human skin, suggesting that this model organism is particularly suitable for the study of neoplastic and inflammatory skin disorders. This paper appraises the specific characteristics of zebrafish skin and describes the major applications of the zebrafish model in dermatological research.
Collapse
Affiliation(s)
- Irene Russo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Emma Sartor
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Laura Fagotto
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Anna Colombo
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy
| | - Natascia Tiso
- Department of Biology, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Mauro Alaibac
- Unit of Dermatology, University of Padua, Via Gallucci 4, 35128, Padua, Italy.
| |
Collapse
|
14
|
Jiang R, Xu J, Zhang Y, Liu J, Wang Y, Chen M, Chen X, Yin M. Ligustrazine alleviates psoriasis-like inflammation through inhibiting TRAF6/c-JUN/NFκB signaling pathway in keratinocyte. Biomed Pharmacother 2022; 150:113010. [PMID: 35468584 DOI: 10.1016/j.biopha.2022.113010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Ligusticum chuanxiong Hort (Ligusticum; Apiaceae) (accepted name, Ligusticum striatum DC, on "The Plant List" for the latest version) is a Chinese herbal medicine (CHM) which mainly distributed in Sichuan Basin, China. Chuanxiong is the dried rhizome of Ligusticum chuanxiong Hort. Ligustrazine, also known as tetramethylpyrazine (TMP), is a main active fraction of chuanxiong. The aim of this study was to clarify the underlying mechanisms by which TMP protect against psoriasis-like inflammation in keratinocytes. Here, we demonstrated that TMP alleviated the severity and PASI scores of IMQ-induced psoriasis-like skin lesion in vivo. For the histopathology level, TMP inhibited the over-proliferation of keratinocytes in the epidermis and the substantial immune cells influx in dermis. For the mechanism of the ability of TMP on regulating inflammation, we confirmed that TMP regulate the TRAF6/c-JUN/NFκB signaling pathway through analyzing the proteomics profiling and verifying the expression of TRAF6, pho-c-Jun, pho-NFκB, so that the downstream psoriasis-relevant genes transcribed by c-JUN or NFκB were down-regulated. Furthermore, we predicted TRAF6 as the potential binding point of TMP. Accordingly, our study demonstrated that TMP regulated psoriasis-like inflammation through inhibiting TRAF6/c-JUN/NFκB signaling pathway in keratinocytes, which potentially provides evidence of the mechanism of TMP in the treatment and prevention of psoriasis.
Collapse
Affiliation(s)
- Rundong Jiang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiaqi Xu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuezhong Zhang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiachen Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yutong Wang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingliang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Mingzhu Yin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Dainichi T, Nakano Y, Doi H, Nakamizo S, Nakajima S, Matsumoto R, Farkas T, Wong PM, Narang V, Moreno Traspas R, Kawakami E, Guttman-Yassky E, Dreesen O, Litman T, Reversade B, Kabashima K. C10orf99/GPR15L Regulates Proinflammatory Response of Keratinocytes and Barrier Formation of the Skin. Front Immunol 2022; 13:825032. [PMID: 35273606 PMCID: PMC8902463 DOI: 10.3389/fimmu.2022.825032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
The epidermis, outermost layer of the skin, forms a barrier and is involved in innate and adaptive immunity in an organism. Keratinocytes participate in all these three protective processes. However, a regulator of keratinocyte protective responses against external dangers and stresses remains elusive. We found that upregulation of the orphan gene 2610528A11Rik was a common factor in the skin of mice with several types of inflammation. In the human epidermis, peptide expression of G protein-coupled receptor 15 ligand (GPR15L), encoded by the human ortholog C10orf99, was highly induced in the lesional skin of patients with atopic dermatitis or psoriasis. C10orf99 gene transfection into normal human epidermal keratinocytes (NHEKs) induced the expression of inflammatory mediators and reduced the expression of barrier-related genes. Gene ontology analyses showed its association with translation, mitogen-activated protein kinase (MAPK), mitochondria, and lipid metabolism. Treatment with GPR15L reduced the expression levels of filaggrin and loricrin in human keratinocyte 3D cultures. Instead, their expression levels in mouse primary cultured keratinocytes did not show significant differences between the wild-type and 2610528A11Rik deficient keratinocytes. Lipopolysaccharide-induced expression of Il1b and Il6 was less in 2610528A11Rik deficient mouse keratinocytes than in wild-type, and imiquimod-induced psoriatic dermatitis was blunted in 2610528A11Rik deficient mice. Furthermore, repetitive subcutaneous injection of GPR15L in mouse ears induced skin inflammation in a dose-dependent manner. These results suggest that C10orf99/GPR15L is a primary inducible regulator that reduces the barrier formation and induces the inflammatory response of keratinocytes.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Faculty of Medicine, Kagawa University, Miki-cho, Japan
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuri Nakano
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromi Doi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakamizo
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| | - Saeko Nakajima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Drug Discovery for Inflammatory Skin Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thomas Farkas
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Pui Mun Wong
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Ricardo Moreno Traspas
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Eiryo Kawakami
- Advanced Data Science Project (ADSP), RIKEN, Yokohama, Japan
- Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oliver Dreesen
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| | - Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Agency for Science, Technology and Research (A*STAR) Skin Research Laboratories (A*SRL), A*STAR, Biopolis, Singapore, Singapore
| |
Collapse
|
16
|
Inhibition of CtBP-Regulated Proinflammatory Gene Transcription Attenuates Psoriatic Skin Inflammation. J Invest Dermatol 2022; 142:390-401. [PMID: 34293351 PMCID: PMC8770725 DOI: 10.1016/j.jid.2021.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.
