1
|
Liu Y, Liu L, Zhuang P, Zou J, Chen X, Wu H, Lu B, Wang WE. A meta-analysis and systematic review of myocardial infarction-induced cardiomyocyte proliferation in adult mouse heart. BMC Med 2024; 22:603. [PMID: 39736615 DOI: 10.1186/s12916-024-03822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND The proliferation capacity of adult cardiomyocytes is very limited in the normal adult mammalian heart. Previous studies implied that cardiomyocyte proliferation increases after injury stimulation, but the result is controversial partly due to different methodologies. We aim to evaluate whether myocardial infarction (MI) stimulates cardiomyocyte proliferation in adult mice. METHODS A comprehensive literature search was conducted through PubMed/Medline, Embase, and Web of Science databases from 1 January 2000 to 21 December 2023. The SYRCLE's Risk of Bias tool for animal experiments was used to evaluate the quality of the literature by two independent reviewers. Twenty-six studies with cell cycle indicators (Ki67+, PH3+, BrdU/EdU+, and AurkB+) to evaluate cycling cardiomyocytes were collected for a meta-analysis. Another 10 studies with genetic reporter/tracing systems to evaluate cardiomyocyte proliferation were collected for a systematic review. RESULTS Evaluating cardiomyocyte proliferation by immunostaining of the cell cycle indicators on heart tissue, the meta-analysis showed that differences of Ki67+, PH3+, and BrdU/EdU+ cycling cardiomyocytes between MI and Sham groups were not statistically significant. In the post-MI heart, the percentages of PH3+, BrdU/EdU+, and AurkB+ cardiomyocytes were not significantly different between the infarct border zone and remote zone. The percentage of Ki67+ cardiomyocytes in the infarct border zone was statistically higher than that in the remote zone. Most of the studies (6 out of 10) using genetic reporter/tracing mouse systems showed that the difference in cardiomyocyte proliferation between MI and Sham groups was not statistically significant. Among the other 4 studies, at least 3 studies could not demonstrate that MI stimulates bona fide cardiomyocyte proliferation because of methodological shortages. CONCLUSIONS MI injury increases Ki67+ cycling adult mouse cardiomyocytes in infarct border zone. Very little overwhelming evidence shows that MI stimulates bona fide proliferation in the adult heart.
Collapse
Affiliation(s)
- Ya Liu
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Lingyan Liu
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Pengcheng Zhuang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Jiamin Zou
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Xiaokang Chen
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Hao Wu
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Bingjun Lu
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
2
|
Pomierny B, Krzyżanowska W, Skórkowska A, Jurczyk J, Budziszewska B, Pera J. Chicago sky blue 6B exerts neuroprotective and anti-inflammatory effects on focal cerebral ischemia. Biomed Pharmacother 2024; 170:116102. [PMID: 38159376 DOI: 10.1016/j.biopha.2023.116102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Brain ischemia is one of the leading causes of death and long-term disability worldwide. Cessation of the blood supply to the brain directly stimulates many pathological events, including glutamate overload and neuroinflammation. Glial cell activation occurs shortly after ischemia onset, resulting in the release of proinflammatory cytokines and exacerbation of the detrimental effects of neuroinflammation. Proinflammatory signals influence the infiltration of a wide range of immune cells, including neutrophils, T cells and monocytes/macrophages. In this study, we aimed to verify the potential anti-inflammatory effect of Chicago Sky Blue 6B (CSB6B) in a rat model of focal cerebral ischemia (90-minute middle cerebral artery occlusion). CSB6B was administered 2 h before (pretreatment) or 1.5 h after reperfusion onset (posttreatment). A model of ischemic preconditioning was used as the comparator to pretreatment with CSB6B. The results of indicated that posttreatment with CSB6B had profound anti-inflammatory effects that were associated with reduced neurological deficits and a decreased infarct volume. At 24 h, 3 days and 7 days after brain ischemia, CSB6B administration reduced the protein levels of proinflammatory cytokines, such as Il1β, Il6, Il18 and TNFα, in the cerebral cortex and the dorsal striatum. Treatment with CSB6B also limited the scope of microglia and astrocyte activation and the infiltration of immune cells. Taken together, this study shows that compounds such as CSB6B might be promising pharmacological tools; however, further studies on the improvements in the drug-like properties of these compounds must be undertaken.
