1
|
Domínguez-López A, Magaña-Guerrero FS, Buentello-Volante B, Vivanco-Rojas Ó, Garfias Y. NFAT5: a stress-related transcription factor with multiple functions in health and disease. Cell Stress 2025; 9:16-48. [PMID: 40421201 PMCID: PMC12105643 DOI: 10.15698/cst2025.05.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) is a transcription factor within the Rel family, primarily recognized for its role in cellular adaptation to osmotic stress, particularly in hypertonic and hyperosmotic environments. Beyond osmotic regulation, NFAT5 responds to diverse stimuli, including cytokines, growth factors, oxidative stress, and microbial signals. This versatility enables NFAT5 to regulate essential cellular processes such as proliferation, survival, migration, and vascular remodelling. In the immune system, NFAT5 modulates the function of monocytes, macrophages, astrocytes, microglia, and T cells, contributing to immune homeostasis and inflammatory responses. Dysregulation of NFAT5 activity is implicated in various pathological conditions, including autoimmune diseases, cancer, and cardiovascular disorders, largely due to its ability to control genes involved in inflammatory and immune pathways under both isotonic and hypertonic conditions. Recent studies have unveiled new regulatory mechanisms, including interactions with non-coding RNAs, offering deeper insights into the functional landscape of NFAT5 and its therapeutic potential. This review delves into the multifaceted roles of NFAT5 in health and disease, emphasizing its emerging importance as a promising therapeutic target.
Collapse
Affiliation(s)
- Alfredo Domínguez-López
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México. Mexico City, Mexico. 04510
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Fátima S. Magaña-Guerrero
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Beatriz Buentello-Volante
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Óscar Vivanco-Rojas
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México. Mexico City, Mexico. 04510
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| | - Yonathan Garfias
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México. Mexico City, Mexico. 04510
- Cell and Tissue Biology Department, Research Unit, Institute of Ophthalmology Conde de Valenciana. Mexico City, Mexico. 06800
| |
Collapse
|
2
|
Ramteke P, Watson B, Toci M, Tran VA, Johnston S, Tsingas M, Barve RA, Mitra R, Loeser RF, Collins JA, Risbud MV. Sirt6 deficiency promotes senescence and age-associated intervertebral disc degeneration in mice. Bone Res 2025; 13:50. [PMID: 40335469 PMCID: PMC12059161 DOI: 10.1038/s41413-025-00422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 05/09/2025] Open
Abstract
Intervertebral disc degeneration is a major risk factor contributing to chronic low back and neck pain. While the etiological factors for disc degeneration vary, age is still one of the most important risk factors. Recent studies have shown the promising role of SIRT6 in mammalian aging and skeletal tissue health, however its role in the intervertebral disc health remains unexplored. We investigated the contribution of SIRT6 to disc health by studying the age-dependent spinal phenotype of mice with conditional deletion of Sirt6 in the disc (AcanCreERT2; Sirt6fl/fl). Histological studies showed a degenerative phenotype in knockout mice compared to Sirt6fl/fl control mice at 12 months, which became pronounced at 24 months. RNA-Seq analysis of NP and AF tissues, in vitro quantitative histone analysis, and RNA-seq with ATAC-seq multiomic studies revealed that SIRT6-loss resulted in changes in acetylation and methylation status of specific Histone 3 lysine residues and affected DNA accessibility and transcriptomic landscape. A decrease in autophagy and an increase in DNA damage were also noted in Sirt6-deficient cells. Further mechanistic insights revealed that loss of SIRT6 increased senescence and SASP burden in the disc characterized by increased p21, p19, γH2AX, IL-6, IL-1β, and TGF-β abundance. Taken together, our study highlights the contribution of SIRT6 in modulating DNA damage, autophagy, and cell senescence and its importance in maintaining disc health during aging, thereby underscoring it as a potential therapeutic target to treat intervertebral disc degeneration.