Collapse
|
17
|
Wan P, Yang G, Zhang S, Zhang Y, Jia Y, Che X, Luo Z, Pan P, Li G, Chen X, Zhang Q, Zhang W, Tan Q, Li Y, Wu J. ASB17 Facilitates the Burst of LPS-Induced Inflammation Through Maintaining TRAF6 Stability. Front Cell Infect Microbiol 2022; 12:759077. [PMID: 35174103 PMCID: PMC8842666 DOI: 10.3389/fcimb.2022.759077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
ASB17, a member of the ankyrin repeat and SOCS box-containing protein (ASB) family, has been supposed to act as an E3 ubiquitin ligase. Actually, little is known about its biological function. In this study, we found that ASB17 knocking-out impaired the expression of the pro-inflammatory cytokines CCL2 and IL-6 in bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS), indicating an inflammation-promoting role of this gene. We reveal that ASB17 promotes LPS-induced nuclear factor kappa B (NF-κB) signal activation through interacting with TNF receptor-associated factor 6 (TRAF6) which is a crucial adaptor protein downstream of toll-like receptors (TLR). ASB17 via its aa177-250 segment interacts with the Zn finger domain of TRAF6. The interaction of ASB17 stabilizes TRAF6 protein through inhibiting K48-linked TRAF6 polyubiquitination. Therefore, we suggest that ASB17 facilitates LPS-induced NF-κB activation by maintaining TRAF6 protein stability. The inflammation enhancer role of ASB17 is recognized here, which provides new understanding of the activation process of inflammation and immune response.
Collapse
Affiliation(s)
- Pin Wan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ge Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Simeng Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaling Jia
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xu Che
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pan Pan
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Geng Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Xulin Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan, China
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology, Foshan, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Foshan Institute of Medical Microbiology, Foshan, China
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis 2022; 13:81. [PMID: 35075118 PMCID: PMC8786887 DOI: 10.1038/s41419-022-04523-3] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
Psoriasis is a complex long-lasting inflammatory skin disease with high prevalence and associated comorbidity. It is characterized by epidermal hyperplasia and dermal infiltration of immune cells. Here, we review the role of keratinocytes in the pathogenesis of psoriasis, focusing on factors relevant to genetics, cytokines and receptors, metabolism, cell signaling, transcription factors, non-coding RNAs, antimicrobial peptides, and proteins with other different functions. The critical role of keratinocytes in initiating and maintaining the inflammatory state suggests the great significance of targeting keratinocytes for the treatment of psoriasis.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China
| | - Youdong Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China
| | - Lian Cui
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China.
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China.
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, 200443, Shanghai, China.
- Institute of Psoriasis, Tongji University School of Medicine, 200443, Shanghai, China.
| |
Collapse
|
19
|
Osthole Inhibits Expression of Genes Associated with Toll-like Receptor 2 Signaling Pathway in an Organotypic 3D Skin Model of Human Epidermis with Atopic Dermatitis. Cells 2021; 11:cells11010088. [PMID: 35011650 PMCID: PMC8750192 DOI: 10.3390/cells11010088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The Toll-like receptor (TLR) family signature has been linked to the etiopathology of atopic dermatitis (AD), a chronic inflammatory skin disease associated with skin barrier dysfunction and immune system imbalance. We aimed to investigate whether osthole (a plant-derived compound) can inhibit the genetic profile of key genes associated with TLR2 signaling (TIRAP, MyD88, IRAK1, TRAF6, IκBα, NFκB) after stimulation with LPS or histamine in a 3D in vitro model of AD. Overexpression of the aforementioned genes may directly increase the secretion of proinflammatory cytokines (CKs) and chemokines (ChKs), which may exacerbate the symptoms of AD. Relative gene expressions were quantified by qPCR and secretion of CKs and ChKs was evaluated by ELISA assay. LPS and histamine increased the relative expression of genes related to the TLR2 pathway, and osthole successfully reduced it. In summary, our results show that osthole inhibits the expression of genes associated with the TLR signaling pathway in a skin model of AD. Moreover, the secretion of CKs and ChKs after treatment of AD with osthole in a 3D skin model in vitro suggests the potential of osthole as a novel compound for the treatment of AD.
