1
|
Köse SN, Yaraş T, Bursali A, Oktay Y, Yandim C, Karakülah G. Expressions of the satellite repeat HSAT5 and transposable elements are implicated in disease progression and survival in glioma. Turk J Biol 2024; 48:242-256. [PMID: 39296333 PMCID: PMC11407350 DOI: 10.55730/1300-0152.2700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/23/2024] [Accepted: 07/01/2024] [Indexed: 09/21/2024] Open
Abstract
The glioma genome encompasses a complex array of dysregulatory events, presenting a formidable challenge in managing this devastating disease. Despite the widespread distribution of repeat and transposable elements across the human genome, their involvement in glioma's molecular pathology and patient survival remains largely unexplored. In this study, we aimed to characterize the links between the expressions of repeat/transposable elements with disease progression and survival in glioma patients. Hence, we analyzed the expression levels of satellite repeats and transposons along with genes in low-grade glioma (LGG) and high-grade glioma (HGG). Endogenous transposable elements LTR5 and HERV_a-int exhibited higher expression in HGG patients, along with immune response-related genes. Altogether, 16 transposable elements were associated with slower progression of disease in LGG patients. Conversely, 22 transposons and the HSAT5 satellite repeat were linked to a shorter event-free survival in HGG patients. Intriguingly, our weighted gene coexpression network analysis (WGCNA) disclosed that the HSAT5 satellite repeat resided in the same module network with genes implicated in chromosome segregation and nuclear division; potentially hinting at its contribution to disease pathogenesis. Collectively, we report for the first time that repeat and/or transposon expression could be related to disease progression and survival in glioma. The expressions of these elements seem to exert a protective effect during LGG-to-HGG progression, whereas they could have a detrimental impact once HGG is established. The results presented herein could serve as a foundation for further experimental work aimed at elucidating the molecular regulation of glioma genome.
Collapse
Affiliation(s)
- Sıla Naz Köse
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, İzmir, Turkiye
| | - Tutku Yaraş
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
- İzmir International Biomedicine and Genome Institute (IBG-İzmir), Dokuz Eylül University, İzmir, Turkiye
| | - Ahmet Bursali
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
| | - Yavuz Oktay
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
- İzmir International Biomedicine and Genome Institute (IBG-İzmir), Dokuz Eylül University, İzmir, Turkiye
| | - Cihangir Yandim
- Department of Genetics and Bioengineering, Faculty of Engineering, İzmir University of Economics, İzmir, Turkiye
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center (IBG), İzmir, Turkiye
- İzmir International Biomedicine and Genome Institute (IBG-İzmir), Dokuz Eylül University, İzmir, Turkiye
| |
Collapse
|
2
|
Park J, Park J, Chung YJ. Alternative splicing: a new breakthrough for understanding tumorigenesis and potential clinical applications. Genes Genomics 2023; 45:393-400. [PMID: 36656436 DOI: 10.1007/s13258-023-01365-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Alternative splicing (AS) is a post-transcriptional process that produces transcript variants, thus leading to transcriptome complexity. Recently, the scope of AS studies has been greatly expanded toward clinical applications owing to the abundance of RNA sequencing data. OBJECTIVE This review consists of two parts. We first summarize bioinformatic resources that are useful for large-scale cancer-related AS studies. We then highlight the research efforts to utilize AS events for predicting clinical outcomes and planning therapeutic strategies. RESULTS Computational approaches to interrogate AS events have been reviewed under three categories: (1) databases to provide functional and clinical annotation of AS events, (2) analytical tools to identify cancer-associated AS event, and (3) methods to identify splicing-related DNA variants and splicing-derived neoantigens. We also present the recent progress in exploring the clinical utility of AS under four categories: (1) identification of AS events for cancer prognosis, (2) utilization of AS events in molecular classification of various cancers, (3) regulatory mechanisms of AS underlying drug resistance, and (4) potential use of AS in cancer therapy. CONCLUSION This review will be helpful for understanding the biological implications of AS in cancer and facilitate the development of AS markers for cancer prognosis and treatment. We anticipate that future studies will lead to the application of genome-wide AS profiles in cancer precision medicine.
Collapse
Affiliation(s)
- Jiyeon Park
- Precision Medicine Research Center, Seoul, Republic of Korea
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea
| | - Joonhyuck Park
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- 4Department of Medical Life science, Seoul, Republic of Korea.
- Department of Medical Life science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| | - Yeun-Jun Chung
- Precision Medicine Research Center, Seoul, Republic of Korea.
- Integrated Research Center for Genome Polymorphism,, Seoul, Republic of Korea.
