1
|
Baker ML, Cantley LG. Adding insult to injury: the spectrum of tubulointerstitial responses in acute kidney injury. J Clin Invest 2025; 135:e188358. [PMID: 40091836 PMCID: PMC11910233 DOI: 10.1172/jci188358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Acute kidney injury (AKI) encompasses pathophysiology ranging from glomerular hypofiltration to tubular cell injury and outflow obstruction. This Review will focus on the tubulointerstitial processes that underlie most cases of AKI. Tubular epithelial cell (TEC) injury can occur via distinct insults, including ischemia, nephrotoxins, sepsis, and primary immune-mediated processes. Following these initial insults, tubular cells can activate survival and repair responses or they can develop mitochondrial dysfunction and metabolic reprogramming, cell-cycle arrest, and programmed cell death. Developing evidence suggests that the fate of individual tubular cells to survive and proliferate or undergo cell death or senescence is frequently determined by a biphasic immune response with initial proinflammatory macrophage, neutrophil, and lymphocyte infiltration exacerbating injury and activating programmed cell death, while alternatively activated macrophages and specific lymphocyte subsets subsequently modulate inflammation and promote repair. Functional recovery requires that this reparative phase supports proteolytic degradation of tubular casts, proliferation of surviving TECs, and restoration of TEC differentiation. Incomplete resolution or persistence of inflammation can lead to failed tubular repair, fibrosis, and chronic kidney disease. Despite extensive research in animal models, translating preclinical findings to therapies remains challenging, emphasizing the need for integrated multiomic approaches to advance AKI understanding and treatment.
Collapse
|
2
|
Yoshikawa T, Yanagita M. Single-Cell Analysis Provides New Insights into the Roles of Tertiary Lymphoid Structures and Immune Cell Infiltration in Kidney Injury and Chronic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:40-54. [PMID: 39097168 DOI: 10.1016/j.ajpath.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/05/2024]
Abstract
Chronic kidney disease (CKD) is a global health concern with high morbidity and mortality. Acute kidney injury (AKI) is a pivotal risk factor for the progression of CKD, and the rate of AKI-to-CKD progression increases with aging. Intrarenal inflammation is a fundamental mechanism underlying AKI-to-CKD progression. Tertiary lymphoid structures (TLSs), ectopic lymphoid aggregates formed in nonlymphoid organs, develop in aged injured kidneys, but not in young kidneys, with prolonged inflammation and maladaptive repair, which potentially exacerbates AKI-to-CKD progression in aged individuals. Dysregulated immune responses are involved in the pathogenesis of various kidney diseases, such as IgA nephropathy, lupus nephritis, and diabetic kidney diseases, thereby deteriorating kidney function. TLSs also develop in several kidney diseases, including transplanted kidneys and renal cell carcinoma. However, the precise immunologic mechanisms driving AKI-to-CKD progression and development of these kidney diseases remain unclear, which hinders the development of novel therapeutic approaches. This review aims to describe recent findings from single-cell analysis of cellular heterogeneity and complex interactions among immune and renal parenchymal cells, which potentially contribute to the pathogenesis of AKI-to-CKD progression and other kidney diseases, highlighting the mechanisms of formation and pathogenic roles of TLSs in aged injured kidneys.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Kondo A, McGrady M, Nallapothula D, Ali H, Trevino AE, Lam A, Preska R, D'Angio HB, Wu Z, Lopez LN, Badhesha HK, Vargas CR, Ramesh A, Wiegley N, Han SS, Dall'Era M, Jen KY, Mayer AT, Afkarian M. Spatial proteomics of human diabetic kidney disease, from health to class III. Diabetologia 2024; 67:1962-1979. [PMID: 39037603 DOI: 10.1007/s00125-024-06210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 07/23/2024]
Abstract
AIMS/HYPOTHESIS Diabetic kidney disease (DKD) is the leading cause of chronic and end-stage kidney disease in the USA and worldwide. Animal models have taught us much about DKD mechanisms, but translation of this knowledge into treatments for human disease has been slowed by the lag in our molecular understanding of human DKD. METHODS Using our Spatial TissuE Proteomics (STEP) pipeline (comprising curated human kidney tissues, multiplexed immunofluorescence and powerful analysis tools), we imaged and analysed the expression of 21 proteins in 23 tissue sections from individuals with diabetes and healthy kidneys (n=5), compared to those with DKDIIA, IIA-B and IIB (n=2 each) and DKDIII (n=1). RESULTS These analyses revealed the existence of 11 cellular clusters (kidney compartments/cell types): podocytes, glomerular endothelial cells, proximal tubules, distal nephron, peritubular capillaries, blood vessels (endothelial cells and vascular smooth muscle cells), macrophages, myeloid cells, other CD45+ inflammatory cells, basement membrane and the interstitium. DKD progression was associated with co-localised increases in inflammatory cells and collagen IV deposition, with concomitant loss of native proteins of each nephron segment. Cell-type frequency and neighbourhood analyses highlighted a significant increase in inflammatory cells and their adjacency to tubular and αSMA+ (α-smooth muscle actin-positive) cells in DKD. Finally, DKD progression showed marked regional variability within single tissue sections, as well as inter-individual variability within each DKD class. CONCLUSIONS/INTERPRETATION Using the STEP pipeline, we found alterations in protein expression, cellular phenotypic composition and microenvironment structure with DKD progression, demonstrating the power of this pipeline to reveal the pathophysiology of human DKD.
Collapse
Affiliation(s)
| | | | | | - Hira Ali
- Enable Medicine, Menlo Park, CA, USA
| | | | - Amy Lam
- Enable Medicine, Menlo Park, CA, USA
| | | | | | | | - Lauren N Lopez
- Division of Nephrology, University of California, Davis, CA, USA
| | | | - Chenoa R Vargas
- Division of Nephrology, University of California, Davis, CA, USA
| | | | - Nasim Wiegley
- Division of Nephrology, University of California, Davis, CA, USA
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Marc Dall'Era
- Department of Urologic Surgery, University of California-Davis Medical Center, Sacramento, CA, USA
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California- Davis, Sacramento, CA, USA
| | | | - Maryam Afkarian
- Division of Nephrology, University of California, Davis, CA, USA.
| |
Collapse
|
4
|
Hendriks SH, Heidt S, Krop J, IJsselsteijn ME, Eggermont J, Kers J, Reinders ME, Koning F, van Kooten C. IDO + Endothelial Cells in Glomeruli of Kidney Transplantation Patients With Glomerulitis. Transplant Direct 2024; 10:e1674. [PMID: 38988690 PMCID: PMC11230740 DOI: 10.1097/txd.0000000000001674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Background Kidney transplantation is the preferred treatment option for patients with end-stage renal disease. However, long-term graft survival remains a challenge. The enzyme indoleamine 2,3 dioxygenase (IDO) has been reported to have immunomodulatory effects with IDO transcripts being elevated in both antibody-mediated rejection and T cell-mediated rejection. Methods A metal-conjugated antibody panel for the staining of kidney biopsies was developed, allowing the visualization of 41 structural and immune markers on a single tissue slide to gain in-depth insight into the composition and localization of the immune cell compartment. Staining was applied to week 4 and 24 protocol biopsies of 49 patients as well as on 15 indication biopsies of the TRITON study and 4 additional transplantation biopsies with glomerulitis. Results A highly distinctive and specific glomerular IDO expression was observed in biopsies from 3 of 49 patients in imaging mass cytometry. Immunohistochemistry confirmed IDO expression in glomeruli of 10 of 10 cases with glomerulitis. IDO was found to be expressed by CD31+ glomerular endothelial cells, accompanied by the presence of granzyme-B+Tbet+CD7+CD45RA+ natural killer cells and CD68+ macrophages. Furthermore, a proportion of both the immune cells and endothelial cells expressed Ki-67, indicative of cell proliferation, which was not observed in control glomeruli. Conclusions Our results show glomerular IDO expression in transplanted kidneys with glomerulitis, which is accompanied by increased numbers of natural killer cells and macrophages and likely reflects local immune activation.