Collapse
|
20
|
Liang X, Ou C, Zhuang J, Li J, Zhang F, Zhong Y, Chen Y. Interplay Between Skin Microbiota Dysbiosis and the Host Immune System in Psoriasis: Potential Pathogenesis. Front Immunol 2021; 12:764384. [PMID: 34733291 PMCID: PMC8558530 DOI: 10.3389/fimmu.2021.764384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a multifactorial immune-mediated disease. The highly effective and eligible treatment for psoriasis is limited, for its specific pathogenesis is incompletely elucidated. Skin microbiota is a research hotspot in the pathogenesis of immune-mediated inflammatory skin diseases nowadays, and it may have significant involvement in the provocation or exacerbation of psoriasis with broadly applicable prospects. It is postulated that skin microbiota alternation may interplay with innate immunity such as antimicrobial peptides and Toll-like receptors to stimulate T-cell populations, resulting in immune cascade responses and ultimately psoriasis. Achieving a thorough understanding of its underlying pathogenesis is crucial. Herein, we discuss the potential immunopathogenesis of psoriasis from the aspect of skin microbiota in an attempt to yield insights for novel therapeutic and preventive modalities for psoriasis.
Collapse
Affiliation(s)
- Xiaoqian Liang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Caixin Ou
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jiayi Zhuang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jinsheng Li
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Fangfei Zhang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yuanqiu Zhong
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Schwab JD, Ikonomi N, Werle SD, Weidner FM, Geiger H, Kestler HA. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Comput Struct Biotechnol J 2021; 19:5321-5332. [PMID: 34630946 PMCID: PMC8487005 DOI: 10.1016/j.csbj.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 09/12/2021] [Indexed: 01/08/2023] Open
Abstract
Regulatory dependencies in molecular networks are the basis of dynamic behaviors affecting the phenotypical landscape. With the advance of high throughput technologies, the detail of omics data has arrived at the single-cell level. Nevertheless, new strategies are required to reconstruct regulatory networks based on populations of single-cell data. Here, we present a new approach to generate populations of gene regulatory networks from single-cell RNA-sequencing (scRNA-seq) data. Our approach exploits the heterogeneity of single-cell populations to generate pseudo-timepoints. This allows for the first time to uncouple network reconstruction from a direct dependency on time series measurements. The generated time series are then fed to a combined reconstruction algorithm. The latter allows a fast and efficient reconstruction of ensembles of gene regulatory networks. Since this approach does not require knowledge on time-related trajectories, it allows us to model heterogeneous processes such as aging. Applying the approach to the aging-associated NF-κB signaling pathway-based scRNA-seq data of human hematopoietic stem cells (HSCs), we were able to reconstruct eight ensembles, and evaluate their dynamic behavior. Moreover, we propose a strategy to evaluate the resulting attractor patterns. Interaction graph-based features and dynamic investigations of our model ensembles provide a new perspective on the heterogeneity and mechanisms related to human HSCs aging.
Collapse
Affiliation(s)
- Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Silke D Werle
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Felix M Weidner
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
22
|
Yao X, Zhu Z, Manandhar U, Liao H, Yu T, Wang Y, Bian Y, Zhang B, Zhang X, Xie J, Song J. RNA-seq reveal RNA binding protein GNL3 as a key mediator in the development of psoriasis vulgaris by regulating the IL23/IL17 axis. Life Sci 2021; 293:119902. [PMID: 34487784 DOI: 10.1016/j.lfs.2021.119902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Psoriasis is a systemic chronic inflammatory skin disorder that was prone to recurrence. The RNA binding protein GNL3 has an important function in maintaining the proliferative ability of stem cells, and its overexpression leads to apoptosis. GNL3 is expressed in the epidermis, however, its regulatory mechanism in psoriasis vulgaris is still poorly understood. OBJECTIVE To identify the role of GNL3 in the pathogenesis of psoriasis vulgaris. MATERIALS AND METHODS RNA-seq was performed to obtain the data of genes' expression and splicing events in Hela cells after shGNL3 and shCtrl was transferred. High quality results of differentially expressed genes (DEGs) and alternative splicing events (ASEs) were further attained by quality control and analysis. Through the functional enrichment analysis of DEGs and ASEs, the regulating effect of GNL3 was discussed, and the hypothesis was further confirmed in HaCat cells and psoriasis lesions. RESULTS The mRNA expression of IL23A in Hela cells was upregulated in GNL3 knockdown, and the ratio of ASE occurred in TNFAIP3 was increased. However, in HaCaT cells, the mRNA expression level of IL23A was downregulated in GNL3 knockdown, and the ratio of ASE of TNFAIP3 was decreased. Additionally, the results obtained in HaCaT cells was further validated in the lesional psoriatic skin. CONCLUSION GNL3 takes an important part in the development of psoriasis vulgaris by regulating the IL23/IL17 axis, which may serve as the basis of effective targeted treatment in future.