Collapse
Affiliation(s)
- B Pomierny
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland.
| | - W Krzyżanowska
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - A Skórkowska
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - J Jurczyk
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - B Budziszewska
- Laboratory for Stroke Research, Department of Toxicological Biochemistry, Jagiellonian University Medical College, Poland
| | - J Pera
- Department of Neurology, Jagiellonian University Medical College, Poland
| |
Collapse
|
3
|
Li Z, Dai R, Chen M, Huang L, Zhu K, Li M, Zhu W, Li Y, Xie N, Li J, Wang L, Lan F, Cao CM. p55γ degrades RIP3 via MG53 to suppress ischaemia-induced myocardial necroptosis and mediates cardioprotection of preconditioning. Cardiovasc Res 2023; 119:2421-2440. [PMID: 37527538 DOI: 10.1093/cvr/cvad123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
AIMS Regulated necrosis (necroptosis) and apoptosis are important biological features of myocardial infarction, ischaemia-reperfusion (I/R) injury, and heart failure. However, the molecular mechanisms underlying myocardial necroptosis remain elusive. Ischaemic preconditioning (IPC) is the most powerful intrinsic cardioprotection against myocardial I/R injury. In this study, we aimed to determine whether IPC suppresses I/R-induced necroptosis and the underlying molecular mechanisms. METHODS AND RESULTS We generated p55γ transgenic and knockout mice and used ligation of left anterior descending coronary artery to produce an in vivo I/R model. The effects of p55γ and its downstream molecules were subsequently identified using mass spectroscopy and co-immunoprecipitation and pulldown assays. We found that p55γ expression was down-regulated in failing human myocardium caused by coronary heart disease as well as in I/R mouse hearts. Cardiac-specific p55γ overexpression ameliorated the I/R-induced necroptosis. In striking contrast, p55γ deficiency (p55γ-/-) and cardiac-specific deletion of p55γ (p55γc-KO) worsened I/R-induced injury. IPC up-regulated p55γ expression in vitro and in vivo. Using reporter and chromatin immunoprecipitation assays, we found that Hif1α transcriptionally regulated p55γ expression and mediated the cardioprotection of IPC. IPC-mediated suppression of necroptosis was attenuated in p55γ-/- and p55γc-KO hearts. Mechanistically, p55γ overexpression decreased the protein levels of RIP3 rather than the mRNA levels, while p55γ deficiency increased the protein abundance of RIP3. IPC attenuated the I/R-induced up-regulation of RIP3, which was abolished in p55γ-deficient mice. Up-regulation of RIP3 attenuated the p55γ- or IPC-induced inhibition of necroptosis in vivo. Importantly, p55γ directly bound and degraded RIP3 in a ubiquitin-dependent manner. We identified MG53 as the E3 ligase that mediated the p55γ-induced degradation of RIP3. In addition, we also found that p55γ activated the RISK pathway during IPC. CONCLUSIONS Our findings reveal that activation of the MG53-RIP3 signal pathway by p55γ protects the heart against I/R-induced necroptosis and underlies IPC-induced cardioprotection.
Collapse
Affiliation(s)
- Zhenyan Li
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
- Department of Physiology, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 Dongdansantiao, Dongcheng District, Beijing 100730, China
| | - Rilei Dai
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Min Chen
- Department of Physiology, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
| | - Lixuan Huang
- Department of Dermatology, The Fourth Hospital of Hebei Medical University, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Kun Zhu
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Mingyang Li
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Wenting Zhu
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Yang Li
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Ning Xie
- Institute of Molecular Medicine, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Jingchen Li
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Feng Lan
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, Xicheng District, Beijing 100037, China
| | - Chun-Mei Cao
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng District, Beijing 100050, China
- Department of Physiology, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing 100020, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 Dongdansantiao, Dongcheng District, Beijing 100730, China
| |
Collapse
|
4
|
Hsieh YK, Wang MT, Wang CY, Chen CF, Ko YL, Huang WC. Recent advances in the diagnosis and management of acute myocardial infarction. J Chin Med Assoc 2023; 86:950-959. [PMID: 37801590 DOI: 10.1097/jcma.0000000000001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
With the discovery of new biomarkers for the early detection of acute myocardial infarction (AMI), advancements in valid medication, and percutaneous coronary intervention (PCI), the overall prognosis of AMI has improved remarkably. Nevertheless, challenges remain which require more difficult work to overcome. Novel diagnostic and therapeutic techniques include new AMI biomarkers, hypothermia therapy, supersaturated oxygen (SSO 2 ) therapy, targeted anti-inflammatory therapy, targeted angiogenesis therapy, and stem cell therapy. With these novel methods, we believe that the infarction size after AMI will decrease, and myocardial injury-associated ventricular remodeling may be avoided. This review focuses on novel advances in the diagnosis and management of AMI.