Collapse
Affiliation(s)
- Sanne H. Hendriks
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Juliette Krop
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Marieke E. IJsselsteijn
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Jeroen Eggermont
- Department of LKEB Radiology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Jesper Kers
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pathology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marlies E.J. Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) and Transplant Center, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| |
Collapse
|
5
|
Asowata EO, Romoli S, Sargeant R, Tan JY, Hoffmann S, Huang MM, Mahbubani KT, Krause FN, Jachimowicz D, Agren R, Koulman A, Jenkins B, Musial B, Griffin JL, Soderberg M, Ling S, Hansen PBL, Saeb-Parsy K, Woollard KJ. Multi-omics and imaging mass cytometry characterization of human kidneys to identify pathways and phenotypes associated with impaired kidney function. Kidney Int 2024; 106:85-97. [PMID: 38431215 DOI: 10.1016/j.kint.2024.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Despite the recent advances in our understanding of the role of lipids, metabolites, and related enzymes in mediating kidney injury, there is limited integrated multi-omics data identifying potential metabolic pathways driving impaired kidney function. The limited availability of kidney biopsies from living donors with acute kidney injury has remained a major constraint. Here, we validated the use of deceased transplant donor kidneys as a good model to study acute kidney injury in humans and characterized these kidneys using imaging and multi-omics approaches. We noted consistent changes in kidney injury and inflammatory markers in donors with reduced kidney function. Neighborhood and correlation analyses of imaging mass cytometry data showed that subsets of kidney cells (proximal tubular cells and fibroblasts) are associated with the expression profile of kidney immune cells, potentially linking these cells to kidney inflammation. Integrated transcriptomic and metabolomic analysis of human kidneys showed that kidney arachidonic acid metabolism and seven other metabolic pathways were upregulated following diminished kidney function. To validate the arachidonic acid pathway in impaired kidney function we demonstrated increased levels of cytosolic phospholipase A2 protein and related lipid mediators (prostaglandin E2) in the injured kidneys. Further, inhibition of cytosolic phospholipase A2 reduced injury and inflammation in human kidney proximal tubular epithelial cells in vitro. Thus, our study identified cell types and metabolic pathways that may be critical for controlling inflammation associated with impaired kidney function in humans.
Collapse
Affiliation(s)
- Evans O Asowata
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom; Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Simone Romoli
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jennifer Y Tan
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Scott Hoffmann
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Margaret M Huang
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom
| | - Fynn N Krause
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom; Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Jachimowicz
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rasmus Agren
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Barbara Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Magnus Soderberg
- Department of Pathology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pernille B L Hansen
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Biomedical Research Centre, Cambridge, United Kingdom.
| | - Kevin J Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
6
|
Barsotti GC, Luciano R, Kumar A, Meliambro K, Kakade V, Tokita J, Naik A, Fu J, Peck E, Pell J, Reghuvaran A, Tanvir E, Patel P, Zhang W, Li F, Moeckel G, Perincheri S, Cantley L, Moledina DG, Wilson FP, He JC, Menon MC. Rationale and Design of a Phase 2, Double-blind, Placebo-Controlled, Randomized Trial Evaluating AMP Kinase-Activation by Metformin in Focal Segmental Glomerulosclerosis. Kidney Int Rep 2024; 9:1354-1368. [PMID: 38707807 PMCID: PMC11068976 DOI: 10.1016/j.ekir.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Focal segmental glomerulosclerosis (FSGS), the most common primary glomerular disease leading to end-stage kidney disease (ESKD), is characterized by podocyte injury and depletion, whereas minimal change disease (MCD) has better outcomes despite podocyte injury. Identifying mechanisms capable of preventing podocytopenia during injury could transform FSGS to an "MCD-like" state. Preclinical data have reported conversion of an MCD-like injury to one with podocytopenia and FSGS by inhibition of AMP-kinase (AMPK) in podocytes. Conversely, in FSGS, AMPK-activation using metformin (MF) mitigated podocytopenia and azotemia. Observational studies also support beneficial effects of MF on proteinuria and chronic kidney disease (CKD) outcomes in diabetes. A randomized controlled trial (RCT) to test MF in podocyte injury with FSGS has not yet been conducted. Methods We report the rationale and design of phase 2, double-blind, placebo-controlled RCT evaluating the efficacy and safety of MF as adjunctive therapy in FSGS. By randomizing 30 patients with biopsy-confirmed FSGS to MF or placebo (along with standard immunosuppression), we will study mechanistic biomarkers that correlate with podocyte injury or depletion and evaluate outcomes after 6 months. We specifically integrate novel urine, blood, and tissue markers as surrogates for FSGS progression along with unbiased profiling strategies. Results and Conclusion Our phase 2 trial will provide insight into the potential efficacy and safety of MF as adjunctive therapy in FSGS-a crucial step to developing a larger phase 3 study. The mechanistic assays here will guide the design of other FSGS trials and contribute to understanding AMPK activation as a potential therapeutic target in FSGS. By repurposing an inexpensive agent, our results will have implications for FSGS treatment in resource-poor settings.
Collapse
Affiliation(s)
- Gabriel C. Barsotti
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Luciano
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ashwani Kumar
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Meliambro
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vijayakumar Kakade
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joji Tokita
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abhijit Naik
- Division of Nephrology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elizabeth Peck
- Clinical Research Coordinator, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Pell
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anand Reghuvaran
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E.M. Tanvir
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Prashant Patel
- Investigational Drug Service, Department of Pharmacy Services, Yale New Haven Hospital, Connecticut, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Gilbert Moeckel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sudhir Perincheri
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Lloyd Cantley
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - F. Perry Wilson
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John C. He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C. Menon
- Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
El-Achkar TM, Eadon MT, Kretzler M, Himmelfarb J. Precision Medicine in Nephrology: An Integrative Framework of Multidimensional Data in the Kidney Precision Medicine Project. Am J Kidney Dis 2024; 83:402-410. [PMID: 37839688 PMCID: PMC10922684 DOI: 10.1053/j.ajkd.2023.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
Chronic kidney disease (CKD) and acute kidney injury (AKI) are heterogeneous syndromes defined clinically by serial measures of kidney function. Each condition possesses strong histopathologic associations, including glomerular obsolescence or acute tubular necrosis, respectively. Despite such characterization, there remains wide variation in patient outcomes and treatment responses. Precision medicine efforts, as exemplified by the Kidney Precision Medicine Project (KPMP), have begun to establish evolving, spatially anchored, cellular and molecular atlases of the cell types, states, and niches of the kidney in health and disease. The KPMP atlas provides molecular context for CKD and AKI disease drivers and will help define subtypes of disease that are not readily apparent from canonical functional or histopathologic characterization but instead are appreciable through advanced clinical phenotyping, pathomic, transcriptomic, proteomic, epigenomic, and metabolomic interrogation of kidney biopsy samples. This perspective outlines the structure of the KPMP, its approach to the integration of these diverse datasets, and its major outputs relevant to future patient care.