- Department of Biomedicine & Health Sciences, Graduate School, Seoul, Republic of Korea.
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, 06591, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Chai R, Fang S, Pang B, Liu Y, Wang Y, Zhang W, Jiang T. Molecular pathology and clinical implications of diffuse glioma. Chin Med J (Engl) 2022; 135:2914-2925. [PMID: 36728558 PMCID: PMC10106158 DOI: 10.1097/cm9.0000000000002446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT The prognosis for diffusely infiltrating gliomas at World Health Organization (WHO) grade 2-4 remains dismal due to their heterogeneity. The rapid development of genome-wide molecular-profiling-associated studies has greatly promoted the accuracy of glioma classification. Thus, the latest version of the WHO classification of the central nervous system tumors published in 2021 has incorporated more molecular biomarkers together with histological features for the diagnosis of gliomas. Advanced usage of molecular pathology in clinical diagnostic practice provides also new opportunities for the therapy of patients with glioma, including surgery, radiotherapy and chemotherapy, targeted therapy, immunotherapy, and more precision clinical trials. Herein, we highlight the updates in the classification of gliomas according to the latest WHO guidelines and summarize the clinically relevant molecular markers by focusing on their applications in clinical practice. We also review the advances in molecular features of gliomas, which can facilitate the development of glioma therapies, thereby discussing the challenges and future directions of molecular pathology toward precision medicine for patients with glioma.
Collapse
Affiliation(s)
- Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Shengyu Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Yongzhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing 100070, China
| |
Collapse
|
4
|
Han BY, Liu Z, Hu X, Ling H. HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms. Cell Death Dis 2022; 13:940. [PMID: 36347834 PMCID: PMC9643420 DOI: 10.1038/s41419-022-05376-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Triple-negative breast cancer (TNBC) is a great detriment to women's health due to the lack of effective therapeutic targets. In this study, we employed an integrated genetic screen to identify a pivotal oncogenic factor, heterogeneous nuclear ribonucleoprotein U (HNRNPU), which is required for the progression of TNBC. We elucidated the pro-oncogenic role of HNRNPU, which can induce the proliferation and migration of TNBC cells via its association with DEAD box helicase 5 (DDX5) protein. Elevated levels of the HNRNPU-DDX5 complex prohibited the intron retention of minichromosome maintenance protein 10 (MCM10) pre-mRNA, decreased nonsense-mediated mRNA decay, and activated Wnt/β-catenin signalling; on the other hand, HNRNPU-DDX5 is located in the transcriptional start sites (TSS) of LIM domain only protein 4 (LMO4) and its upregulation promoted the transcription of LMO4, consequently activating PI3K-Akt-mTOR signalling. Our data highlight the synergetic effects of HNRNPU in RNA transcription and splicing in regulating cancer progression and suggest that HNRNPU may act as a potential molecular target in the treatment of TNBC.
Collapse
Affiliation(s)
- Bo-yue Han
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhebin Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hong Ling
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032 China ,grid.8547.e0000 0001 0125 2443Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
5
|
Zhang K, Liu X, Li G, Chang X, Li S, Chen J, Zhao Z, Wang J, Jiang T, Chai R. Clinical management and survival outcomes of patients with different molecular subtypes of diffuse gliomas in China (2011-2017): a multicenter retrospective study from CGGA. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0469. [PMID: 36350010 PMCID: PMC9630520 DOI: 10.20892/j.issn.2095-3941.2022.0469] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/05/2022] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE We aimed to summarize the clinicopathological characteristics and prognostic features of various molecular subtypes of diffuse gliomas (DGs) in the Chinese population. METHODS In total, 1,418 patients diagnosed with DG between 2011 and 2017 were classified into 5 molecular subtypes according to the 2016 WHO classification of central nervous system tumors. The IDH mutation status was determined by immunohistochemistry and/or DNA sequencing, and 1p/19q codeletion was detected with fluorescence in situ hybridization. The median clinical follow-up time was 1,076 days. T-tests and chi-square tests were used to compare clinicopathological characteristics. Kaplan-Meier and Cox regression methods were used to evaluate prognostic factors. RESULTS Our cohort included 15.5% lower-grade gliomas, IDH-mutant and 1p/19q-codeleted (LGG-IDHm-1p/19q); 18.1% lower-grade gliomas, IDH-mutant (LGG-IDHm); 13.1% lower-grade gliomas, IDH-wildtype (LGG-IDHwt); 36.1% glioblastoma, IDH-wildtype (GBM-IDHwt); and 17.2% glioblastoma, IDH-mutant (GBM-IDHm). Approximately 63.3% of the enrolled primary gliomas, and the median overall survival times for LGG-IDHm, LGG-IDHwt, GBM-IDHwt, and GBM-IDHm subtypes were 75.97, 34.47, 11.57, and 15.17 months, respectively. The 5-year survival rate of LGG-IDHm-1p/19q was 76.54%. We observed a significant association between high resection rate and favorable survival outcomes across all subtypes of primary tumors. We also observed a significant role of chemotherapy in prolonging overall survival for GBM-IDHwt and GBM-IDHm, and in prolonging post-relapse survival for the 2 recurrent GBM subtypes. CONCLUSIONS By controlling for molecular subtypes, we found that resection rate and chemotherapy were 2 prognostic factors associated with survival outcomes in a Chinese cohort with DG.