Collapse
Affiliation(s)
- Xiaomin Yao
- Deparment of Dermatology, Zhongnan Hospital, Wuhan University, China
| | - Zhen Zhu
- Department of orthopedics, Wuhan Union Hospital, Huazhong University of Science and Technology, China
| | - Upasana Manandhar
- Deparment of Dermatology, Zhongnan Hospital, Wuhan University, China
| | - Han Liao
- Laboratory of General Surgery Department, Wuhan Union Hospital, Huazhong University of Science and Technology, China
| | - Tiexi Yu
- Department of orthopedics, Wuhan Union Hospital, Huazhong University of Science and Technology, China
| | - Yueying Wang
- Deparment of Dermatology, Zhongnan Hospital, Wuhan University, China
| | - Yawen Bian
- Deparment of Dermatology, Zhongnan Hospital, Wuhan University, China
| | - Bo Zhang
- Department of orthopedics, Wuhan Union Hospital, Huazhong University of Science and Technology, China
| | - Xuanhong Zhang
- Department of Pathology, Lujiang County Hospital of Traditional Chinese Medicine Hospital, Hefei, Anhui, China
| | - Jun Xie
- Deparment of Dermatology, Zhongnan Hospital, Wuhan University, China.
| | - Jiquan Song
- Deparment of Dermatology, Zhongnan Hospital, Wuhan University, China.
| |
Collapse
|
23
|
Deng L, Shi Y, Liu P, Wu S, Lv Y, Xu H, Chen X. GeGen QinLian decoction alleviate influenza virus infectious pneumonia through intestinal flora. Biomed Pharmacother 2021; 141:111896. [PMID: 34246956 DOI: 10.1016/j.biopha.2021.111896] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza in humans is often accompanied by gastroenteritis-like symptoms. GeGen QinLian decoction (GQD), a Chinese herb formula, has been widely used to treat infectious diarrhea for centuries and has the effect of restoring intestinal flora. Studies have also reported that GQD were used to treat patients with influenza. However, whether regulating the intestinal flora is one of the ways GQD treats influenza has not been confirmed. In present research, we conducted a systemic pharmacological study, and the results showed that GQD may acts through multiple targets and pathways. In influenza-infected mice, GQD treatment reduced mortality and lung inflammation. Most importantly, the mortality and lung inflammation were also reduced in influenza-infected mice that have undergone fecal microbiota transplantation (FMT) from GQD (FMT-GQD) treated mice. GQD treatment or FMT-GQD treatment restores the intestinal flora, resulting in an increase in Akkermansia_muciniphila, Desulfovibrio_C21_c20 and Lactobacillus_salivarius, and a decrease in Escherichia_coli. FMT-GQD treatment inhibited the NOD/RIP2/NF-κB signaling pathway in the intestine and affected the expression of downstream related inflammatory cytokines in mesenteric lymph nodes (mLNs) and serum. In addition, FMT-GQD treatment showed systemic protection by restraining the inflammatory differentiation of CD4+ T cells. In conclusion, our study shows that GQD can affect systemic immunity, at least in part, through the intestinal flora, thereby protect the mice against influenza virus infectious pneumonia.
Collapse
Affiliation(s)
- Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yucong Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Pei Liu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Sizhi Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
24
|
So T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int Immunol 2021; 34:7-20. [PMID: 34453532 DOI: 10.1093/intimm/dxab058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023] Open
Abstract
The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular signaling adaptors and control diverse signaling pathways mediated not only by the TNFR superfamily and the Toll-like receptor/interleukin-1 receptor superfamily but also by unconventional cytokine receptors such as IL-6 and IL-17 receptors. There are seven family members, TRAF1 to TRAF7, in mammals. Exaggerated immune responses induced through TRAF signaling downstream of these receptors often lead to inflammatory and autoimmune diseases including rheumatoid arthritis, inflammatory bowel disease, psoriasis and autoinflammatory syndromes, and thus those signals are major targets for therapeutic intervention. For this reason, it has been very important to understand signaling mechanisms regulated by TRAFs that greatly impact on life/death decisions and the activation, differentiation and survival of cells of the innate and adaptive immune systems. Accumulating evidence suggests that dysregulated cellular expression and/or signaling of TRAFs causes overproduction of proinflammatory cytokines, which facilitates aberrant activation of immune cells. In this review, I will explain the structural and functional aspects that are responsible for the cellular activity and disease outcomes of TRAFs, and summarize the findings of recent studies on TRAFs in terms of how individual TRAF family molecules regulates biological and disease processes in the body in both positive and negative ways. This review also discusses how TRAF mutations contribute to human disease.
Collapse
Affiliation(s)
- Takanori So
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
25
|
Qin B, Sun C, Chen L, Wang S, Yang J, Xie Z, Shen Z. The nerve injuries attenuate the persistence of psoriatic lesions. J Dermatol Sci 2021; 102:85-93. [PMID: 33676787 DOI: 10.1016/j.jdermsci.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND The involvement of the nerve in psoriasis development was suggested by sporadic case reports. OBJECTIVES To provide multiple evidence for the nerve in psoriasis development with a retrospective case review, a literature review and a mouse-based experimental experiment. METHODS Psoriatic patients who had concomitant nerve injuries and such cases from literatures were reviewed. And, on wild-type mouse level, unilateral denervation surgery was performed on the dorsal skin before and after the induction of psoriasiform dermatitis, respectively. Lesion visual scores were calculated, and biopsies were taken for hematoxylin-eosin (HE) staining, immunofluorescence analysis, and RNA sequencing & bioinformatics analysis before denervation surgery and the 2nd, 4th, 6th, 8th day after the surgery. RESULTS All clinical cases (20/20) showed that local lesions under the control of injured nerves relieved spontaneously or even cleared/spared, and only about 1/3 experienced partial recurrence. Next, mouse psoriasiform experiments demonstrated that unilateral denervation prior to imiquimod application attenuated the enhancement of inflammatory reactions (e.g. adaptive immune response and Th17 cell differentiation pathway) and the induction of ipsilateral psoriasiform dermatitis. On the other hand, unilateral denervation after psoriasiform dermatitis induction promoted the regression of inflammatory reactions (e.g. T cell activation, TNF signaling, and Th17 cell differentiation pathway) and ipsilateral dermatitis recovery. CONCLUSION Our study based on both retrospective clinical case review and wild-type mouse experiments provides multiple evidence for the involvement of the nerve in psoriasis development. Regulation of immune events, including TNF signaling and Th17 cell differentiation, may be the mechanisms of the nerve in psoriasis.