Collapse
Affiliation(s)
- Tarek M El-Achkar
- Division of Nephrology, School of Medicine, Indiana University, and Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Michael T Eadon
- Division of Nephrology, School of Medicine, Indiana University, and Richard L. Roudebush Veteran Affairs Medical Center, Indianapolis, Indiana
| | - Matthias Kretzler
- Department of Computational Medicine & Bioinformatics, and Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan Himmelfarb
- Kidney Research Institute and Division of Nephrology, University of Washington, Seattle, Washington.
| |
Collapse
|
8
|
Huang CF, Su P, Fisher TD, Levitsky J, Kelleher NL, Forte E. Mass spectrometry-based proteomics for advancing solid organ transplantation research. FRONTIERS IN TRANSPLANTATION 2023; 2:1286881. [PMID: 38993855 PMCID: PMC11235370 DOI: 10.3389/frtra.2023.1286881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Scarcity of high-quality organs, suboptimal organ quality assessment, unsatisfactory pre-implantation procedures, and poor long-term organ and patient survival are the main challenges currently faced by the solid organ transplant (SOT) field. New biomarkers for assessing graft quality pre-implantation, detecting, and predicting graft injury, rejection, dysfunction, and survival are critical to provide clinicians with invaluable prediction tools and guidance for personalized patients' treatment. Additionally, new therapeutic targets are also needed to reduce injury and rejection and improve transplant outcomes. Proteins, which underlie phenotypes, are ideal candidate biomarkers of health and disease statuses and therapeutic targets. A protein can exist in different molecular forms, called proteoforms. As the function of a protein depends on its exact composition, proteoforms can offer a more accurate basis for connection to complex phenotypes than protein from which they derive. Mass spectrometry-based proteomics has been largely used in SOT research for identification of candidate biomarkers and therapeutic intervention targets by so-called "bottom-up" proteomics (BUP). However, such BUP approaches analyze small peptides in lieu of intact proteins and provide incomplete information on the exact molecular composition of the proteins of interest. In contrast, "Top-down" proteomics (TDP), which analyze intact proteins retaining proteoform-level information, have been only recently adopted in transplantation studies and already led to the identification of promising proteoforms as biomarkers for organ rejection and dysfunction. We anticipate that the use of top-down strategies in combination with new technological advancements in single-cell and spatial proteomics could drive future breakthroughs in biomarker and therapeutic target discovery in SOT.
Collapse
Affiliation(s)
- Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Pei Su
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Comprehensive Transplant Center Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Windhager J, Zanotelli VRT, Schulz D, Meyer L, Daniel M, Bodenmiller B, Eling N. An end-to-end workflow for multiplexed image processing and analysis. Nat Protoc 2023; 18:3565-3613. [PMID: 37816904 DOI: 10.1038/s41596-023-00881-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/23/2023] [Indexed: 10/12/2023]
Abstract
Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell-cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5-6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/ .
Collapse
Affiliation(s)
- Jonas Windhager
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
- SciLifeLab BioImage Informatics Facility and Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Vito Riccardo Tomaso Zanotelli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel Schulz
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lasse Meyer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Michelle Daniel
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Louis Sam Titus ASC, Tan Y, Tran P, Lindblom J, Ivbievbiokun M, Xu Y, Zheng J, Parodis I, Cai Q, Chang A, Chen SH, Zhao M, Mohan C. Molecular architecture of proliferative lupus nephritis as elucidated using 50-plex imaging mass cytometry proteomics. Clin Immunol 2023; 254:109713. [PMID: 37516396 DOI: 10.1016/j.clim.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Due to unique advantages that allow high-dimensional tissue profiling, we postulated imaging mass cytometry (IMC) may shed novel insights on the molecular makeup of proliferative lupus nephritis (LN). This study interrogates the spatial expression profiles of 50 target proteins in LN and control kidneys. Proliferative LN glomeruli are marked by podocyte loss with immune infiltration dominated by CD45RO+, HLA-DR+ memory CD4 and CD8 T-cells, and CD163+ macrophages, with similar changes in tubulointerstitial regions. Macrophages are the predominant HLA-DR expressing antigen presenting cells with little expression elsewhere, while macrophages and T-cells predominate cellular crescents. End-stage sclerotic glomeruli are encircled by an acellular fibro-epithelial Bowman's space surrounded by immune infiltrates, all enmeshed in fibronectin. Proliferative LN also shows signs indicative of epithelial to mesenchymal plasticity of tubular cells and parietal epithelial cells. IMC enabled proteomics is a powerful tool to delineate the spatial architecture of LN at the protein level.
Collapse
Affiliation(s)
| | - Ying Tan
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
| | - Phuongthy Tran
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Yitian Xu
- ImmunoMonitoring Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Junjun Zheng
- ImmunoMonitoring Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony Chang
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Shu-Hsia Chen
- ImmunoMonitoring Core, Houston Methodist Research Institute, Houston, TX, USA
| | - Minghui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX, USA; Renal Division, Department of Medicine, Peking University First Hospital, Beijing, PR China.
| |
Collapse
|
11
|
Virmani S, Rao A, Menon MC. Allograft tissue under the microscope: only the beginning. Curr Opin Organ Transplant 2023; 28:126-132. [PMID: 36787238 PMCID: PMC10214011 DOI: 10.1097/mot.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
PURPOSE OF REVIEW To review novel modalities for interrogating a kidney allograft biopsy to complement the current Banff schema. RECENT FINDINGS Newer approaches of Artificial Intelligence (AI), Machine Learning (ML), digital pathology including Ex Vivo Microscopy, evaluation of the biopsy gene expression using bulk, single cell, and spatial transcriptomics and spatial proteomics are now available for tissue interrogation. SUMMARY Banff Schema of classification of allograft histology has standardized reporting of tissue pathology internationally greatly impacting clinical care and research. Inherent sampling error of biopsies, and lack of automated morphometric analysis with ordinal outputs limit its performance in prognostication of allograft health. Over the last decade, there has been an explosion of newer methods of evaluation of allograft tissue under the microscope. Digital pathology along with the application of AI and ML algorithms could revolutionize histopathological analyses. Novel molecular diagnostics such as spatially resolved single cell transcriptomics are identifying newer mechanisms underlying the pathologic diagnosis to delineate pathways of immunological activation, tissue injury, repair, and regeneration in allograft tissues. While these techniques are the future of tissue analysis, costs and complex logistics currently limit their clinical use.
Collapse
Affiliation(s)
- Sarthak Virmani
- Section of Nephrology, Division of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
12
|
Barbetta A, Rocque B, Sarode D, Bartlett JA, Emamaullee J. Revisiting transplant immunology through the lens of single-cell technologies. Semin Immunopathol 2023; 45:91-109. [PMID: 35980400 PMCID: PMC9386203 DOI: 10.1007/s00281-022-00958-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Solid organ transplantation (SOT) is the standard of care for end-stage organ disease. The most frequent complication of SOT involves allograft rejection, which may occur via T cell- and/or antibody-mediated mechanisms. Diagnosis of rejection in the clinical setting requires an invasive biopsy as there are currently no reliable biomarkers to detect rejection episodes. Likewise, it is virtually impossible to identify patients who exhibit operational tolerance and may be candidates for reduced or complete withdrawal of immunosuppression. Emerging single-cell technologies, including cytometry by time-of-flight (CyTOF), imaging mass cytometry, and single-cell RNA sequencing, represent a new opportunity for deep characterization of pathogenic immune populations involved in both allograft rejection and tolerance in clinical samples. These techniques enable examination of both individual cellular phenotypes and cell-to-cell interactions, ultimately providing new insights into the complex pathophysiology of allograft rejection. However, working with these large, highly dimensional datasets requires expertise in advanced data processing and analysis using computational biology techniques. Machine learning algorithms represent an optimal strategy to analyze and create predictive models using these complex datasets and will likely be essential for future clinical application of patient level results based on single-cell data. Herein, we review the existing literature on single-cell techniques in the context of SOT.
Collapse
Affiliation(s)
- Arianna Barbetta
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Brittany Rocque
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Deepika Sarode
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Johanna Ascher Bartlett
- Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Juliet Emamaullee
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA.
- University of Southern California, Los Angeles, CA, USA.
