1
|
Johnson AL, Khela HS, Korleski J, Sall S, Li Y, Zhou W, Smith-Connor K, Lopez-Bertoni H, Laterra J. TGFBR2 High mesenchymal glioma stem cells phenocopy regulatory T cells to suppress CD4+ and CD8+ T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631757. [PMID: 39829747 PMCID: PMC11741370 DOI: 10.1101/2025.01.07.631757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We show that this I mmunosuppressive T reg- L ike (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGF-β type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a 6-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs and systemic mesenchymal malignancies. TGFBR2 High GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics.
Collapse
|
2
|
Van Deusen AL, Kumar S, Calhan OY, Goggin SM, Shi J, Williams CM, Keeler AB, Fread KI, Gadani IC, Deppmann CD, Zunder ER. A single-cell mass cytometry-based atlas of the developing mouse brain. Nat Neurosci 2025; 28:174-188. [PMID: 39695302 DOI: 10.1038/s41593-024-01786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Development of the mammalian brain requires precise molecular changes across diverse cell lineages. While single-cell RNA abundances in the developing brain have been characterized by single-cell RNA sequencing (scRNA-seq), single-cell protein abundances have not been characterized. To address this gap, we performed mass cytometry on the whole brain at embryonic day (E)11.5-E12.5 and the telencephalon, the diencephalon, the mesencephalon and the rhombencephalon at E13.5-postnatal day (P)4 from C57/BL6 mice. Using a 40-antibody panel to analyze 24,290,787 cells from two to four biological replicates per sample, we identify 85 molecularly distinct cell clusters from distinct lineages. Our analyses confirm canonical molecular pathways of neurogenesis and gliogenesis, and predict two distinct trajectories for cortical oligodendrogenesis. Differences in protein versus RNA expression from mass cytometry and scRNA-seq, validated by immunohistochemistry and RNAscope in situ hybridization (ISH), demonstrate the value of protein-level measurements for identifying functional cell states. Our findings show the utility of mass cytometry as a scalable platform for single-cell profiling of brain tissues.
Collapse
Affiliation(s)
- Amy L Van Deusen
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sushanth Kumar
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - O Yipkin Calhan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sarah M Goggin
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jiachen Shi
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Corey M Williams
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Austin B Keeler
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kristen I Fread
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Irene C Gadani
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Christopher D Deppmann
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Eli R Zunder
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
3
|
Guo S, Ramar V, Guo AA, Saafir T, Akpobiyeri H, Hudson B, Li J, Liu M. TRPM7 transactivates the FOSL1 gene through STAT3 and enhances glioma stemness. Cell Mol Life Sci 2023; 80:270. [PMID: 37642779 PMCID: PMC10465393 DOI: 10.1007/s00018-023-04921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION We previously reported that TRPM7 regulates glioma cells' stemness through STAT3. In addition, we demonstrated that FOSL1 is a response gene for TRPM7, and the FOSL1 gene serves as an oncogene to promote glioma proliferation and invasion. METHODS In the present study, we determined the effects of FOSL1 on glioma stem cell (GSC) markers CD133 and ALDH1 by flow cytometry, and the maintenance of stem cell activity by extreme limiting dilution assays (ELDA). To further gain insight into the mechanism by which TRPM7 activates transcription of the FOSL1 gene to contribute to glioma stemness, we constructed a FOSL1 promoter and its GAS mutants followed by luciferase reporter assays and ChIP-qPCR in a glioma cell line and glioma patient-derived xenoline. We further examined GSC markers ALDH1 and TRPM7 as well as FOSL1 by immunohistochemistry staining (IHC) in brain tissue microarray (TMA) of glioma patients. RESULTS We revealed that FOSL1 knockdown reduces the expression of GSC markers CD133 and ALDH1, and FOSL1 is required to maintain stem cell activity in glioma cells. The experiments also showed that mutations of - 328 to - 336 and - 378 to - 386 GAS elements markedly reduced FOSL1 promoter activity. Constitutively active STAT3 increased while dominant-negative STAT3 decreased FOSL1 promoter activity. Furthermore, overexpression of TRPM7 enhanced while silencing of TRPM7 reduced FOSL1 promoter activity. ChIP-qPCR assays revealed that STAT3, present in nuclear lysates of glioma cells stimulated by constitutively activated STAT3, can bind to two GAS elements, respectively. We demonstrated that deacetylation of FOSL1 at the Lys-116 residue located within its DNA binding domain led to an increase in FOSL1 transcriptional activity. We found that the expression of TRPM7, ALDH1, and FOSL1 protein is associated with grades of malignant glioma, and TRPM7 protein expression correlates to the expression of ALDH1 and FOSL1 in glioma patients. CONCLUSIONS These combined results demonstrated that TRPM7 induced FOSL1 transcriptional activation, which is mediated by the action of STAT3, a mechanism shown to be important in glioma stemness. These results indicated that FOSL1, similar to GSC markers ALDH1 and TRPM7, is a diagnostic marker and potential drug target for glioma patients.