Collapse
Affiliation(s)
- Bi Qin
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chaonan Sun
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Siyu Wang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Jianing Yang
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhen Xie
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
26
|
Lipovsky A, Slivka PF, Su Z, Wang Y, Paulsboe S, Wetter J, Namovic MT, Gauvin D, Perron D, Gauld SB, McGaraughty S, Goedken ER. ACT1 Is Required for Murine IL-23-Induced Psoriasiform Inflammation Potentially Independent of E3 Ligase Activity. J Invest Dermatol 2021; 141:1772-1779.e6. [PMID: 33548244 DOI: 10.1016/j.jid.2020.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023]
Abstract
Psoriasis is a debilitating skin disease characterized by epidermal thickening, abnormal keratinocyte differentiation, and proinflammatory immune cell infiltrate into the affected skin. IL-17A plays a critical role in the etiology of psoriasis. ACT1, an intracellular adaptor protein and a putative ubiquitin E3 ligase, is essential for signal transduction downstream of the IL-17A receptor. Thus, IL-17A signaling in general, and ACT1 specifically, represent attractive targets for the treatment of psoriasis. We generated Act1 knockout and Act1 L286G knockin (ligase domain) mice to investigate the potential therapeutic effects of targeting ACT1 and its U-box domain, respectively. Act1 knockout, but not Act1 L286G knockin, mice were resistant to increases in CXCL1 plasma levels induced by subcutaneous injection of recombinant IL-17A. Moreover, in a mouse model of psoriasiform dermatitis induced by intradermal IL-23 injection, Act1 knockout, but not Act1 L286G knockin, was protective against increases in ear thickness, keratinocyte hyperproliferation, expression of genes for antimicrobial peptides and chemokines, and infiltration of monocytes and macrophages. Our studies highlight the critical contribution of ACT1 to proinflammatory skin changes mediated by the IL-23/IL-17 signaling axis and illustrate the need for further insight into ACT1 E3 ligase activity.
Collapse
Affiliation(s)
- Alex Lipovsky
- Dermatology, AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | - Peter F Slivka
- Dermatology, AbbVie Bioresearch Center, Worcester, Massachusetts, USA.
| | - Zhi Su
- Dermatology, AbbVie Inc, North Chicago, Illinois, USA
| | - Yibing Wang
- Dermatology, AbbVie Inc, North Chicago, Illinois, USA
| | | | - Joseph Wetter
- Dermatology, AbbVie Inc, North Chicago, Illinois, USA
| | | | - Donna Gauvin
- Dermatology, AbbVie Inc, North Chicago, Illinois, USA
| | - Denise Perron
- Dermatology, AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | - Eric R Goedken
- Dermatology, AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| |
Collapse
|
27
|
Chen L, Lin Z, Liu Y, Cao S, Huang Y, Yang X, Zhu F, Tang W, He S, Zuo J. DZ2002 alleviates psoriasis-like skin lesions via differentially regulating methylation of GATA3 and LCN2 promoters. Int Immunopharmacol 2021; 91:107334. [PMID: 33412493 DOI: 10.1016/j.intimp.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Psoriasis is the most prevalent inflammatory skin disorders, affecting 1-3% of the worldwide population. We previously reported that topical application of methyl 4-(adenin-9-yl)-2-hydroxybutanoate (DZ2002), a reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, was a viable treatment in murine psoriatic skin inflammation. In current study, we further explored the mechanisms of DZ2002 on keratinocyte dysfunction and skin infiltration, the key pathogenic events in psoriasis. We conducted genome-wide DNA methylation analysis in skin tissue from imiquimod (IMQ)-induced psoriatic and normal mice, demonstrated that topical administration of DZ2002 directly rectified aberrant DNA methylation pattern in epidermis and dermis of psoriatic skin lesion. Especially, DZ2002 differentially regulated DNA methylation of GATA3 and LCN2 promoters, which maintained keratinocytes differentiation and reduced inflammatory infiltration in psoriatic skin respectively. In vitro studies in TNF-α/IFN-γ-elicited HaCaT manifested that DZ2002 treatment rectified compromised keratinocyte differentiation via GATA3 enhancement and abated chemokine expression by reducing LCN2 production under inflammatory stimulation. Chemotaxis assays conducted on dHL-60 cells confirmed that suppression of LCN2 expression by DZ2002 was accompanied by CXCR1 and CXCR2 downregulation, and contributed to the inhibition of CXCL8-driven neutrophils migration. In conclusion, therapeutic benefits of DZ2002 are achieved through differentially regulating DNA methylation of GATA3 and LCN2 promoters in psoriatic skin lesion, which efficiently interrupt the pathogenic interplay between keratinocytes and infiltrating immune cells, thus maintains epidermal keratinocytes differentiation and prevents dermal immune infiltration in psoriatic skin.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Yuting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Shiqi Cao
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Yueteng Huang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Wei Tang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