- Division of Hepatobiliary and Abdominal Organ Transplantation Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Lenarczyk M, Alsheikh AJ, Cohen EP, Schaue D, Kronenberg A, Geurts A, Klawikowski S, Mattson D, Baker JE. T Cells Contribute to Pathological Responses in the Non-Targeted Rat Heart following Irradiation of the Kidneys. TOXICS 2022; 10:toxics10120797. [PMID: 36548630 PMCID: PMC9783591 DOI: 10.3390/toxics10120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 05/14/2023]
Abstract
Heart disease is a significant adverse event caused by radiotherapy for some cancers. Identifying the origins of radiogenic heart disease will allow therapies to be developed. Previous studies showed non-targeted effects manifest as fibrosis in the non-irradiated heart after 120 days following targeted X-irradiation of the kidneys with 10 Gy in WAG/RijCmcr rats. To demonstrate the involvement of T cells in driving pathophysiological responses in the out-of-field heart, and to characterize the timing of immune cell engagement, we created and validated a T cell knock downrat on the WAG genetic backgrou nd. Irradiation of the kidneys with 10 Gy of X-rays in wild-type rats resulted in infiltration of T cells, natural killer cells, and macrophages after 120 days, and none of these after 40 days, suggesting immune cell engagement is a late response. The radiation nephropathy and cardiac fibrosis that resulted in these animals after 120 days was significantly decreased in irradiated T cell depleted rats. We conclude that T cells function as an effector cell in communicating signals from the irradiated kidneys which cause pathologic remodeling of non-targeted heart.
Collapse
Affiliation(s)
- Marek Lenarczyk
- Radiation Biosciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ammar J. Alsheikh
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eric P. Cohen
- Department of Medicine, Division of Nephrology, New York University, New York, NY 10016, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Kronenberg
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Slade Klawikowski
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David Mattson
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | - John E. Baker
- Radiation Biosciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.:+1-414-955-8706
| |
Collapse
|
14
|
McDaniels JM, Shetty AC, Rousselle TV, Bardhi E, Maluf DG, Mas VR. The cellular landscape of the normal kidney allograft: Main players balancing the alloimmune response. FRONTIERS IN TRANSPLANTATION 2022; 1:988238. [PMID: 38994377 PMCID: PMC11235379 DOI: 10.3389/frtra.2022.988238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 07/13/2024]
Abstract
Despite recent advances made in short-term outcomes; minimal improvements have been observed in long-term kidney transplantation outcomes. Due to an imbalance between organ transplant availability and patient waiting list, expanding kidney allograft longevity is a critical need in the field. Prior studies have either focused on early ischemic and immunological conditions affecting kidney allografts (e.g., delayed graft function, acute rejection) or late stage chronic injury when interventions are no longer feasible. However, studies characterizing kidney allografts with normal function by its cellular distribution, cell-cell interactions, and associated molecular pathways are lacking. Herein, we used single nuclei RNA-sequencing to uncover the cellular landscape and transcriptome of the normal kidney allograft. We profiled 40,950 nuclei from seven human kidney biopsies (normal native, N = 3; normal allograft, N = 4); normal allograft protocol biopsies were collected ≥15-months post-transplant. A total of 17 distinct cell clusters were identified with proximal tubules (25.70 and 21.01%), distal tubules (15.22 and 18.20%), and endothelial cells (EC) (4.26 and 9.94%) constituting the major cell populations of normal native and normal allograft kidneys, respectively. A large proportion of cycling cells from normal native kidneys were in G1-phase (43.96%) whereas cells from normal allograft were predominantly in S-phase (32.69%). This result suggests that transcriptional differences between normal native and normal allograft biopsies are dependent on the new host environment, immunosuppression, and injury-affliction. In the normal allograft, EC-specific genes upregulated metabolism, the immune response, and cellular growth, emphasizing their role in maintaining homeostasis during the ongoing alloreactive stress response. Immune cells, including B (2.81%), macrophages (24.96%), monocytes (15.29%), natural killer (NK) (12.83%), neutrophils (8.44%), and T cells (14.41%, were increased in normal allografts despite lack of histological or clinical evidence of acute rejection. Phenotypic characterization of immune cell markers supported lymphocyte activation and proinflammatory cytokines signaling pathways (i.e., IL-15, IL-32). The activation of B, NK, and T cells reveals potential immune cells underlying subclinical inflammation and repair. These single nuclei analyses provide novel insights into kidney and immune cell associated signaling pathways that portray kidney grafts with normal allograft function beyond 2-years post-transplant, revealing a novel perspective in understanding long-term allograft graft survival.
Collapse
Affiliation(s)
- Jennifer M McDaniels
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Amol C Shetty
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Thomas V Rousselle
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Elissa Bardhi
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Daniel G Maluf
- Program in Transplantation, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Valeria R Mas
- Surgical Sciences Division, Department of Surgery, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
15
|
Clases D, Gonzalez de Vega R. Facets of ICP-MS and their potential in the medical sciences-Part 2: nanomedicine, immunochemistry, mass cytometry, and bioassays. Anal Bioanal Chem 2022; 414:7363-7386. [PMID: 36042038 PMCID: PMC9427439 DOI: 10.1007/s00216-022-04260-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Inductively coupled-plasma mass spectrometry (ICP-MS) has transformed our knowledge on the role of trace and major elements in biology and has emerged as the most versatile technique in elemental mass spectrometry. The scope of ICP-MS has dramatically changed since its inception, and nowadays, it is a mature platform technology that is compatible with chromatographic and laser ablation (LA) systems. Over the last decades, it kept pace with various technological advances and was inspired by interdisciplinary approaches which endorsed new areas of applications. While the first part of this review was dedicated to fundamentals in ICP-MS, its hyphenated techniques and the application in biomonitoring, isotope ratio analysis, elemental speciation analysis, and elemental bioimaging, this second part will introduce relatively current directions in ICP-MS and their potential to provide novel perspectives in the medical sciences. In this context, current directions for the characterisation of novel nanomaterials which are considered for biomedical applications like drug delivery and imaging platforms will be discussed while considering different facets of ICP-MS including single event analysis and dedicated hyphenated techniques. Subsequently, immunochemistry techniques will be reviewed in their capability to expand the scope of ICP-MS enabling analysis of a large range of biomolecules alongside elements. These methods inspired mass cytometry and imaging mass cytometry and have the potential to transform diagnostics and treatment by offering new paradigms for personalised medicine. Finally, the interlacing of immunochemistry methods, single event analysis, and functional nanomaterials has opened new horizons to design novel bioassays which promise potential as assets for clinical applications and larger screening programs and will be discussed in their capabilities to detect low-level proteins and nucleic acids.
Collapse
Affiliation(s)
- David Clases
- Nano Mirco LAB, Institute of Chemistry, University of Graz, Graz, Austria.
| | | |
Collapse
|
16
|
Xu L, Guo J, Moledina DG, Cantley LG. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition. Nat Commun 2022; 13:4892. [PMID: 35986026 PMCID: PMC9391331 DOI: 10.1038/s41467-022-32634-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
Incomplete repair after acute kidney injury can lead to development of chronic kidney disease. To define the mechanism of this response, we compared mice subjected to identical unilateral ischemia-reperfusion kidney injury with either contralateral nephrectomy (where tubule repair predominates) or contralateral kidney intact (where tubule atrophy predominates). By day 14, the kidneys undergoing atrophy had more macrophages with higher expression of chemokines, correlating with a second wave of proinflammatory neutrophil and T cell recruitment accompanied by increased expression of tubular injury genes and a decreased proportion of differentiated tubules. Depletion of neutrophils and T cells after day 5 reduced tubular cell loss and associated kidney atrophy. In kidney biopsies from patients with acute kidney injury, T cell and neutrophil numbers negatively correlated with recovery of estimated glomerular filtration rate. Together, our findings demonstrate that macrophage persistence after injury promotes a T cell- and neutrophil-mediated proinflammatory milieu and progressive tubule damage.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA.