Collapse
Affiliation(s)
- Kenan Zhang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Xing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Guanzhang Li
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xin Chang
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Shouwei Li
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Jing Chen
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
| | - Jiguang Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518057, China
| | - Tao Jiang
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ruichao Chai
- Department of Molecular Pathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
6
|
Xu J, Liu X, Chen Y, Wang Y, Liu T, Yi P. RNA 5-Methylcytosine Regulators Contribute to Metabolism Heterogeneity and Predict Prognosis in Ovarian Cancer. Front Cell Dev Biol 2022; 10:807786. [PMID: 35372362 PMCID: PMC8971725 DOI: 10.3389/fcell.2022.807786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
5-Methylcytosine (m5C) is an abundant and highly conserved modification in RNAs. The dysregulation of RNA m5C methylation has been reported in cancers, but the regulatory network in ovarian cancer of RNA m5C methylation-related genes and its implication in metabolic regulation remain largely unexplored. In this study, RNA-sequencing data and clinical information of 374 ovarian cancer patients were downloaded from The Cancer Genome Atlas database, and a total of 14 RNA m5C regulators were included. Through unsupervised consensus clustering, two clusters with different m5C modification patterns were identified with distinct survivals. According to enrichment analyses, glycosaminoglycan and collagen metabolism–related pathways were specifically activated in cluster 1, whereas fatty acid metabolism–related pathways were enriched in cluster 2, which had better overall survival (OS). Besides the metabolism heterogeneity, the higher sensitivity to platinum and paclitaxel in cluster 2 can further explain the improved OS. Ultimately, a least absolute shrinkage and selection operator prediction model formed by ALYREF, NOP2, and TET2 toward OS was constructed. In conclusion, distinct m5C modification pattern exhibited metabolism heterogeneity, different chemotherapy sensitivity, and consequently survival difference, providing evidence for risk stratification.
Collapse
|
7
|
Chai RC, Chang YZ, Chang X, Pang B, An SY, Zhang KN, Chang YH, Jiang T, Wang YZ. YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m 6A modification to activate NF-κB and promote the malignant progression of glioma. J Hematol Oncol 2021; 14:109. [PMID: 34246306 PMCID: PMC8272379 DOI: 10.1186/s13045-021-01124-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The prognosis for diffuse gliomas is very poor and the mechanism underlying their malignant progression remains unclear. Here, we aimed to elucidate the role and mechanism of the RNA N6,2'-O-dimethyladenosine (m6A) reader, YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), in regulating the malignant progression of gliomas. METHODS YTHDF2 mRNA levels and functions were assessed using several independent datasets. Western blotting, quantitative polymerase chain reaction, and immunohistochemistry were used to evaluate the expression levels of YTHDF2 and other molecules in human and mouse tumor tissues and cells. Knockdown and overexpression were used to evaluate the effects of YTHDF2, methyltransferase-like 3 (METTL3), and UBX domain protein 1 (UBXN1) on glioma malignancy in cell and orthotopic xenograft models. RNA immunoprecipitation (RIP), methylated RIP, and RNA stability experiments were performed to study the mechanisms underlying the oncogenic role of YTHDF2. RESULTS YTHDF2 expression was positively associated with a higher malignant grade and molecular subtype of glioma and poorer prognosis. YTHDF2 promoted the malignant progression of gliomas in both in vitro and in vivo models. Mechanistically, YTHDF2 accelerated UBXN1 mRNA degradation via METTL3-mediated m6A, which, in turn, promoted NF-κB activation. We further revealed that UBXN1 overexpression attenuated the oncogenic effect of YTHDF2 overexpression and was associated with better survival in patients with elevated YTHDF2 expression. CONCLUSIONS Our findings confirmed that YTHDF2 promotes the malignant progression of gliomas and revealed important insight into the upstream regulatory mechanism of NF-κB activation via UBXN1 with a primary focus on m6A modification.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.
| | - Yu-Zhou Chang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China
| | - Xin Chang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Bo Pang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Song Yuan An
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Ke-Nan Zhang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yuan-Hao Chang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100050, China.
- Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.
| |
Collapse
|
8
|
Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021; 10:cells10030484. [PMID: 33668200 PMCID: PMC7995978 DOI: 10.3390/cells10030484] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain cancer. Standard care using chemo- and radio-therapy modestly increases the overall survival of patients; however, recurrence is inevitable, due to treatment resistance and lack of response to targeted therapies. GBM therapy resistance has been attributed to several extrinsic and intrinsic factors which affect the dynamics of tumor evolution and physiology thus creating clinical challenges. Tumor-intrinsic factors such as tumor heterogeneity, hypermutation, altered metabolomics and oncologically activated alternative splicing pathways change the tumor landscape to facilitate therapy failure and tumor progression. Moreover, tumor-extrinsic factors such as hypoxia and an immune-suppressive tumor microenvironment (TME) are the chief causes of immunotherapy failure in GBM. Amid the success of immunotherapy in other cancers, GBM has occurred as a model of resistance, thus focusing current efforts on not only alleviating the immunotolerance but also evading the escape mechanisms of tumor cells to therapy, caused by inter- and intra-tumoral heterogeneity. Here we review the various mechanisms of therapy resistance in GBM, caused by the continuously evolving tumor dynamics as well as the complex TME, which cumulatively contribute to GBM malignancy and therapy failure; in an attempt to understand and identify effective therapies for recurrent GBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Shi-Yuan Cheng
- Correspondence: ; Tel.: +1-312-503-3043; Fax: +1-312-503-5603
| |
Collapse
|
9
|
Zhao H, Zhang X, Shi Z, Guo B, Zhang W, He K, Hu X, Shi S. Identification of a Prognostic Signature Model with Tumor Microenvironment for predicting Disease-free Survival after Radical Prostatectomy. J Cancer 2021; 12:2371-2384. [PMID: 33758613 PMCID: PMC7974886 DOI: 10.7150/jca.51173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The tumor microenvironment (TME) and immune checkpoint inhibitors have been shown to promote active immune responses through different mechanisms. We attempted to identify the important prognostic genes and prognostic characteristics related to TME in prostate cancer (PCa). Methods: The gene transcriptome profiles and clinical information of PCa patients were obtained from The Cancer Genome Atlas (TCGA) database, and the immune and stromal scores were calculated by the ESTIMATE algorithm. We evaluated the prognostic value of the risk score (RS) model based on univariate Cox analysis and least absolute shrinkage and selection operation (LASSO) Cox regression analysis and established a nomogram to predict disease-free survival (DFS) in PCa patients. The GSE70768 dataset was utilized for external validation. Twenty-two subsets of tumor-infiltrating immune cells were analyzed using the CIBERSORT algorithm. Results: In this study, the patients with higher immune/stromal scores were associated with a worse DFS, higher Gleason score, and higher pathological T stage. Based on the immune and stromal scores, 515 differentially expressed genes (DEGs) were identified. The univariate Cox and LASSO Cox regression models were employed to select 18 DEGs from 515 DEGs and construct an RS model. The DFS of the high-RS group was significantly lower than that of the low-RS group (P<0.001). The AUCs for the 1-year, 3-year and 5-year DFS rates in the RS model were 0.890, 0.877 and 0.841, respectively. A nomogram of DFS was established based on the RS and Gleason score, and the AUCs for the 1-year, 3-year and 5-year DFS rates in the nomogram were 0.907, 0.893, and 0.872, respectively. These results were further validated in the GSE70768 dataset. In addition, the proportion of Tregs was determined to be higher in high-RS patients (P<0.05), and the expression levels of five immune checkpoints (CTLA-4, PD-1, LAG-3, TIM-3 and TIGIT) were observed to be higher in high-RS patients (P<0.05). Conclusions: Our study established and validated an 18-gene prognostic signature model associated with TME, which might serve as a prognosis stratification tool to predict DFS in PCa patients after radical prostatectomy.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xuening Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan Shi
- Department of Medicine, Zhengzhou First People's Hospital, Zhengzhou 450004, China
| | - Bingxin Guo
- Department of Urology, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450002, China
| | - Wenli Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Kun He