28
|
Campos-Sánchez JC, Esteban MÁ. Review of inflammation in fish and value of the zebrafish model. JOURNAL OF FISH DISEASES 2021; 44:123-139. [PMID: 33236349 DOI: 10.1111/jfd.13310] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/28/2023]
Abstract
Inflammation is a crucial step in the development of chronic diseases in humans. Understanding the inflammation environment and its intrinsic mechanisms when it is produced by harmful stimuli may be a key element in the development of human disease diagnosis. In recent decades, zebrafish (Danio rerio) have been widely used in research, due to their exceptional characteristics, as a model of various human diseases. Interestingly, the mediators released during the inflammatory response of both the immune system and nervous system, after its integration in the hypothalamus, could also facilitate the detection of injury through the register of behavioural changes in the fish. Although there are many studies that give well-defined information separately on such elements as the recruitment of cells, the release of pro- and anti-inflammatory mediators or the type of neurotransmitters released against different triggers, to the best of our knowledge there are no reviews that put all this knowledge together. In the present review, the main available information on inflammation in zebrafish is presented in order to facilitate knowledge about this important process of innate immunity, as well as the stress responses and behavioural changes derived from it.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| |
Collapse
|
29
|
Takahashi T, Yamasaki K. Psoriasis and Antimicrobial Peptides. Int J Mol Sci 2020; 21:ijms21186791. [PMID: 32947991 PMCID: PMC7555190 DOI: 10.3390/ijms21186791] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Psoriasis is a systemic inflammatory disease caused by crosstalk between various cells such as T cells, neutrophils, dendritic cells, and keratinocytes. Antimicrobial peptides (AMPs) such as β-defensin, S100, and cathelicidin are secreted from these cells and activate the innate immune system through various mechanisms to induce inflammation, thus participating in the pathogenesis of psoriasis. In particular, these antimicrobial peptides enhance the binding of damage-associated molecular patterns such as self-DNA and self-RNA to their receptors and promote the secretion of interferon from activated plasmacytoid dendritic cells and keratinocytes to promote inflammation in psoriasis. Neutrophil extracellular traps (NETs), complexes of self-DNA and proteins including LL-37 released from neutrophils in psoriatic skin, induce Th17. Activated myeloid dendritic cells secrete a mass of inflammatory cytokines such as IL-12 and IL-23 in psoriasis, which is indispensable for the proliferation and survival of T cells that produce IL-17. AMPs enhance the production of some of Th17 and Th1 cytokines and modulate receptors and cellular signaling in psoriasis. Inflammation induced by DAMPs, including self-DNA and RNA released due to microinjuries or scratches, and the enhanced recognition of DAMPs by AMPs, may be involved in the mechanism underlying the Köbner phenomenon in psoriasis.
Collapse
|
30
|
Zhang LH, Xiao B, Zhong M, Li Q, Chen JY, Huang JR, Rao H. LncRNA NEAT1 accelerates renal mesangial cell injury via modulating the miR-146b/TRAF6/NF-κB axis in lupus nephritis. Cell Tissue Res 2020; 382:627-638. [PMID: 32710276 DOI: 10.1007/s00441-020-03248-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/22/2020] [Indexed: 12/31/2022]
Abstract
Although growing advances have been made in the regulation of lupus nephritis recently, lupus nephritis is still one of the major causes of death in SLE patients and the pathogenesis remains largely unknown. Therefore, exploring the pathological mechanisms is urgently needed for designing and developing novel therapeutic strategies for lupus nephritis. Human renal mesangial cells (HRMCs) were transfected with sh-NEAT1, miR-146b mimic, pcDNA-NEAT1, miR-146b inhibitor, or sh-TRAF6 to modify their expression. Lipopolysaccharide (LPS) was used to induce inflammatory injury. Cell viability was examined with CCK8. Apoptosis was determined by flow cytometry and Hoechst staining. qRT-PCR and western blot were used to analyze gene expression. The secretion of inflammatory cytokines was examined with ELISA. The bindings of NEAT1 with miR-146b and miR-146b with TRAF6 were tested by dual-luciferase reporter assay. NEAT1 was upregulated in LPS-treated HRMCs. Both the knockdown of NEAT1 and TRAF6 suppressed the LPS-induced inflammatory injury in HRMCs. NEAT1 directly targeted miR-146b to control miR-146b-mediated regulation of TRAF6 expression in HRMCs. NEAT1 promoted the expression of TRAF6 via targeting miR-146b to accelerate the LPS-mediated renal mesangial cell injury in HRMCs. Moreover, TRAF6 activated the NF-κB signaling in HRMCs. NEAT1 accelerated renal mesangial cell injury via directly targeting miR-146b, promoting the expression of TRAF6, and activating the NF-κB signaling in lupus nephritis. Our investigation elucidated novel pathological mechanisms and provided potential therapeutic targets for lupus nephritis.