Collapse
Affiliation(s)
- Shanchun Guo
- Department of Chemistry, Xavier University, 1 Drexel Dr, New Orleans, LA, USA
| | - Vanajothi Ramar
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Alyssa A Guo
- University of South Carolina SOM Greenville, Greenville, SC, USA
| | - Talib Saafir
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Hannah Akpobiyeri
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Breanna Hudson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA
| | - Jason Li
- Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, USA
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, USA.
| |
Collapse
|
4
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Wu C, Shen Y, Shi L, Zhang J, Guo T, Zhou L, Wang W, Zhang X, Yu R, Liu X. UBA1 inhibition contributes radiosensitization of glioblastoma cells via blocking DNA damage repair. Front Pharmacol 2023; 14:1073929. [PMID: 36959858 PMCID: PMC10027716 DOI: 10.3389/fphar.2023.1073929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor with high mortality and recurrence rate. Radiotherapy and chemotherapy after surgery are the main treatment options available for GBM. However, patients with glioblastoma have a grave prognosis. The major reason is that most GBM patients are resistant to radiotherapy. UBA1 is considered an attractive potential anti-tumor therapeutic target and a key regulator of DNA double-strand break repair and genome replication in human cells. Therefore, we hypothesized that TAK-243, the first-in-class UBA1 inhibitor, might increase GBM sensitivity to radiation. The combined effect of TAK-243 and ionizing radiation on GBM cell proliferation, and colony formation ability was detected using CCK-8, colony formation, and EdU assays. The efficacy of TAK-243 combined with ionizing radiation for GBM was further evaluated in vivo, and the mechanism of TAK-243 sensitizing radiotherapy was preliminarily discussed. The results showed that TAK-243, in combination with ionizing radiation, significantly inhibited GBM cell proliferation, colony formation, cell cycle arrest in the G2/M phase, and increased the proportion of apoptosis. In addition, UBA1 inhibition by TAK-243 substantially increased the radiation-induced γ-H2AX expression and impaired the recruitment of the downstream effector molecule 53BP1. Therefore, TAK-243 inhibited the radiation-induced DNA double-strand break repair and thus inhibited the growth of GBM cells. Our results provided a new therapeutic strategy for improving the radiation sensitivity of GBM and laid a theoretical foundation and experimental basis for further clinical trials.