Collapse
Affiliation(s)
- Pranay Ramteke
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Bahiyah Watson
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mallory Toci
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Victoria A Tran
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shira Johnston
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Maria Tsingas
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, 63110, USA
| | - Ramkrishna Mitra
- Department of Pharmacology and Biostatistics, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Richard F Loeser
- Thurston Arthritis Research Center and the Division of Rheumatology, Allergy, and Immunology, University of North Carolina School of Medicine, 3300 Thurston Building, Campus Box 7280, Chapel Hill, NC, 27599-7280, USA
| | - John A Collins
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Makarand V Risbud
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
3
|
Emanuel KS, Huang L, Haartmans MJJ, Sanmartin Martinez J, Zijta F, Heeren RMA, Kerkhoffs GMMJ, Emans PJ, Cillero-Pastor B. Patient-responsive protein biomarkers for cartilage degeneration and repair identified in the infrapatellar fat pad. Expert Rev Proteomics 2024:1-11. [PMID: 39635821 DOI: 10.1080/14789450.2024.2438774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES Cartilage defects (CDs) are regarded as early manifestation of osteoarthritis (OA). The infrapatellar fat pad (IPFP) is an important mediator in maintaining joint homeostasis, disease progression and tissue repair, with a crucial role of its secreted proteins. Here, we investigate the proteome of the IPFP in relation to clinical status and response to surgical treatment of CDs. METHODS In order to characterize the proteome of the IPFP, samples from a cohort of 53 patients who received surgical treatment for knee CDs were analyzed with label-free proteomics. Patients were divided based on validated outcome scores for pain and knee function, preoperatively and at 1-year postoperatively, and on MRI assessment of the defect severity, fibrosis and synovitis. RESULTS Specific proteins were differentially abundant in patients with MRI features and better clinical outcome after CD surgery, including a downregulation of cartilage intermediate layer protein 2 (CILP-2) and microsomal glutathione s-transferase 1 (MGST1), and an upregulation of aggrecan (ACAN), and proteoglycan 4 (PRG4). Pathways related to cell interaction, oxidation and matrix remodeling were altered. CONCLUSION Proteins in the IPFP that have a function in extracellular matrix, inflammation and immunomodulation were identified as potentially relevant markers for cartilage repair monitoring.
Collapse
Affiliation(s)
- Kaj S Emanuel
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam Collaboration on Health & Safety in Sports (ACHSS), IOC Research Center, Amsterdam UMC, Amsterdam, The Netherlands
- Joint-Preserving Clinic, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University, Medical Center, Maastricht, The Netherlands
| | - Luojiao Huang
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, The Netherlands
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Mirella J J Haartmans
- Joint-Preserving Clinic, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University, Medical Center, Maastricht, The Netherlands
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Javier Sanmartin Martinez
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, The Netherlands
| | - Frank Zijta
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| | - Gino M M J Kerkhoffs
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Academic Center for Evidence Based Sports Medicine (ACES), Amsterdam Collaboration on Health & Safety in Sports (ACHSS), IOC Research Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Pieter J Emans
- Joint-Preserving Clinic, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University, Medical Center, Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering (cBITE), Maastricht University, Maastricht, The Netherlands
- Maastricht MultiModal Molecular Imaging Institute (M4i), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Ge R, Zhang L, Yang Y, Chen K, Li C. Arpc2 integrates ecdysone and juvenile hormone metabolism to influence metamorphosis and reproduction in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2024; 80:3734-3742. [PMID: 38477435 DOI: 10.1002/ps.8076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Actin-related protein 2/3 complex regulates actin polymerization and the formation of branched actin networks. However, the function and evolutionary relationship of this complex subunit 2 (Arpc2) has been poorly understood in insects. RESULTS To address these issues, we performed comprehensive analysis of Arpc2 in Tribolium castaneum. Phylogenetic analysis revealed that Arpc2 was originated from one ancestral gene in animals but evolved independently between vertebrates and insects after species differentiation. T. castaneum Arpc2 has a 906-bp coding sequence and consists of 4 exons. Arpc2 transcripts were abundantly detected in embryos and pupae but less so in larvae and adults, while it had high expression in the gut, fat body and head but low expression in the epidermis of late-stage larvae. Knockdown of it at the late larval stage inhibited the pupation and resulted in arrested larvae. Silencing it in 1-day pupae impaired eclosion, which caused adult wings to fail to close. Injection of Arpc2 dsRNAs into 5-day pupae made adults have smaller testis and ovary and could not lay eggs. The expression of vitellogenin 1 (Vg1), Vg2 and Vg receptor (VgR) was downregulated after knocking down Arpc2 5 days post-adult emergence. Arpc2 silencing reduced 20-hydroxyecdysone titer by affecting the enzymes of its biosynthesis and catabolism but increased juvenile biosynthesis via upregulating JHAMT3 expression. CONCLUSION Our results indicate that Arpc2 is associated with the metamorphosis and reproduction by integrating ecdysone and juvenile hormone metabolism in T. castaneum. This study provides theoretical basis for developing Arpc2 as a potential RNA interference target for pest control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Runting Ge