Collapse
Affiliation(s)
- Yi-Keng Hsieh
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
5
|
Inhibition of Vesicular Glutamate Transporters (VGLUTs) with Chicago Sky Blue 6B Before Focal Cerebral Ischemia Offers Neuroprotection. Mol Neurobiol 2023; 60:3130-3146. [PMID: 36802054 PMCID: PMC10122628 DOI: 10.1007/s12035-023-03259-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
Brain ischemia is one of the leading causes of death and long-term disability in the world. Interruption of the blood supply to the brain is a direct stimulus for many pathological events. The massive vesicular release of glutamate (Glu) after ischemia onset induces excitotoxicity, which is a potent stress on neurons. Loading of presynaptic vesicles with Glu is the first step of glutamatergic neurotransmission. Vesicular glutamate transporters 1, 2, and 3 (VGLUT1, 2, and 3) are the main players involved in filling presynaptic vesicles with Glu. VGLUT1 and VGLUT2 are expressed mainly in glutamatergic neurons. Therefore, the possibility of pharmacological modulation to prevent ischemia-related brain damage is attractive. In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3 days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum and in the cerebral cortex 24 h and 3 days after ischemia, respectively. Microdialysis revealed that pretreatment with CSB6B significantly reduced the extracellular Glu concentration. Altogether, this study shows that inhibition of VGLUTs might be a promising therapeutic strategy for the future.
Collapse
|
6
|
Tsang ES, Munster PN. Targeting RAD51-Mediated Homologous Recombination as a Treatment for Advanced Solid and Hematologic Malignancies: Opportunities and Challenges Ahead. Onco Targets Ther 2022; 15:1509-1518. [PMID: 36536949 PMCID: PMC9758980 DOI: 10.2147/ott.s322297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2023] Open
Abstract
RAD51 is integral in homologous recombination DNA damage repair and has garnered much interest as both a biomarker and potential therapeutic target in oncology. Multiple in vitro and in vivo studies have demonstrated its role as a predictive marker, particularly in the context of platinum-based therapies and poly ADP-ribose polymerase (PARP) inhibitors. In this review, we highlight the development of RAD51 inhibitors, with a focus on novel molecules and ongoing clinical trials. Despite many efforts to develop effective and tolerable direct RAD51 inhibitors, identification of these agents remains challenging. Clinically, however, there may be a role of pharmacological indirect RAD51 inhibition.
Collapse
Affiliation(s)
- Erica S Tsang
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Pamela N Munster
- Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, 94158, USA
| |
Collapse
|
7
|
Hausmann S, Geiser J, Valentini M. Mechanism of inhibition of bacterial RNA helicases by diazo dyes and implications for antimicrobial drug development. Biochem Pharmacol 2022; 204:115194. [DOI: 10.1016/j.bcp.2022.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
|
8
|
Du J, Zheng L, Gao P, Yang H, Yang WJ, Guo F, Liang R, Feng M, Wang Z, Zhang Z, Bai L, Bu Y, Xing S, Zheng W, Wang X, Quan L, Hu X, Wu H, Chen Z, Chen L, Wei K, Zhang Z, Zhu X, Zhang X, Tu Q, Zhao SM, Lei X, Xiong JW. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell 2022; 29:545-558.e13. [PMID: 35395187 DOI: 10.1016/j.stem.2022.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 01/07/2023]
Abstract
Zebrafish and mammalian neonates possess robust cardiac regeneration via the induction of endogenous cardiomyocyte (CM) proliferation, but adult mammalian hearts have very limited regenerative potential. Developing small molecules for inducing adult mammalian heart regeneration has had limited success. We report a chemical cocktail of five small molecules (5SM) that promote adult CM proliferation and heart regeneration. A high-content chemical screen, along with an algorithm-aided prediction of small-molecule interactions, identified 5SM that efficiently induced CM cell cycle re-entry and cytokinesis. Intraperitoneal delivery of 5SM reversed the loss of heart function, induced CM proliferation, and decreased cardiac fibrosis after rat myocardial infarction. Mechanistically, 5SM potentially targets α1 adrenergic receptor, JAK1, DYRKs, PTEN, and MCT1 and is connected to lactate-LacRS2 signaling, leading to CM metabolic switching toward glycolysis/biosynthesis and CM de-differentiation before entering the cell-cycle. Our work sheds lights on the understanding CM regenerative mechanisms and opens therapeutic avenues for repairing the heart.