Collapse
Affiliation(s)
- Changyong Wu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Shen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of general surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junhao Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tongxuan Guo
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingni Zhou
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanzhou Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Rutong Yu, ; Xuejiao Liu,
| |
Collapse
|
6
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
7
|
Lakis NS, Brodsky AS, Karashchuk G, Audesse AJ, Yang D, Sturtevant A, Lombardo K, Wong IY, Webb AE, Anthony DC. Stem cell phenotype predicts therapeutic response in glioblastomas with MGMT promoter methylation. Acta Neuropathol Commun 2022; 10:159. [PMID: 36333778 PMCID: PMC9636755 DOI: 10.1186/s40478-022-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence supports the presence of a population of cells in glioblastoma (GBM) with a stem cell-like phenotype which shares certain biological markers with adult neural stem cells, including expression of SOX2, CD133 (PROM1), and NES (nestin). This study was designed to determine the relationship between the expression of these stem cell markers and the clinical outcome in GBM patients. We quantified the intensity of expression of the proteins CD133 and SOX2 by immunohistochemistry (IHC) in a cohort of 86 patients with IDH-wildtype GBM, and evaluated patient outcomes using Kaplan-Meier and Cox proportional hazards analysis. In our patients, MGMT promoter methylation status and age were predictors of overall survival and progression free survival. The levels of SOX2 and CD133 were not associated with outcome in univariate analysis; however, stratification of tumors based on low or high levels of CD133 or SOX2 expression revealed that MGMT methylation was a predictor of progression-free survival and overall survival only for tumors with high levels of expression of CD133 or SOX2. Tumors with low levels of expression of CD133 or SOX2 did not show any relationship between MGMT methylation and survival. This relationship between MGMT and stem cell markers was confirmed in a second patient cohort, the TCGA dataset. Our results show that stratification of GBM by the level of expression of CD133 and SOX2 improved the prognostic power of MGMT promoter methylation status, identifying a low-expressing group in which the clinical outcome is not associated with MGMT promoter methylation status, and a high-expressing group in which the outcome was strongly associated with MGMT promoter methylation status. These findings support the concept that the presence of a high stem cell phenotype in GBM, as marked by expression of SOX2 or CD133, may be associated with the clinical response to treatment.
Collapse
Affiliation(s)
- Nelli S. Lakis
- Department of Pathology, Kansas University Medical Center, Kansas City, KS USA
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, Rhode Island USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island USA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, Rhode Island USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island USA
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, Rhode Island USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island USA
| | - Amanda J. Audesse
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, Rhode Island USA
| | - Ashlee Sturtevant
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, Rhode Island USA
| | - Kara Lombardo
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, Rhode Island USA
| | - Ian Y. Wong
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island USA
- School of Engineering, Brown University, Providence, Rhode Island USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island USA
- Center on Biology of Aging, Brown University, Providence, Rhode Island USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island USA
| | - Douglas C. Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center, Providence, Rhode Island USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, Rhode Island USA
| |
Collapse
|
8
|
Miao Z, Geng L, Xu L, Ye Y, Wu C, Tian W, Liu N. Integrated analysis reveals prognostic value and mesenchymal identity suppression by glycoprotein M6B in glioma. Am J Transl Res 2022; 14:3052-3065. [PMID: 35702116 PMCID: PMC9185087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) stem cells (GSCs) possess multilineage differentiation potential, which is responsible for cancer progression. Glycoprotein M6B (GPM6B) is a pivotal enzyme in regulating intracranial cell differentiation and neuronal myelination, and is widely studied in several cancers. However, research on GPM6B in glioma is limited. In this study, we analyzed the clinical and molecular characteristics of GPM6B using RNA sequencing data of glioma samples from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets. Quantitative real-time PCR (qRT-PCR), western blot (WB), and immunohistochemistry (IHC) were performed for further validation. Moreover, a neurosphere formation assay, extreme limiting dilution assay, and bioluminescent imaging were employed to validate the therapeutic effects targeted on GPM6B in vitro and in vivo. We found lower expression of GPM6B in aggressive glioma. Receiver operating characteristic (ROC) analysis suggested that GPM6B is an indicator of mesenchymal subtype. Kaplan-Meier analysis also revealed that patients with glioma with high GPM6B expression levels had a tendency toward prolonged survival. The GPM6B expression level could predict favorable prognosis of patients independent of age, grade, IDH status, and 1p/19q status. Additionally, targeting GPM6B impaired the self-renewal and tumorgenicity of mesenchymal GSCs by inhibiting the activation of the Wnt pathway in vitro and in vivo. Our results demonstrated that GPM6B is a crucial predictor in glioma prognosis and represents an underlying therapeutic target in GSC therapy.