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqi Hu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Songhe Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Pang B, Chai RC, Zhang YW, Chang YZ, Liu WH, Jia WQ, Wang YZ. A comprehensive model including preoperative peripheral blood inflammatory markers for prediction of the prognosis of diffuse spinal cord astrocytoma following surgery. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:2857-2866. [PMID: 33495960 DOI: 10.1007/s00586-021-06724-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Due to the rarity of diffuse spinal cord astrocytoma, an effective model is still lacking to stratify their prognosis. Here, we aimed to establish a prognostic model through comprehensively evaluating clinicopathological features and preoperative peripheral blood inflammatory markers in 89 cases. METHODS We performed univariate and multivariate Cox regression to identify prognosis factors. The Kaplan-Meier curves and ROC curves were employed to compare the prognostic value of selected factors. RESULTS In addition to clinicopathological factors, we revealed the preoperative peripheral blood leukocyte count, neutrophils-to-lymphocytes ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were also significantly correlated with overall survival of spinal cord astrocytoma in univariate Cox regression, and NLR was still significant in multivariate Cox analysis. Further, we demonstrated that NLR ≤ 3.65 and preoperative McCormick score (MMS) ≤ 3 were independently correlated with better survival of WHO grade IV tumors. Meanwhile, Ki-67 < 10% and resection extent ≥ 90% were independent prognostic factors in WHO grade II/III tumors. Finally, we developed a prognostic model that had better predictive efficiencies than WHO grade and histological grade for 1-year (AUC = 76.6), 2- year (AUC = 80.9), and 3-year (AUC = 80.3) survival. This model could classify tumors into 4 classifications with increasingly poor prognosis: 1, WHO grade II/III, with Ki-67 < 10% and resection extent ≥ 90%; 2, WHO grade II/III, Ki-67 ≥ 10% or resection < 90%; 3, WHO grade IV, NLR ≤ 3.65 and MMS ≤ 3; 4, WHO grade IV, with NRL > 3.65 or MMS = 4. CONCLUSION We successfully constructed a comprehensive prognostic model including preoperative peripheral blood inflammatory markers, which can stratify diffuse spinal cord astrocytoma into 4 subgroups.
Collapse
Affiliation(s)
- Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| | - Yao-Wu Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Yu-Zhou Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Wei-Hao Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Wen-Qing Jia
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China. .,China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China. .,Chinese Glioma Genome Atlas Network (CGGA), Beijing, People's Republic of China.
| |
Collapse
|
11
|
Wang Y, Wang Z, Zhao B, Chen W, Wang Y, Ma W. Development of a nomogram for prognostic prediction of lower-grade glioma based on alternative splicing signatures. Cancer Med 2020; 9:9266-9281. [PMID: 33047900 PMCID: PMC7774734 DOI: 10.1002/cam4.3530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The prognosis of lower-grade glioma (LGG) differs from that of other grades gliomas. Although lots of studies on the prognostic biomarkers of LGG have been reported, few have significant clinical impact. Alternative splicing (AS) events can affect cell function by splicing precursor mRNA. Therefore, a prognostic model for LGG based on AS events are important to establish. METHODS RNA sequencing, clinical, and AS event data of 510 LGG patients from the TCGA database were downloaded. Univariate Cox regression analysis was used to screen out prognostic-related AS events and LASSO regression and multivariate Cox regression were used to establish prognostic risk scores for patients in the training set (n = 340). After validation, a nomogram model was established based on the AS signature and clinical information, which was able to predict 1-, 3-, and 5-year survival rates. Finally, considering the regulatory effect of splicing factors (SFs) on AS events, an AS-SF regulatory network was analyzed. RESULTS The most common AS event was exon skipping and the least was mutually exclusive exons. All the seven AS events were related to the prognosis of LGG patients, regardless of whether they were separated or considered as a whole event (integrated AS event), and the integrated AS event had the most significant correlation. After further inclusion of clinical indicators, eight factors were screened out: age, new event, KPS, WHO grade, treatment, integrated AS signature, IDH1 and TP53 mutation status, and a nomogram model was established. The study also constructed an AS-SF regulatory network. CONCLUSION The AS events and clinical factors that can predict the prognosis of LGG patients were screened, and a prognostic prediction model was established. The results of this study can play an important role in clinical work to better evaluate the prognosis of patients and impact treatment options.