| | - Jiankan Guo
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Dennis G Moledina
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Lloyd G Cantley
- Department of Internal Medicine/Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Gheiratmand L, Brown DJ, Sandkuijl D, Loboda A, Jester JV. Immuno Tomography (IT) and Imaging Mass Cytometry (IMC) for constructing spatially resolved, multiplexed 3D IMC data sets. Ocul Surf 2022; 25:49-54. [PMID: 35489589 PMCID: PMC10411503 DOI: 10.1016/j.jtos.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE We have previously used Immuno Tomography (IT) to identify label-retaining stem cell populations in the cornea and meibomian gland. While this method provides the unique ability to quantify stem cell populations comprised of 1-4 cells, the number of antigens that can be sequentially used to characterize these unique cells is limited by antigen stability after antibody stripping and re-probing. To address this deficiency, we have evaluated the capability of Imaging Mass Cytometry™ (IMC™) to generate multiplexed images using metal-conjugated antibodies to label IT plastic sections and generate 3-dimensional IMC data sets (3D IMC). METHODS K5-H2B-GFP mice, 56 days after doxycycline chase, were sacrificed and eyelid tissue processed for IT. A total of 400 serial, plastic sections, 2 μm thick, were then probed using metal-tagged antibodies specific for sox 9, collagen type I, E-cadherin, Ki67, GFP, αSMA, vimentin, and DNA intercalator. Multiplexed images were then generated using an Imaging Mass Cytometry system (Fluidigm®), and 3D reconstructions were assembled. RESULTS All 8 metal-labeled tags were detected and their images were successfully assembled into 3D IMC data sets. GFP-labeled nuclei were identified within the meibomian glands in comparable numbers to those previously reported for slow-cycling meibomian gland stem cells. CONCLUSIONS These findings demonstrate that IMC can be used on plastic sections to generate multiplexed, 3D data sets that can be reconstructed to show the spatial localization of meibomian gland stem cells. We propose that 3D IMC might prove valuable in more fully characterizing stem cell populations in different tissues.
Collapse
Affiliation(s)
- Ladan Gheiratmand
- Standard BioTools Canada Inc. (formerly Fluidigm), 1380 Rodick Road, Suite 400, Markham, ON, Canada.
| | - Donald J Brown
- Department of Ophthalmology, University of California Irvine, Irvine, CA, USA
| | - Daaf Sandkuijl
- Standard BioTools Canada Inc. (formerly Fluidigm), 1380 Rodick Road, Suite 400, Markham, ON, Canada
| | - Alexander Loboda
- Standard BioTools Canada Inc. (formerly Fluidigm), 1380 Rodick Road, Suite 400, Markham, ON, Canada
| | - James V Jester
- Department of Ophthalmology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
18
|
Sun Q, Geng H, Zhao M, Li Y, Chen X, Sha Q, Lai P, Tang D, Yang D, Liang J, Guo M. FTO-mediated m 6 A modification of SOCS1 mRNA promotes the progression of diabetic kidney disease. Clin Transl Med 2022; 12:e942. [PMID: 35731980 PMCID: PMC9217105 DOI: 10.1002/ctm2.942] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Qiang Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Houfa Geng
- Department of EndocrinologyXuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical UniversityXuzhouJiangsuChina
| | - Meng Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yang Li
- Institute of Thoracic Oncology and Department of Thoracic SurgeryWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xi Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Qian Sha
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Peng Lai
- Department of EndocrinologyXuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical UniversityXuzhouJiangsuChina
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jun Liang
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
- Department of EndocrinologyXuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical UniversityXuzhouJiangsuChina
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
19
|
El-Achkar TM, Winfree S, Talukder N, Barwinska D, Ferkowicz MJ, Al Hasan M. Tissue Cytometry With Machine Learning in Kidney: From Small Specimens to Big Data. Front Physiol 2022; 13:832457. [PMID: 35309077 PMCID: PMC8931540 DOI: 10.3389/fphys.2022.832457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Advances in cellular and molecular interrogation of kidney tissue have ushered a new era of understanding the pathogenesis of kidney disease and potentially identifying molecular targets for therapeutic intervention. Classifying cells in situ and identifying subtypes and states induced by injury is a foundational task in this context. High resolution Imaging-based approaches such as large-scale fluorescence 3D imaging offer significant advantages because they allow preservation of tissue architecture and provide a definition of the spatial context of each cell. We recently described the Volumetric Tissue Exploration and Analysis cytometry tool which enables an interactive analysis, quantitation and semiautomated classification of labeled cells in 3D image volumes. We also established and demonstrated an imaging-based classification using deep learning of cells in intact tissue using 3D nuclear staining with 4',6-diamidino-2-phenylindole (DAPI). In this mini-review, we will discuss recent advancements in analyzing 3D imaging of kidney tissue, and how combining machine learning with cytometry is a powerful approach to leverage the depth of content provided by high resolution imaging into a highly informative analytical output. Therefore, imaging a small tissue specimen will yield big scale data that will enable cell classification in a spatial context and provide novel insights on pathological changes induced by kidney disease.
Collapse
Affiliation(s)
- Tarek M. El-Achkar
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Seth Winfree
- Department of Pathology and Microbiology, University of Nebraska Omaha, Omaha, NE, United States
| | - Niloy Talukder
- Department of Computer and Information Science, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| | - Daria Barwinska
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Michael J. Ferkowicz
- Division of Nephrology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Mohammad Al Hasan
- Department of Computer and Information Science, Indiana University–Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
20
|
Cereceda K, Jorquera R, Villarroel-Espíndola F. Advances in mass cytometry and its applicability to digital pathology in clinical-translational cancer research. ADVANCES IN LABORATORY MEDICINE 2022; 3:5-29. [PMID: 37359436 PMCID: PMC10197474 DOI: 10.1515/almed-2021-0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 06/28/2023]
Abstract
The development and subsequent adaptation of mass cytometry for the histological analysis of tissue sections has allowed the simultaneous spatial characterization of multiple components. This is useful to find the correlation between the genotypic and phenotypic profile of tumor cells and their environment in clinical-translational studies. In this revision, we provide an overview of the most relevant hallmarks in the development, implementation and application of multiplexed imaging in the study of cancer and other conditions. A special focus is placed on studies based on imaging mass cytometry (IMC) and multiplexed ion beam imaging (MIBI). The purpose of this review is to help our readers become familiar with the verification techniques employed on this tool and outline the multiple applications reported in the literature. This review will also provide guidance on the use of IMC or MIBI in any field of biomedical research.
Collapse
Affiliation(s)
- Karina Cereceda
- Laboratorio de Medicina Traslacional, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile
| | - Roddy Jorquera
- Laboratorio de Medicina Traslacional, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile
| | - Franz Villarroel-Espíndola
- Laboratorio de Medicina Traslacional, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile
| |
Collapse
|
21
|
Eadon MT, Dagher PC, El-Achkar TM. Cellular and molecular interrogation of kidney biopsy specimens. Curr Opin Nephrol Hypertens 2022; 31:160-167. [PMID: 34982521 PMCID: PMC8799512 DOI: 10.1097/mnh.0000000000000770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Traditional histopathology of the kidney biopsy specimen has been an essential and successful tool for the diagnosis and staging of kidney diseases. However, it is likely that the full potential of the kidney biopsy has not been tapped so far. Indeed, there is now a concerted worldwide effort to interrogate kidney biopsy samples at the cellular and molecular levels with unprecedented rigor and depth. This review examines these novel approaches to study kidney biopsy specimens and highlights their potential to refine our understanding of the pathophysiology of kidney disease and lead to precision-based diagnosis and therapy. RECENT FINDINGS Several consortia are now active at studying kidney biopsy samples from various patient cohorts with state-of-the art cellular and molecular techniques. These include advanced imaging approaches as well as deep molecular interrogation with tools such as epigenetics, transcriptomics, proteomics and metabolomics. The emphasis throughout is on rigor, reproducibility and quality control. SUMMARY Although these techniques to study kidney biopsies are complementary, each on its own can yield novel ways to define and classify kidney disease. Therefore, great efforts are needed in order to generate an integrated output that can propel the diagnosis and treatment of kidney disease into the realm of precision medicine.