Collapse
Affiliation(s)
- Zong Miao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Liangyuan Geng
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Lei Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| | - Chao Wu
- Nantong UniversityNantong, Jiangsu, China
| | - Wei Tian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Jiangnan UniversityWuxi, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, Jiangsu, China
| |
Collapse
|
9
|
Rodriguez SMB, Staicu GA, Sevastre AS, Baloi C, Ciubotaru V, Dricu A, Tataranu LG. Glioblastoma Stem Cells-Useful Tools in the Battle against Cancer. Int J Mol Sci 2022; 23:ijms23094602. [PMID: 35562993 PMCID: PMC9100635 DOI: 10.3390/ijms23094602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma stem cells (GSCs) are cells with a self-renewal ability and capacity to initiate tumors upon serial transplantation that have been linked to tumor cell heterogeneity. Most standard treatments fail to completely eradicate GSCs, causing the recurrence of the disease. GSCs could represent one reason for the low efficacy of cancer therapy and for the short relapse time. Nonetheless, experimental data suggest that the presence of therapy-resistant GSCs could explain tumor recurrence. Therefore, to effectively target GSCs, a comprehensive understanding of their biology and the survival and developing mechanisms during treatment is mandatory. This review provides an overview of the molecular features, microenvironment, detection, and targeting strategies of GSCs, an essential information required for an efficient therapy. Despite the outstanding results in oncology, researchers are still developing novel strategies, of which one could be targeting the GSCs present in the hypoxic regions and invasive edge of the glioblastoma.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Carina Baloi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania; (G.-A.S.); (C.B.)
- Correspondence:
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.M.B.R.); (V.C.); (L.G.T.)
- Department 6—Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
10
|
An Integrated Bioinformatics Study of a Novel Niclosamide Derivative, NSC765689, a Potential GSK3β/ β-Catenin/ STAT3/ CD44 Suppressor with Anti-Glioblastoma Properties. Int J Mol Sci 2021; 22:ijms22052464. [PMID: 33671112 PMCID: PMC7957701 DOI: 10.3390/ijms22052464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Despite management efforts with standard surgery, radiation, and chemotherapy, glioblastoma multiform (GBM) remains resistant to treatment, which leads to tumor recurrence due to glioma stem cells (GSCs) and therapy resistance. In this study, we used random computer-based prediction and target identification to assess activities of our newly synthesized niclosamide-derived compound, NSC765689, to target GBM oncogenic signaling. Using target prediction analyses, we identified glycogen synthase kinase 3β (GSK3β), β-Catenin, signal transducer and activator of transcription 3 (STAT3), and cluster of differentiation 44 (CD44) as potential druggable candidates of NSC765689. The above-mentioned signaling pathways were also predicted to be overexpressed in GBM tumor samples compared to adjacent normal samples. In addition, using bioinformatics tools, we also identified microRNA (miR)-135b as one of the most suppressed microRNAs in GBM samples, which was reported to be upregulated through inhibition of GSK3β, and subsequently suppresses GBM tumorigenic properties and stemness. We further performed in silico molecular docking of NSC765689 with GBM oncogenes; GSK3β, β-Catenin, and STAT3, and the stem cell marker, CD44, to predict protein-ligand interactions. The results indicated that NSC765689 exhibited stronger binding affinities compared to its predecessor, LCC09, which was recently published by our laboratory, and was proven to inhibit GBM stemness and resistance. Moreover, we used available US National Cancer Institute (NCI) 60 human tumor cell lines to screen in vitro anticancer effects, including the anti-proliferative and cytotoxic activities of NSC765689 against GBM cells, and 50% cell growth inhibition (GI50) values ranged 0.23~5.13 μM. In summary, using computer-based predictions and target identification revealed that NSC765689 may be a potential pharmacological lead compound which can regulate GBM oncogene (GSK3β/β-Catenin/STAT3/CD44) signaling and upregulate the miR-135b tumor suppressor. Therefore, further in vitro and in vivo investigations will be performed to validate the efficacy of NSC765689 as a novel potential GBM therapeutic.
Collapse
|