Collapse
Affiliation(s)
- Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zihao Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Binghao Zhao
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Zhang YW, Chai RC, Cao R, Jiang WJ, Liu WH, Xu YL, Yang J, Wang YZ, Jia WQ. Clinicopathological characteristics and survival of spinal cord astrocytomas. Cancer Med 2020; 9:6996-7006. [PMID: 32777166 PMCID: PMC7541164 DOI: 10.1002/cam4.3364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
Background Due to their rarity, the clinicopathological characteristics and prognostic factors of spinal cord gliomas are still unclear. Here, we aimed to clarify these issues in a cohort of 108 spinal cord astrocytomas. Methods We characterized the clinicopathological characteristics, including 2016 World Health Organization (WHO) grade, age, sex, location, segment length, resection, pre‐ and postsurgery, Modified McCormick Scale (MMS), radio‐ and chemotherapy, and Ki‐67 and H3 K27M mutations, in 108 spinal cord astrocytomas through heatmaps. The Cox regression analysis and Kaplan‐Meier curves were used to study the prognostic value of these clinicopathological features. Results There are a total 38 H3 K27M‐mutant tumors, including 31 cases with histological grade II/III tumors. The age of low‐grade astrocytoma patients (WHO grade I/II, n = 54) was significantly younger (27.0 vs 35.5 years, P = .001) than those with high‐grade tumors (WHO grade III/IV, n = 54). All patients underwent surgical resection with neurophysiological monitoring, and the surgery did not result in significant changes in MMS. The presurgery MMS was associated with overall survival in the high‐grade subgroup (P = .008) but not in the low‐grade subgroup (P = .312). While, the high content of resection improved the survival of only patients with low‐grade astrocytomas (P = .016) but not those with high‐grade astrocytomas (P = .475). Both the low‐grade and high‐grade astrocytomas had no obvious benefit from neither adjuvant chemotherapy nor radiotherapy (all P > .05). Conclusions We characterized the clinicopathological characteristics and their prognostic values in 108 spinal cord astrocytomas, which could help with evidence‐based management of spinal cord astrocytomas.
Collapse
Affiliation(s)
- Yao-Wu Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Rui-Chao Chai
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Molecular Neuropathology, Beijing neurosurgical institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Ren Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wen-Ju Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei-Hao Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu-Lun Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong-Zhi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Molecular Neuropathology, Beijing neurosurgical institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Wen-Qing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
13
|
Song LR, Weng JC, Li CB, Huo XL, Li H, Hao SY, Wu Z, Wang L, Li D, Zhang JT. Prognostic and predictive value of an immune infiltration signature in diffuse lower-grade gliomas. JCI Insight 2020; 5:133811. [PMID: 32229719 DOI: 10.1172/jci.insight.133811] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDLower-grade gliomas (LGGs) vary widely in terms of the patient's overall survival (OS). There is no current, valid method that could exactly predict the survival. The effects of intratumoral immune infiltration on clinical outcome have been widely reported. Thus, we aim to develop an immune infiltration signature to predict the survival of LGG patients.METHODSWe analyzed 1216 LGGs from 5 public data sets, including 2 RNA sequencing data sets and 3 microarray data sets. Least absolute shrinkage and selection operator (LASSO) Cox regression was used to select an immune infiltration signature and build a risk score. The performance of the risk score was assessed in the training set (329 patients), internal validation set (140 patients), and 4 external validation sets (405, 118, 88, and 136 patients).RESULTSAn immune infiltration signature consisting of 20 immune metagenes was used to generate a risk score. The performance of the risk score was thoroughly verified in the training and validation sets. Additionally, we found that the risk score was positively correlated with the expression levels of TGF-β and PD-L1, which were important targets of combination immunotherapy. Furthermore, a nomogram incorporating the risk score, patient's age, and tumor grade was developed to predict the OS, and it performed well in all the training and validation sets (C-index: 0.873, 0.881, 0.781, 0.765, 0.721, and 0.753).CONCLUSIONThe risk score based on the immune infiltration signature has reliable prognostic and predictive value for patients with LGGs and is a potential biomarker for the cotargeting immunotherapy.FUNDINGThis work was supported by The National Natural Science Foundation of China (grant nos. 81472370 and 81672506), the Natural Science Foundation of Beijing (grant no. J180005), the National High Technology Research and Development Program of China (863 Program, grant no. 2014AA020610), and the National Basic Research Program of China (973 Program, grant no. 2014CB542006).