Collapse
Affiliation(s)
- Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Peng Gao
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Hang Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Jie Yang
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ruqi Liang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Mengying Feng
- Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zihao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Zongwang Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Linlu Bai
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ye Bu
- PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Shijia Xing
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Wen Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xuelian Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Li Quan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xinli Hu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Haosen Wu
- Division of Cardiac Surgery, the Third Hospital of Peking University, Beijing 100083, China
| | - Zhixing Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Liangyi Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ke Wei
- Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhe Zhang
- Division of Cardiac Surgery, the Third Hospital of Peking University, Beijing 100083, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | | | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, State Key Lab of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Academy for Advanced Interdisciplinary Studies, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China; PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China.
| |
Collapse
|
9
|
Carrillo García C, Becker C, Forster M, Lohmann S, Freitag P, Laufer S, Sievers S, Fleischmann BK, Hesse M, Schade D. High-Throughput Screening Platform in Postnatal Heart Cells and Chemical Probe Toolbox to Assess Cardiomyocyte Proliferation. J Med Chem 2022; 65:1505-1524. [PMID: 34818008 DOI: 10.1021/acs.jmedchem.1c01173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Restoring lost heart muscle is an attractive goal for cardiovascular regenerative medicine. One appealing strategy is the therapeutic stimulation of cardiomyocyte proliferation, which inter alia remains challenging due to available assay technologies capturing the complex biology. Here, a high-throughput-formatted phenotypic assay platform was established using rodent whole heart-derived cells to preserve the cellular environment of cardiomyocytes. Several readouts allowed the quantification of cycling cardiomyocytes, including a transgenic H2B-mCherry system for unequivocal, automated detection of cardiomyocyte nuclei. A chemical genetics approach revealed pronounced species differences and furnished pan-kinase inhibitors 5 and 36 as potent and robust inducers of endoreplication and acytokinetic mitosis. Combined profiling of the commonly used p38 MAPK inhibitors SB203580 (1), SB239063 (2) and a novel set of skepinone-L (6) derivatives pointed to off-target effects beyond p38 that might be critical for effective cardiomyocyte cytokinesis. Kinome-focused screening eventually furnished TG003 (38) as a novel candidate for stimulating cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Carmen Carrillo García
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Cora Becker
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Forster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Lohmann
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Patricia Freitag
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Sonja Sievers
- Compound Management and Screening Center COMAS, Max Planck Institute of Molecular Physiology (MPI), 44227 Dortmund, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
- Pharma Center Bonn, 53127 Bonn, Germany
| | - Michael Hesse
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, House 76, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
- Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany
| |
Collapse
|
10
|
Li J, Zhao Y, Zhu W. Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). Exp Ther Med 2022; 23:64. [PMID: 34934435 PMCID: PMC8649855 DOI: 10.3892/etm.2021.10986] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) remains the main cause of mortality worldwide. Despite surgery and medical treatment, the non-regeneration of dead cardiomyocytes and the limited contractile ability of scar tissue can lead to heart failure. Therefore, restoring blood flow in the infarcted area is important for the repair of myocardial injury. The objective of the present review was to summarize the factors influencing angiogenesis after AMI, and to describe the application of angiogenesis for cardiac repair. Collectively, this review may be helpful for relevant studies and to provide insight into future therapeutic applications in clinical practice.
Collapse
Affiliation(s)
- Jiejie Li
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuanyuan Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
11
|
Inhibiting homologous recombination by targeting RAD51 protein. Biochim Biophys Acta Rev Cancer 2021; 1876:188597. [PMID: 34332021 DOI: 10.1016/j.bbcan.2021.188597] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) is involved in repairing DNA double-strand breaks (DSB), the most harmful for the cell. Regulating HR is essential for maintaining genomic stability. In many forms of cancer, overactivation of HR increases tumor resistance to DNA-damaging treatments. RAD51, HR's core protein, is very often over-expressed in these cancers and plays a critical role in cancer cell development and survival. Targeting RAD51 directly to reduce its activity and its expression is therefore one strategy to sensitize and overcome resistance cancer cells to existing DNA-damaging therapies which remains the limiting factor for the success of targeted therapy. This review describes the structure and biological roles of RAD51, summarizes the different targeted sites of RAD51 and its inhibitory compounds discovered and described in the last decade.