Collapse
Affiliation(s)
- Li-Hua Zhang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Bin Xiao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Miao Zhong
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Qiao Li
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Jian-Ying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Jie-Rou Huang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China
| | - Hui Rao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No.89, Guhan Road, Furong District, Changsha, 410016, Hunan Province, People's Republic of China.
| |
Collapse
|
31
|
D’Ignazio L, Shakir D, Batie M, Muller HA, Rocha S. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. Int J Mol Sci 2020; 21:ijms21083000. [PMID: 32344511 PMCID: PMC7216149 DOI: 10.3390/ijms21083000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
NF-κB signalling is crucial for cellular responses to inflammation but is also associated with the hypoxia response. NF-κB and hypoxia inducible factor (HIF) transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1α modulates NF-κB transcriptional response, very little is understood regarding how HIF-1β contributes to NF-κB signalling. Here, we demonstrate that HIF-1β is required for full NF-κB activation in cells following canonical and non-canonical stimuli. We found that HIF-1β specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1β binds to the TRAF6 gene and controls its expression independently of HIF-1α. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1β. These results indicate that HIF-1β is an important regulator of NF-κB with consequences for homeostasis and human disease.
Collapse
Affiliation(s)
- Laura D’Ignazio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK;
- The Lieber Institute for Brain Development, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dilem Shakir
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - Michael Batie
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
| | - H. Arno Muller
- Developmental Genetics Unit, Institute of Biology, University of Kassel, 34132 Kassel, Germany;
| | - Sonia Rocha
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; (D.S.); (M.B.)
- Correspondence: ; Tel.: +44-(0)151-794-9084
| |
Collapse
|
32
|
Sakurai K, Dainichi T, Garcet S, Tsuchiya S, Yamamoto Y, Kitoh A, Honda T, Nomura T, Egawa G, Otsuka A, Nakajima S, Matsumoto R, Nakano Y, Otsuka M, Iwakura Y, Grinberg-Bleyer Y, Ghosh S, Sugimoto Y, Guttman-Yassky E, Krueger JG, Kabashima K. Cutaneous p38 mitogen-activated protein kinase activation triggers psoriatic dermatitis. J Allergy Clin Immunol 2019; 144:1036-1049. [DOI: 10.1016/j.jaci.2019.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/07/2023]
|
33
|
Hawiger J, Zienkiewicz J. Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scand J Immunol 2019; 90:e12812. [PMID: 31378956 PMCID: PMC6883124 DOI: 10.1111/sji.12812] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is the mechanism of diseases caused by microbial, autoimmune, allergic, metabolic and physical insults that produce distinct types of inflammatory responses. This aetiologic view of inflammation informs its classification based on a cause‐dependent mechanism as well as a cause‐directed therapy and prevention. The genomic era ushered in a new understanding of inflammation by highlighting the cell's nucleus as the centre of the inflammatory response. Exogenous or endogenous inflammatory insults evoke genomic responses in immune and non‐immune cells. These genomic responses depend on transcription factors, which switch on and off a myriad of inflammatory genes through their regulatory networks. We discuss the transcriptional paradigm of inflammation based on denying transcription factors’ access to the nucleus. We present two approaches that control proinflammatory signalling to the nucleus. The first approach constitutes a novel intracellular protein therapy with bioengineered physiologic suppressors of cytokine signalling. The second approach entails control of proinflammatory transcriptional cascades by targeting nuclear transport with a cell‐penetrating peptide that inhibits the expression of 23 out of the 26 mediators of inflammation along with the nine genes required for metabolic responses. We compare these emerging anti‐inflammatory countermeasures to current therapies. The transcriptional paradigm of inflammation offers nucleocentric strategies for microbial, autoimmune, metabolic, physical and other types of inflammation afflicting millions of people worldwide.