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ling Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Chengjun Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α activity in the nucleus pulposus causes intervertebral disc degeneration in the aging mouse spine. Front Cell Dev Biol 2024; 12:1360376. [PMID: 38510179 PMCID: PMC10950937 DOI: 10.3389/fcell.2024.1360376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A; P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19CreERT; HIF-2αdPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14- and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-month. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
Affiliation(s)
- Shira N. Johnston
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rahatul Ain
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Pharmacology, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ruteja A. Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Johnston SN, Tsingas M, Ain R, Barve RA, Risbud MV. Increased HIF-2α Activity in the Nucleus Pulposus Causes Intervertebral Disc Degeneration in the Aging Mouse Spine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573086. [PMID: 38187709 PMCID: PMC10769411 DOI: 10.1101/2023.12.22.573086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Hypoxia-inducible factors (HIFs) are essential to the homeostasis of hypoxic tissues. Although HIF-2α, is expressed in nucleus pulposus (NP) cells, consequences of elevated HIF-2 activity on disc health remains unknown. We expressed HIF-2α with proline to alanine substitutions (P405A;P531A) in the Oxygen-dependent degradation domain (HIF-2αdPA) in the NP tissue using an inducible, nucleus pulposus-specific K19 CreERT allele to study HIF-2α function in the adult intervertebral disc. Expression of HIF-2α in NP impacted disc morphology, as evident from small but significantly higher scores of degeneration in NP of 24-month-old K19 CreERT ; HIF-2α dPA (K19-dPA) mice. Noteworthy, comparisons of grades within each genotype between 14 months and 24 months indicated that HIF-2α overexpression contributed to more pronounced changes than aging alone. The annulus fibrosus (AF) compartment in the 14-month-old K19-dPA mice exhibited lower collagen turnover and Fourier transform-infrared (FTIR) spectroscopic imaging analyses showed changes in the biochemical composition of the 14-and 24-month-old K19-dPA mice. Moreover, there were changes in aggrecan, chondroitin sulfate, and COMP abundance without alterations in NP phenotypic marker CA3, suggesting the overexpression of HIF-2α had some impact on matrix composition but not the cell phenotype. Mechanistically, the global transcriptomic analysis showed enrichment of differentially expressed genes in themes closely related to NP cell function such as cilia, SLIT/ROBO pathway, and HIF/Hypoxia signaling at both 14- and 24-months. Together, these findings underscore the role of HIF-2α in the pathogenesis of disc degeneration in the aged spine.
Collapse
|
7
|
Ohnishi T, Tran V, Sao K, Ramteke P, Querido W, Barve RA, van de Wetering K, Risbud MV. Loss of function mutation in Ank causes aberrant mineralization and acquisition of osteoblast-like-phenotype by the cells of the intervertebral disc. Cell Death Dis 2023; 14:447. [PMID: 37468461 PMCID: PMC10356955 DOI: 10.1038/s41419-023-05893-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023]
Abstract
Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored. Herein we analyzed the spinal phenotype of Ank mutant mice (ank/ank) with attenuated ANK function. Micro-computed tomography and histological analysis showed that loss of ANK function results in the aberrant annulus fibrosus mineralization and peripheral disc fusions with cranial to caudal progression in the spine. Vertebrae in ank mice exhibit elevated cortical bone mass and increased tissue non-specific alkaline phosphatase-positive endplate chondrocytes with decreased subchondral endplate porosity. The acellular dystrophic mineral inclusions in the annulus fibrosus were localized adjacent to apoptotic cells and cells that acquired osteoblast-like phenotype. Fourier transform infrared spectral imaging showed that the apatite mineral in the outer annulus fibrosus had similar chemical composition to that of vertebral bone. Transcriptomic analysis of annulus fibrosus and nucleus pulposus tissues showed changes in several biological themes with a prominent dysregulation of BMAL1/CLOCK circadian regulation. The present study provides new insights into the role of ANK in the disc tissue compartments and highlights the importance of local inorganic pyrophosphate metabolism in inhibiting the mineralization of this important connective tissue.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan
| | - Victoria Tran
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Kimheak Sao
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Pranay Ramteke
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, 19122, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, 63110, USA
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Madhu V, Hernandez-Meadows M, Boneski PK, Qiu Y, Guntur AR, Kurland IJ, Barve RA, Risbud MV. The mitophagy receptor BNIP3 is critical for the regulation of metabolic homeostasis and mitochondrial function in the nucleus pulposus cells of the intervertebral disc. Autophagy 2023; 19:1821-1843. [PMID: 36628478 PMCID: PMC10262801 DOI: 10.1080/15548627.2022.2162245] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