Collapse
|
12
|
Day CJ, Bailly B, Guillon P, Dirr L, Jen FEC, Spillings BL, Mak J, von Itzstein M, Haselhorst T, Jennings MP. Multidisciplinary Approaches Identify Compounds that Bind to Human ACE2 or SARS-CoV-2 Spike Protein as Candidates to Block SARS-CoV-2-ACE2 Receptor Interactions. mBio 2021; 12:e03681-20. [PMID: 33785634 PMCID: PMC8092326 DOI: 10.1128/mbio.03681-20] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently emerged virus that causes coronavirus infectious disease 2019 (COVID-19). SARS-CoV-2 spike protein, like SARS-CoV-1, uses the angiotensin converting enzyme 2 (ACE2) as a cellular receptor to initiate infection. Compounds that interfere with the SARS-CoV-2 spike protein receptor binding domain protein (RBD)-ACE2 receptor interaction may function as entry inhibitors. Here, we used a dual strategy of molecular docking and surface plasmon resonance (SPR) screening of compound libraries to identify those that bind to human ACE2 or the SARS-CoV-2 spike protein receptor binding domain (RBD). Molecular modeling screening interrogated 57,641 compounds and focused on the region of ACE2 that is engaged by RBD of the SARS-CoV-2 spike glycoprotein and vice versa. SPR screening used immobilized human ACE2 and SARS-CoV-2 Spike protein to evaluate the binding of these proteins to a library of 3,141 compounds. These combined screens identified compounds from these libraries that bind at KD (equilibrium dissociation constant) <3 μM affinity to their respective targets, 17 for ACE2 and 6 for SARS-CoV-2 RBD. Twelve ACE2 binders and six of the RBD binders compete with the RBD-ACE2 interaction in an SPR-based competition assay. These compounds included registered drugs and dyes used in biomedical applications. A Vero-E6 cell-based SARS-CoV-2 infection assay was used to evaluate infection blockade by candidate entry inhibitors. Three compounds demonstrated dose-dependent antiviral in vitro potency-Evans blue, sodium lifitegrast, and lumacaftor. This study has identified potential drugs for repurposing as SARS-CoV-2 entry inhibitors or as chemical scaffolds for drug development.IMPORTANCE SARS-CoV-2, the causative agent of COVID-19, has caused more than 60 million cases worldwide with almost 1.5 million deaths as of November 2020. Repurposing existing drugs is the most rapid path to clinical intervention for emerging diseases. Using an in silico screen of 57,641 compounds and a biophysical screen of 3,141 compounds, we identified 22 compounds that bound to either the angiotensin converting enzyme 2 (ACE2) and/or the SARS-CoV-2 spike protein receptor binding domain (SARS-CoV-2 spike protein RBD). Nine of these drugs were identified by both screening methods. Three of the identified compounds, Evans blue, sodium lifitegrast, and lumacaftor, were found to inhibit viral replication in a Vero-E6 cell-based SARS-CoV-2 infection assay and may have utility as repurposed therapeutics. All 22 identified compounds provide scaffolds for the development of new chemical entities for the treatment of COVID-19.
Collapse
Affiliation(s)
- Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Belinda L Spillings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Johnson Mak
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
| |
Collapse
|
13
|
Jiang SJ, Wang W. Research progress on the role of CaMKII in heart disease. Am J Transl Res 2020; 12:7625-7639. [PMID: 33437349 PMCID: PMC7791482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
In the heart, Ca2+ participates in electrical activity and myocardial contraction, which is closely related to the generation of action potential and excitation contraction coupling (ECC) and plays an important role in various signal cascades and regulates different physiological processes. In the Ca2+ related physiological activities, CaMKII is a key downstream regulator, involving autophosphorylation and post-translational modification, and plays an important role in the excitation contraction coupling and relaxation events of cardiomyocytes. This paper reviews the relationship between CaMKII and various substances in the pathological process of myocardial apoptosis and necrosis, myocardial hypertrophy and arrhythmia, and what roles it plays in the development of disease in complex networks. This paper also introduces the drugs targeting at CaMKII to treat heart disease.
Collapse
Affiliation(s)
- Shi-Jun Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Wei Wang
- Department of Cardiology, Affiliated Taihe Hospital of Hubei University of MedicineShiyan 442000, Hubei, China
| |
Collapse
|