Collapse
Affiliation(s)
- Jacek Hawiger
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jozef Zienkiewicz
- Immunotherapy Program at Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, Nashville, TN, USA
| |
Collapse
|
34
|
Kobayashi T, Naik S, Nagao K. Choreographing Immunity in the Skin Epithelial Barrier. Immunity 2019; 50:552-565. [PMID: 30893586 DOI: 10.1016/j.immuni.2019.02.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
The skin interfaces with the external environment and is home to a myriad of immune cells that patrol the barrier to ward off harmful agents and aid in tissue repair. The formation of the cutaneous immune arsenal begins before birth and evolves throughout our lifetime, incorporating exogenous cues from microbes and inflammatory encounters, to achieve optimal fitness and function. Here, we discuss the context-specific signals that drive productive immune responses in the skin epithelium, highlighting key modulators of these reactions, including hair follicles, neurons, and commensal microbes. We thus also discuss the causal and mechanistic underpinning of inflammatory skin diseases that have been revealed in recent years. Finally, we discuss the non-canonical functions of cutaneous immune cells including their burgeoning role in epithelial regeneration and repair. The rapidly growing field of cutaneous immunity is revealing immune mechanisms and functions that can be harnessed to boost skin health and treat disease.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shruti Naik
- Department of Pathology, Ronald O. Perelman Department of Dermatology, and Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Zhang LJ. Type1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol 2019; 10:1440. [PMID: 31293591 PMCID: PMC6603083 DOI: 10.3389/fimmu.2019.01440] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a chronic autoimmune skin disease that can often be triggered upon skin injury, known as Koebner phenomenon. Type 1 interferons (IFNα and IFNβ), key cytokines that activate autoimmunity during viral infection, have been suggested to play an indispensable role in initiating psoriasis during skin injury. Type 1 IFN-inducible gene signature has been identified as one of the major upregulated gene signatures in psoriatic skin. Type 1 IFNs treatments often directly induce or exacerbate psoriasis, whereas blocking type 1 IFNs signaling pathway in animal models effectively inhibits the development of T cell-mediated skin inflammation and psoriasis-like inflammatory diseases. Epidermal keratinocytes (KCs) occupy the outermost position in the skin and are the first responder to skin injury. Skin injury rapidly induces IFNβ from KCs and IFNα from dermal plasmacytoid dendritic cells (pDCs) through distinct mechanisms. Host antimicrobial peptide LL37 potentiates double-stranded RNA (dsRNA) immune pathways in keratinocytes and single-stranded RNA or DNA pathways in pDCs, leading to production of distinct type 1 IFN genes. IFNβ from KC promotes dendritic cell maturation and the subsequent T cell proliferation, contributing to autoimmune activation during skin injury and psoriasis pathogenesis. Accumulating evidences have indicated an important role of this dsRNA immune pathway in psoriasis pathogenesis. Together, this review describes how skin injury induces type 1 IFNs from skin cells and how this may initiate autoimmune cascades that trigger psoriasis. Targeting keratinocytes or type 1 IFNs in combination with T cell therapy may result in more sustainable effect to treat auto-inflammatory skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Dainichi T, Matsumoto R, Mostafa A, Kabashima K. Immune Control by TRAF6-Mediated Pathways of Epithelial Cells in the EIME (Epithelial Immune Microenvironment). Front Immunol 2019; 10:1107. [PMID: 31156649 PMCID: PMC6532024 DOI: 10.3389/fimmu.2019.01107] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
In the protective responses of epithelial tissues, not only immune cells but also non-immune cells directly respond to external agents. Epithelial cells can be involved in the organization of immune responses through two phases. First, the exogenous harmful agents trigger the primary responses of the epithelial cells leading to various types of immune cell activation. Second, cytokines produced by the immune cells that are activated directly by the external agents and indirectly by the epithelial cell products elicit the secondary responses giving rise to further propagation of immune responses. TRAF6 is a ubiquitin E3 ligase, which intermediates between various types of receptors for exogenous agents or endogenous mediators and activation of subsequent transcriptional responses via NF-kappaB and MAPK pathways. TRAF6 ubiquitously participates in many protective responses in immune and non-immune cells. Particularly, epithelial TRAF6 has an essential role in the primary and secondary responses via driving type 17 response in psoriatic inflammation of the skin. Consistently, many psoriasis susceptibility genes encode the TRAF6 signaling players, such as ACT1 (TRAF3IP2), A20 (TNFAIP3), ABIN1 (TNIP1), IL-36Ra (IL36RN), IkappaBzeta (NFKBIZ), and CARD14. Herein, we describe the principal functions of TRAF6, especially in terms of positive and regulatory immune controls by interaction between immune cells and epithelial cells. In addition, we discuss how TRAF6 in the epithelial cells can organize the differentiation of immune responses and drive inflammatory loops in the epithelial immune microenvironment, which is termed EIME.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Reiko Matsumoto
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Alshimaa Mostafa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Dermatology, Beni-Suef University, Beni-Suef, Egypt
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore, Singapore
| |
Collapse
|
37
|
Dainichi T, Kitoh A, Otsuka A, Nakajima S, Nomura T, Kaplan DH, Kabashima K. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol 2018; 19:1286-1298. [PMID: 30446754 DOI: 10.1038/s41590-018-0256-2] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
The skin provides both a physical barrier and an immunologic barrier to external threats. The protective machinery of the skin has evolved to provide situation-specific responses to eliminate pathogens and to provide protection against physical dangers. Dysregulation of this machinery can give rise to the initiation and propagation of inflammatory loops in the epithelial microenvironment that result in inflammatory skin diseases in susceptible people. A defective barrier and microbial dysbiosis drive an interleukin 4 (IL-4) loop that underlies atopic dermatitis, while in psoriasis, disordered keratinocyte signaling and predisposition to type 17 responses drive a pathogenic IL-17 loop. Here we discuss the pathogenesis of atopic dermatitis and psoriasis in terms of the epithelial immune microenvironment-the microbiota, keratinocytes and sensory nerves-and the resulting inflammatory loops.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Akihiko Kitoh
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniel H Kaplan
- Department of Dermatology and Department of Immunology, Cutaneous Biology Research Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan. .,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Singapore.
| |
Collapse
|