Collapse
Affiliation(s)
- Michael T Eadon
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
22
|
Kruse ARS, Spraggins JM. Uncovering Molecular Heterogeneity in the Kidney With Spatially Targeted Mass Spectrometry. Front Physiol 2022; 13:837773. [PMID: 35222094 PMCID: PMC8874197 DOI: 10.3389/fphys.2022.837773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The kidney functions through the coordination of approximately one million multifunctional nephrons in 3-dimensional space. Molecular understanding of the kidney has relied on transcriptomic, proteomic, and metabolomic analyses of kidney homogenate, but these approaches do not resolve cellular identity and spatial context. Mass spectrometry analysis of isolated cells retains cellular identity but not information regarding its cellular neighborhood and extracellular matrix. Spatially targeted mass spectrometry is uniquely suited to molecularly characterize kidney tissue while retaining in situ cellular context. This review summarizes advances in methodology and technology for spatially targeted mass spectrometry analysis of kidney tissue. Profiling technologies such as laser capture microdissection (LCM) coupled to liquid chromatography tandem mass spectrometry provide deep molecular coverage of specific tissue regions, while imaging technologies such as matrix assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) molecularly profile regularly spaced tissue regions with greater spatial resolution. These technologies individually have furthered our understanding of heterogeneity in nephron regions such as glomeruli and proximal tubules, and their combination is expected to profoundly expand our knowledge of the kidney in health and disease.
Collapse
Affiliation(s)
- Angela R. S. Kruse
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jeffrey M. Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Jeffrey M. Spraggins,
| |
Collapse
|
23
|
Laursen KB, Chen Q, Khani F, Attarwala N, Gross SS, Dow L, Nanus DM, Gudas LJ. Mitochondrial Ndufa4l2 Enhances Deposition of Lipids and Expression of Ca9 in the TRACK Model of Early Clear Cell Renal Cell Carcinoma. Front Oncol 2022; 11:783856. [PMID: 34970493 PMCID: PMC8712948 DOI: 10.3389/fonc.2021.783856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction and aberrant glycolysis are hallmarks of human clear cell renal cell carcinoma (ccRCC). Whereas glycolysis is thoroughly studied, little is known about the mitochondrial contribution to the pathology of ccRCC. Mitochondrial Ndufa4l2 is predictive of poor survival of ccRCC patients, and in kidney cancer cell lines the protein supports proliferation and colony formation. Its role in ccRCC, however, remains enigmatic. We utilized our established ccRCC model, termed Transgenic Cancer of the Kidney (TRACK), to generate a novel genetically engineered mouse model in which dox-regulated expression of an shRNA decreases Ndufa4l2 levels specifically in the renal proximal tubules (PT). This targeted knockdown of Ndufa4l2 reduced the accumulation of neutral renal lipid and was associated with decreased levels of the ccRCC markers carbonic anhydrase 9 (CA9) and Enolase 1 (ENO1). These findings suggest a link between mitochondrial dysregulation (i.e. high levels of Ndufa4l2), lipid accumulation, and the expression of ccRCC markers ENO1 and CA9, and demonstrate that lipid accumulation and ccRCC development can potentially be attenuated by inhibiting Ndufa4l2.
Collapse
Affiliation(s)
- Kristian B Laursen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Qiuying Chen
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Nabeel Attarwala
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Steve S Gross
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Lukas Dow
- Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Department of Biochemistry, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Graduate School of Medical Sciences, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - David M Nanus
- Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Division of Hematology and Medical Oncology, Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| | - Lorraine J Gudas
- Department of Pharmacology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States.,Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
24
|
Neumann EK, Patterson NH, Rivera ES, Allen JL, Brewer M, deCaestecker MP, Caprioli RM, Fogo AB, Spraggins JM. Highly multiplexed immunofluorescence of the human kidney using co-detection by indexing. Kidney Int 2022; 101:137-143. [PMID: 34619231 PMCID: PMC8741652 DOI: 10.1016/j.kint.2021.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
The human kidney is composed of many cell types that vary in their abundance and distribution from normal to diseased organ. As these cell types perform unique and essential functions, it is important to confidently label each within a single tissue to accurately assess tissue architecture and microenvironments. Towards this goal, we demonstrate the use of co-detection by indexing (CODEX) multiplexed immunofluorescence for visualizing 23 antigens within the human kidney. Using CODEX, many of the major cell types and substructures, such as collecting ducts, glomeruli, and thick ascending limb, were visualized within a single tissue section. Of these antibodies, 19 were conjugated in-house, demonstrating the flexibility and utility of this approach for studying the human kidney using custom and commercially available antibodies. We performed a pilot study that compared both fresh frozen and formalin-fixed paraffin-embedded healthy non-neoplastic and diabetic nephropathy kidney tissues. The largest cellular differences between the two groups was observed in cells labeled with aquaporin 1, cytokeratin 7, and α-smooth muscle actin. Thus, our data show the power of CODEX multiplexed immunofluorescence for surveying the cellular diversity of the human kidney and the potential for applications within pathology, histology, and building anatomical atlases.
Collapse
Affiliation(s)
- Elizabeth K. Neumann
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Nathan Heath Patterson
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Emilio S. Rivera
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Jamie L. Allen
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232
| | - Maya Brewer
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232
| | - Mark P. deCaestecker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232
| | - Richard M. Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA 37232,Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37232
| | - Agnes B. Fogo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA 37232,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN USA 37232.,Departments of Medicine and Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA 37232
| | - Jeffrey M. Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, USA 37232.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37232,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA 37232
| |
Collapse
|
25
|
Kakade VR, Weiss M, Cantley LG. Using Imaging Mass Cytometry to Define Cell Identities and Interactions in Human Tissues. Front Physiol 2021; 12:817181. [PMID: 35002783 PMCID: PMC8727440 DOI: 10.3389/fphys.2021.817181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
In the evolving landscape of highly multiplexed imaging techniques that can be applied to study complex cellular microenvironments, this review characterizes the use of imaging mass cytometry (IMC) to study the human kidney. We provide technical details for antibody validation, cell segmentation, and data analysis specifically tailored to human kidney samples, and elaborate on phenotyping of kidney cell types and novel insights that IMC can provide regarding pathophysiological processes in the injured or diseased kidney. This review will provide the reader with the necessary background to understand both the power and the limitations of IMC and thus support better perception of how IMC analysis can improve our understanding of human disease pathogenesis and can be integrated with other technologies such as single cell sequencing and proteomics to provide spatial context to cellular data.
Collapse
Affiliation(s)
| | | | - Lloyd G. Cantley
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
26
|
Gerhardt LMS, McMahon AP. Multi-omic approaches to acute kidney injury and repair. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100344. [PMID: 35005326 PMCID: PMC8740908 DOI: 10.1016/j.cobme.2021.100344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The kidney has a remarkable regenerative capacity. In response to ischemic or toxic injury, proximal tubule cells can proliferate to rebuild damaged tubules and restore kidney function. However, severe acute kidney injury (AKI) or recurrent AKI events can lead to maladaptive repair and disease progression from AKI to chronic kidney disease (CKD). The application of single cell technologies has identified injured proximal tubule cell states weeks after AKI, distinguished by a pro-inflammatory senescent molecular signature. Epigenetic studies highlighted dynamic changes in the chromatin landscape of the kidney following AKI and described key transcription factors linked to the AKI response. The integration of multi-omic technologies opens new possibilities to improve our understanding of AKI and the driving forces behind the AKI-to-CKD transition, with the ultimate goal of designing tailored diagnostic and therapeutic strategies to improve AKI outcomes and prevent kidney disease progression.