Collapse
Affiliation(s)
- Lai-Rong Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Jian-Cong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Cheng-Bei Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xu-Lei Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Huan Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Shu-Yu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Jun-Ting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Brain Tumor, Beijing, China
| |
Collapse
|
14
|
Chai RC, Zhang YW, Liu YQ, Chang YZ, Pang B, Jiang T, Jia WQ, Wang YZ. The molecular characteristics of spinal cord gliomas with or without H3 K27M mutation. Acta Neuropathol Commun 2020; 8:40. [PMID: 32228694 PMCID: PMC7106747 DOI: 10.1186/s40478-020-00913-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the rare incidence of spinal cord astrocytomas, their molecular features remain unclear. Here, we characterized the landscapes of mutations in H3 K27M, isocitrate dehydrogenase 1 (IDH1) R132H, BRAF V600E, and the TERT promoter in 83 diffuse spinal cord astrocytic tumors. Among these samples, thirty-five patients had the H3 K27M mutation; this mutant could be observed in histological grade II (40%), III (40%), and IV (20%) astrocytomas. IDH1 mutations were absent in 58 of 58 cases tested. The BRAF V600E mutation (7/57) was only observed in H3-wildtype astrocytomas, and was associated with a better prognosis in all histological grade II/III astrocytomas. TERT promoter mutations were observed in both H3 K27M-mutant (4/25) and -wildtype (9/33) astrocytomas, and were associated with a poor prognosis in H3-wildtype histological grade II/III astrocytomas. In the 2016 WHO classification of CNS tumors, H3 K27M-mutant diffuse midline gliomas, including spinal cord astrocytomas, are categorized as WHO grade IV. Here, we noticed that the median overall survival of histological grade II/III H3 K27M-mutant cases (n = 28) was significantly longer than that of either the total histological grade IV cases (n = 12) or the H3 K27M-mutant histological grade IV cases (n = 7). We also directly compared H3 K27M-mutant astrocytomas to H3-wildtype astrocytomas of the same histological grade. In histological grade II astrocytomas, compared to H3-wildtype cases (n = 37), H3 K27M-mutant patients (n = 14) had showed a significantly higher Ki-67-positive rate and poorer survival rate. However, no significant differences in these parameters were observed in histological grade III and IV astrocytoma patients. In conclusion, these findings indicate that spinal cord astrocytomas are considerably different from hemispheric and brainstem astrocytomas in terms of their molecular profiles, and that the histological grade cannot be ignored when assessing the prognosis of H3 K27M-mutant spinal cord astrocytomas.
Collapse
|
15
|
Alghamri MS, Thalla R, Avvari RP, Dabaja A, Taher A, Zhao L, Ulintz PJ, Castro MG, Lowenstein PR. Tumor mutational burden predicts survival in patients with low-grade gliomas expressing mutated IDH1. Neurooncol Adv 2020; 2:vdaa042. [PMID: 32642696 PMCID: PMC7212865 DOI: 10.1093/noajnl/vdaa042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Gliomas are the most common primary brain tumors. High-Grade Gliomas have a median survival (MS) of 18 months, while Low-Grade Gliomas (LGGs) have an MS of approximately 7.3 years. Seventy-six percent of patients with LGG express mutated isocitrate dehydrogenase (mIDH) enzyme. Survival of these patients ranges from 1 to 15 years, and tumor mutational burden ranges from 0.28 to 3.85 somatic mutations/megabase per tumor. We tested the hypothesis that the tumor mutational burden would predict the survival of patients with tumors bearing mIDH. Methods We analyzed the effect of tumor mutational burden on patients' survival using clinical and genomic data of 1199 glioma patients from The Cancer Genome Atlas and validated our results using the Glioma Longitudinal AnalySiS consortium. Results High tumor mutational burden negatively correlates with the survival of patients with LGG harboring mIDH (P = .005). This effect was significant for both Oligodendroglioma (LGG-mIDH-O; MS = 2379 vs 4459 days in high vs low, respectively; P = .005) and Astrocytoma (LGG-mIDH-A; MS = 2286 vs 4412 days in high vs low respectively; P = .005). There was no differential representation of frequently mutated genes (eg, TP53, ATRX, CIC, and FUBP) in either group. Gene set enrichment analysis revealed an enrichment in Gene Ontologies related to cell cycle, DNA-damage response in high versus low tumor mutational burden. Finally, we identified 6 gene sets that predict survival for LGG-mIDH-A and LGG-mIDH-O. Conclusions we demonstrate that tumor mutational burden is a powerful, robust, and clinically relevant prognostic factor of MS in mIDH patients.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA
| | - Rohit Thalla
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA
| | - Ruthvik P Avvari
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA
| | - Ali Dabaja
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA
| | - Ayman Taher