Collapse
Affiliation(s)
- Louisa M. S. Gerhardt
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
27
|
Xu L. The Role of Myeloid Cells in Acute Kidney Injury and Kidney Repair. KIDNEY360 2021; 2:1852-1864. [PMID: 35372990 PMCID: PMC8785849 DOI: 10.34067/kid.0000672021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/17/2021] [Indexed: 02/04/2023]
Abstract
AKI remains highly prevalent, yet no optimal therapy is available to prevent it or promote recovery after initial insult. Experimental studies have demonstrated that both innate and adaptive immune responses play a central role during AKI. In response to injury, myeloid cells are first recruited and activated on the basis of specific signals from the damaged microenvironment. The subsequent recruitment and activation state of the immune cells depends on the stage of injury and recovery, reflecting a dynamic and diverse spectrum of immunophenotypes. In this review, we highlight our current understanding of the mechanisms by which myeloid cells contribute to injury, repair, and fibrosis after AKI.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Tubular Cell Dropout in Preimplantation Deceased Donor Biopsies as a Predictor of Delayed Graft Function. Transplant Direct 2021; 7:e716. [PMID: 34476295 PMCID: PMC8384397 DOI: 10.1097/txd.0000000000001168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. Delayed graft function (DGF) affects over 25% of deceased donor kidney transplants (DDKTs) and is associated with increased cost, worsened graft outcomes, and mortality. While approaches to preventing DGF have focused on minimizing cold ischemia, donor factors such as acute tubular injury can influence risk. There are currently no pharmacologic therapies to modify DGF risk or promote repair, in part due to our incomplete understanding of the biology of preimplantation tubular injury. Methods. We collected intraoperative, preimplantation kidney biopsies from 11 high-risk deceased donors and 10 living donors and followed transplant recipients for graft function. We performed quantitative high-dimensional histopathologic analysis using imaging mass cytometry to determine the cellular signatures that distinguished deceased and living donor biopsies as well as deceased donor biopsies which either did or did not progress to DGF. Results. We noted decreased tubular cells (P < 0.0001) and increased macrophage infiltration (P = 0.0037) in high-risk DDKT compared with living donor biopsies. For those high-risk DDKTs that developed postimplant DGF (n = 6), quantitative imaging mass cytometry analysis showed a trend toward reduced tubular cells (P = 0.02) and increased stromal cells (P = 0.04) versus those that did not (n = 5). Notably, these differences were not identified by conventional histopathologic evaluation. Conclusions. The current study identifies donor tubular cell loss as a precursor of DGF pathogenesis and highlights an area for further investigation and potential therapeutic intervention.
Collapse
|
29
|
Lindström NO, Sealfon R, Chen X, Parvez RK, Ransick A, De Sena Brandine G, Guo J, Hill B, Tran T, Kim AD, Zhou J, Tadych A, Watters A, Wong A, Lovero E, Grubbs BH, Thornton ME, McMahon JA, Smith AD, Ruffins SW, Armit C, Troyanskaya OG, McMahon AP. Spatial transcriptional mapping of the human nephrogenic program. Dev Cell 2021; 56:2381-2398.e6. [PMID: 34428401 PMCID: PMC8396064 DOI: 10.1016/j.devcel.2021.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/06/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Congenital abnormalities of the kidney and urinary tract are among the most common birth defects, affecting 3% of newborns. The human kidney forms around a million nephrons from a pool of nephron progenitors over a 30-week period of development. To establish a framework for human nephrogenesis, we spatially resolved a stereotypical process by which equipotent nephron progenitors generate a nephron anlage, then applied data-driven approaches to construct three-dimensional protein maps on anatomical models of the nephrogenic program. Single-cell RNA sequencing identified progenitor states, which were spatially mapped to the nephron anatomy, enabling the generation of functional gene networks predicting interactions within and between nephron cell types. Network mining identified known developmental disease genes and predicted targets of interest. The spatially resolved nephrogenic program made available through the Human Nephrogenesis Atlas (https://sckidney.flatironinstitute.org/) will facilitate an understanding of kidney development and disease and enhance efforts to generate new kidney structures.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Rachel Sealfon
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Xi Chen
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guilherme De Sena Brandine
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bill Hill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jian Zhou
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Alicja Tadych
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Aaron Wong
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Elizabeth Lovero
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Brendan H Grubbs
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew D Smith
- Molecular and Computational Biology, Division of Biological Sciences, University of Southern, Los Angeles, CA 90089, USA
| | - Seth W Ruffins
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris Armit
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; BGI Hong Kong, 26/F, Kings Wing Plaza 2, 1 On Kwan Street, Shek Mun, NT, Hong Kong
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
30
|
Korin B, Chung JJ, Avraham S, Shaw AS. Preparation of single-cell suspensions of mouse glomeruli for high-throughput analysis. Nat Protoc 2021; 16:4068-4083. [PMID: 34282333 DOI: 10.1038/s41596-021-00578-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
The kidney glomerulus is essential for proper kidney function. Until recently, technical challenges associated with glomerular isolation and subsequent dissolution into single cells have limited the detailed characterization of cells in the glomerulus. Previous techniques of kidney dissociation result in low glomerular cell yield, which limits high-throughput analysis. The ability to efficiently purify glomeruli and digest the tissue into single cells is especially important for single-cell characterization methods. Here, we present a detailed and comprehensive technique for the extraction and preparation of mouse glomerular cells, with high yield and viability. The method includes direct renal perfusion of Dynabeads via the renal artery followed by kidney dissociation and isolation of glomeruli by magnet; these steps provide a high number and purity of isolated glomeruli, which are further dissociated into single cells. The balanced representation of podocytes, mesangial and endothelial cells in single-cell suspensions of mouse glomeruli, and the high cell viability observed, confirm the efficiency of our method. With some practice, the procedure can be done in <3 h (excluding equipment setup and data analysis). This protocol provides a valuable technique for advancing future single-cell-based studies of the glomerulus in health, injury and disease.
Collapse
Affiliation(s)
- Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Jun-Jae Chung
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Shimrit Avraham
- Department of Research Biology, Genentech, South San Francisco, CA, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
31
|
Rajagopalan A, Venkatesh I, Aslam R, Kirchenbuechler D, Khanna S, Cimbaluk D, Kordower JH, Gupta V. SeqStain is an efficient method for multiplexed, spatialomic profiling of human and murine tissues. CELL REPORTS METHODS 2021; 1:100006. [PMID: 34766102 PMCID: PMC8579778 DOI: 10.1016/j.crmeth.2021.100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/11/2021] [Accepted: 03/17/2021] [Indexed: 01/16/2023]
Abstract
Spatial organization of molecules and cells in complex tissue microenvironments provides essential organizational cues in health and disease. A significant need exists for improved visualization of these spatial relationships. Here, we describe a multiplex immunofluorescence imaging method, termed SeqStain, that uses fluorescent-DNA-labeled antibodies for immunofluorescent staining and nuclease treatment for de-staining that allows selective enzymatic removal of the fluorescent signal. SeqStain can be used with primary antibodies, secondary antibodies, and antibody fragments to efficiently analyze complex cells and tissues. Additionally, incorporation of specific endonuclease restriction sites in antibody labels allows for selective removal of fluorescent signals while retaining other signals that can serve as marks for subsequent analyses. The application of SeqStain on human kidney tissue provided a spatialomic profile of the organization of >25 markers in the kidney, highlighting it as a versatile, easy-to-use, and gentle new technique for spatialomic analyses of complex microenvironments.
Collapse
Affiliation(s)
- Anugraha Rajagopalan
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ishwarya Venkatesh
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rabail Aslam
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - David Kirchenbuechler
- Center for Advanced Microscopy, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shreyaa Khanna
- University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - David Cimbaluk
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Hematology, Oncology and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Doble PA, de Vega RG, Bishop DP, Hare DJ, Clases D. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging in Biology. Chem Rev 2021; 121:11769-11822. [PMID: 34019411 DOI: 10.1021/acs.chemrev.0c01219] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental imaging gives insight into the fundamental chemical makeup of living organisms. Every cell on Earth is comprised of a complex and dynamic mixture of the chemical elements that define structure and function. Many disease states feature a disturbance in elemental homeostasis, and understanding how, and most importantly where, has driven the development of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as the principal elemental imaging technique for biologists. This review provides an outline of ICP-MS technology, laser ablation cell designs, imaging workflows, and methods of quantification. Detailed examples of imaging applications including analyses of cancers, elemental uptake and accumulation, plant bioimaging, nanomaterials in the environment, and exposure science and neuroscience are presented and discussed. Recent incorporation of immunohistochemical workflows for imaging biomolecules, complementary and multimodal imaging techniques, and image processing methods is also reviewed.
Collapse
Affiliation(s)
- Philip A Doble
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Raquel Gonzalez de Vega
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - David P Bishop
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David Clases
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| |
Collapse
|
33
|
Bülow RD, Dimitrov D, Boor P, Saez-Rodriguez J. How will artificial intelligence and bioinformatics change our understanding of IgA Nephropathy in the next decade? Semin Immunopathol 2021; 43:739-752. [PMID: 33835214 PMCID: PMC8551101 DOI: 10.1007/s00281-021-00847-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 01/16/2023]
Abstract
IgA nephropathy (IgAN) is the most common glomerulonephritis. It is characterized by the deposition of immune complexes containing immunoglobulin A (IgA) in the kidney’s glomeruli, triggering an inflammatory process. In many patients, the disease has a progressive course, eventually leading to end-stage kidney disease. The current understanding of IgAN’s pathophysiology is incomplete, with the involvement of several potential players, including the mucosal immune system, the complement system, and the microbiome. Dissecting this complex pathophysiology requires an integrated analysis across molecular, cellular, and organ scales. Such data can be obtained by employing emerging technologies, including single-cell sequencing, next-generation sequencing, proteomics, and complex imaging approaches. These techniques generate complex “big data,” requiring advanced computational methods for their analyses and interpretation. Here, we introduce such methods, focusing on the broad areas of bioinformatics and artificial intelligence and discuss how they can advance our understanding of IgAN and ultimately improve patient care. The close integration of advanced experimental and computational technologies with medical and clinical expertise is essential to improve our understanding of human diseases. We argue that IgAN is a paradigmatic disease to demonstrate the value of such a multidisciplinary approach.
Collapse
Affiliation(s)
- Roman David Bülow
- University Hospital RWTH Aachen, Institute of Pathology, Aachen, Germany
| | - Daniel Dimitrov
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Peter Boor
- University Hospital RWTH Aachen, Institute of Pathology, Aachen, Germany.
- Department of Nephrology and Immunology, University Hospital RWTH Aachen, Aachen, Germany.
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Institute for Computational Biomedicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
- Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), 52074, RWTH Aachen University, Aachen, Germany.
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
34
|
Kuppe C, Perales-Patón J, Saez-Rodriguez J, Kramann R. Experimental and computational technologies to dissect the kidney at the single-cell level. Nephrol Dial Transplant 2020; 37:628-637. [PMID: 33332571 DOI: 10.1093/ndt/gfaa233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
The field of single-cell technologies, in particular single-cell genomics with transcriptomics and epigenomics, and most recently single-cell proteomics, is rapidly growing and holds promise to advance our understanding of organ homoeostasis and disease, and facilitate the identification of novel therapeutic targets and biomarkers. This review offers an introduction to these technologies. In addition, as the size and complexity of the data require sophisticated computational methods for analysis and interpretation, we will also provide an overview of these methods and summarize the single-cell literature specifically pertaining to the kidney.
Collapse
Affiliation(s)
- Christoph Kuppe
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Javier Perales-Patón
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Rafael Kramann
- Division of Nephrology, RWTH Aachen University, Aachen, Germany
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Guo N, van Unen V, Ijsselsteijn ME, Ouboter LF, van der Meulen AE, Chuva de Sousa Lopes SM, de Miranda NFCC, Koning F, Li N. A 34-Marker Panel for Imaging Mass Cytometric Analysis of Human Snap-Frozen Tissue. Front Immunol 2020; 11:1466. [PMID: 32765508 PMCID: PMC7381123 DOI: 10.3389/fimmu.2020.01466] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Imaging mass cytometry (IMC) is able to quantify the expression of dozens of markers at sub-cellular resolution on a single tissue section by combining a novel laser ablation system with mass cytometry. As such, it allows us to gain spatial information and antigen quantification in situ, and can be applied to both snap-frozen and formalin-fixed, paraffin-embedded (FFPE) tissue sections. Herein, we have developed and optimized the immunodetection conditions for a 34-antibody panel for use on human snap-frozen tissue sections. For this, we tested the performance of 80 antibodies. Moreover, we compared tissue drying times, fixation procedures and antibody incubation conditions. We observed that variations in the drying times of tissue sections had little impact on the quality of the images. Fixation with methanol for 5 min at -20°C or 1% paraformaldehyde (PFA) for 5 min at room temperature followed by methanol for 5 min at -20°C were superior to fixation with acetone or PFA only. Finally, we observed that antibody incubation overnight at 4°C yielded more consistent results as compared to staining at room temperature for 5 h. Finally, we used the optimized method for staining of human fetal and adult intestinal tissue samples. We present the tissue architecture and spatial distribution of the stromal cells and immune cells in these samples visualizing blood vessels, the epithelium and lamina propria based on the expression of α-smooth muscle actin (α-SMA), E-Cadherin and Vimentin, while simultaneously revealing the colocalization of T cells, innate lymphoid cells (ILCs), and various myeloid cell subsets in the lamina propria of the human fetal intestine. We expect that this work can aid the scientific community who wish to improve IMC data quality.
Collapse
Affiliation(s)
- Nannan Guo
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent van Unen
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
| | | | - Laura F. Ouboter
- Gastroenterology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | - Frits Koning
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Na Li
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonoses, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
36
|
Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nat Rev Nephrol 2020; 16:391-407. [PMID: 32372062 DOI: 10.1038/s41581-020-0272-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are chief inducers of adaptive immunity and regulate local inflammatory responses across the body. Together with macrophages, the other main type of mononuclear phagocyte, DCs constitute the most abundant component of the intrarenal immune system. This network of functionally specialized immune cells constantly surveys its microenvironment for signs of injury or infection, which trigger the initiation of an immune response. In the healthy kidney, DCs coordinate effective immune responses, for example, by recruiting neutrophils for bacterial clearance in pyelonephritis. The pro-inflammatory actions of DCs can, however, also contribute to tissue damage in various types of acute kidney injury and chronic glomerulonephritis, as DCs recruit and activate effector T cells, which release toxic mediators and maintain tubulointerstitial immune infiltrates. These actions are counterbalanced by DC subsets that promote the activation and maintenance of regulatory T cells to support resolution of the immune response and allow kidney repair. Several studies have investigated the multiple roles for DCs in kidney homeostasis and disease, but it has become clear that current tools and subset markers are not sufficient to accurately distinguish DCs from macrophages. Multidimensional transcriptomic analysis studies promise to improve mononuclear phagocyte classification and provide a clearer view of DC ontogeny and subsets.
Collapse
|
37
|
Allison SJ. A single-cell, 2D atlas of the normal human kidney using imaging mass cytometry. Nat Rev Nephrol 2019; 15:528. [PMID: 31267041 DOI: 10.1038/s41581-019-0177-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|