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, MSRB II, Ann Arbor, Michigan, USA.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Jin Z, Piao L, Sun G, Lv C, Jing Y, Jin R. Long Non-Coding RNA PART1 Exerts Tumor Suppressive Functions in Glioma via Sponging miR-190a-3p and Inactivation of PTEN/AKT Pathway. Onco Targets Ther 2020; 13:1073-1086. [PMID: 32099409 PMCID: PMC7007780 DOI: 10.2147/ott.s232848] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Background Glioma is the most commonly diagnosed primary brain tumor. Dysregulation of long non-coding RNA (lncRNA) is associated with initiation and development of various cancer types including glioma. Methods The relative expression of lncRNA was analyzed by real time-quantitative polymerase chain reaction (RT-qPCR). Cell counting kit (CCK-8) and flow cytometry analysis were applied to explore the role of prostate androgen-regulated transcript 1 (PART1) in glioma cell lines. Luciferase reporter assay, Western blotting and RT-qPCR were used to investigate the association between PART1, miR-190a-3p and phosphatase and tensin homolog deleted on chromosome ten (PTEN) in glioma cell lines. Results In the present study, we elucidated a pivotal role and molecular mechanism of lncRNA PART1 in glioma cell lines. It was found that PART1 was significantly downregulated in glioma tissues compared to normal tissues according to TCGA data and our RT-qPCR results. The cell-based assays showed that PART1 suppressed cell proliferation and triggered cell apoptosis in glioma cell lines. PART1 inactivated PI3K/AKT cascade in glioma cell lines. Transfection of constitutively activated AKT (Myr-AKT) reversed PART1 induced cell apoptosis and cell growth arrest. The bioinformatic analysis suggested that miR-190a-3p might bind to PART1. In the dual luciferase reporter assay, we validated that PART1 directly bound to miR-190a-3p in glioma cell lines. Furthermore, there was a reciprocal repression between PART1 and miR-190-3p. In addition, PART1 upregulated PTEN and inactivated PI3K/AKT pathway in glioma cell lines. Moreover, silencing of PTEN reversed PART1 overexpression induced cell growth arrest and apoptosis. In glioma tissues, the Pearson Correlation analysis showed that there was a strong-positive correlation between PART1 level and PTEN mRNA level. Conclusion Taken together, the current study revealed a PART1/miR-190a-3p/PTEN/PI3K/AKT axis in glioma and provided novel insights for understanding the complex lncRNA-miRNA network in glioma.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Lianhua Piao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Guangchao Sun
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Yi Jing
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Rihua Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
17
|
Liu YQ, Wu F, Li JJ, Li YF, Liu X, Wang Z, Chai RC. Gene Expression Profiling Stratifies IDH-Wildtype Glioblastoma With Distinct Prognoses. Front Oncol 2019; 9:1433. [PMID: 31921684 PMCID: PMC6929203 DOI: 10.3389/fonc.2019.01433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Objectives: In the present study, we aimed to determine the candidate genes that may function as biomarkers to further distinguish patients with isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM), which are heterogeneous with respect to clinical outcomes. Materials and Methods: We selected 41 candidate genes associated with overall survival (OS) using univariate Cox regression from IDH-wildtype GBM patients based on RNA sequencing (RNAseq) expression data from the Chinese Glioma Genome Atlas (CGGA, n = 105) and The Cancer Genome Atlas (TCGA, n = 139) cohorts. Next, a seven-gene-based risk signature was formulated according to Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm in the CGGA RNAseq database as a training set, while another 525 IDH-wildtype GBM patient TCGA datasets, consisting of RNA sequencing and microarray data, were used for validation. Patient survival in the low- and high-risk groups was calculated using Kaplan-Meier survival curve analysis and the log-rank test. Uni-and multivariate Cox regression analysis was used to assess the prognosis value. Gene oncology (GO) and gene set enrichment analysis (GSEA) were performed for the functional analysis of the seven-gene-based risk signature. Results: We developed a seven-gene-based signature, which allocated each patient to a risk group (low or high). Patients in the high-risk group had dramatically shorter overall survival than their low-risk counterparts in three independent cohorts. Univariate and multivariate analysis showed that the seven-gene signature remained an independent prognostic factor. Moreover, the seven-gene risk signature exhibited a striking prognostic validity, with AUC of 78.4 and 73.9%, which was higher than for traditional “age” (53.7%, 62.4%) and “GBM sub-type” (57.7%, 52.9%) in the CGGA- and TCGA-RNAseq databases, respectively. Subsequent bioinformatics analysis predicted that the seven-gene signature was involved in the inflammatory response, immune response, cell adhesion, and apoptotic process. Conclusions: Our findings indicate that the seven-gene signature could be a potential prognostic biomarker. This study refined the current classification system of IDH-wildtype GBM and may provide a novel perspective for the research and individual therapy of IDH-wildtype GBM.
Collapse
Affiliation(s)
- Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Jing-Jun Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Yang-Fang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Xing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Zheng Wang
- Chinese Glioma Genome Atlas Network, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| |
Collapse
|