The contribution of mitochondria to the metabolic function of hypoxic NP cells has been overlooked. We have shown that NP cells contain networked mitochondria and that mitochondrial translocation of BNIP3 mediates hypoxia-induced mitophagy. However, whether BNIP3 also plays a role in governing mitochondrial function and metabolism in hypoxic NP cells is not known. BNIP3 knockdown altered mitochondrial morphology, and number, and increased mitophagy. Interestingly, BNIP3 deficiency in NP cells reduced glycolytic capacity reflected by lower production of lactate/H+ and lower ATP production rate. Widely targeted metabolic profiling and flux analysis using 1-2-13C-glucose showed that the BNIP3 loss resulted in redirection of glycolytic flux into pentose phosphate and hexosamine biosynthesis as well as pyruvate resulting in increased TCA flux. An overall reduction in one-carbon metabolism was noted suggesting reduced biosynthesis. U13C-glutamine flux analysis showed preservation of glutamine utilization to maintain TCA intermediates. The transcriptomic analysis of the BNIP3-deficient cells showed dysregulation of cellular functions including membrane and cytoskeletal integrity, ECM-growth factor signaling, and protein quality control with an overall increase in themes related to angiogenesis and innate immune response. Importantly, we observed strong thematic similarities with the transcriptome of a subset of human degenerative samples. Last, we noted increased autophagic flux, decreased disc height index and aberrant COL10A1/collagen X expression, signs of early disc degeneration in young adult bnip3 knockout mice. These results suggested that in addition to mitophagy regulation, BNIP3 plays a role in maintaining mitochondrial function and metabolism, and dysregulation of mitochondrial homeostasis could promote disc degeneration.Abbreviations: ECAR extracellular acidification rate; HIF hypoxia inducible factor; MFA metabolic flux analysis; NP nucleus pulposus; OCR oxygen consumption rate; ShBnip3 short-hairpin Bnip3.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Miriam Hernandez-Meadows
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paige K Boneski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yunping Qiu
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Irwin J. Kurland
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, USA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
9
|
Abstract
Collagen provides mechanical and biological support for virtually all human tissues in the extracellular matrix (ECM). Its defining molecular structure, the triple-helix, could be damaged and denatured in disease and injuries. To probe collagen damage, the concept of collagen hybridization has been proposed, revised, and validated through a series of investigations reported as early as 1973: a collagen-mimicking peptide strand may form a hybrid triple-helix with the denatured chains of natural collagen but not the intact triple-helical collagen proteins, enabling assessment of proteolytic degradation or mechanical disruption to collagen within a tissue-of-interest. Here we describe the concept and development of collagen hybridization, summarize the decades of chemical investigations on rules underlying the collagen triple-helix folding, and discuss the growing biomedical evidence on collagen denaturation as a previously overlooked ECM signature for an array of conditions involving pathological tissue remodeling and mechanical injuries. Finally, we propose a series of emerging questions regarding the chemical and biological nature of collagen denaturation and highlight the diagnostic and therapeutic opportunities from its targeting.
Collapse
Affiliation(s)
- Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Zhang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - S. Michael Yu
- Department of Biomedical Engineering, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Department of Radiology, Cardiac Surgery and Structural Heart Disease Unit of Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
10
|
Lu Z, Chen P, Xu Q, Li B, Jiang S, Jiang L, Zheng X. Constitutive and conditional gene knockout mice for the study of intervertebral disc degeneration: Current status, decision considerations, and future possibilities. JOR Spine 2023; 6:e1242. [PMID: 36994464 PMCID: PMC10041386 DOI: 10.1002/jsp2.1242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
There have been an increasing number of patients with degenerative disc diseases due to the aging population. In light of this, studies on the pathogenesis of intervertebral disc degeneration have become a hot topic, and gene knockout mice have become a valuable tool in this field of research. With the development of science and technology, constitutive gene knockout mice can be constructed using homologous recombination, zinc finger nuclease, transcription activator-like effector nuclease technology and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, and conditional gene knockout mice can be constructed using the Cre/LoxP system. The gene-edited mice using these techniques have been widely used in the studies on disc degeneration. This paper reviews the development process and principles of these technologies, functions of the edited genes in disc degeneration, advantages, and disadvantages of different methods and possible targets of the specific Cre recombinase in intervertebral discs. Recommendations for the choice of suitable gene-edited model mice are presented. At the same time, possible technological improvements in the future are also discussed.
Collapse
Affiliation(s)
- Ze‐Yu Lu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng‐Bo Chen
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qing‐Yin Xu
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Li
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Sheng‐Dan Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei‐Sheng Jiang
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin‐Feng Zheng
- Spine CenterXinhua Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Raggi F, Bartolucci M, Cangelosi D, Rossi C, Pelassa S, Trincianti C, Petretto A, Filocamo G, Civino A, Eva A, Ravelli A, Consolaro A, Bosco MC. Proteomic profiling of extracellular vesicles in synovial fluid and plasma from Oligoarticular Juvenile Idiopathic Arthritis patients reveals novel immunopathogenic biomarkers. Front Immunol 2023; 14:1134747. [PMID: 37205098 PMCID: PMC10186353 DOI: 10.3389/fimmu.2023.1134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction New early low-invasive biomarkers are demanded for the management of Oligoarticular Juvenile Idiopathic Arthritis (OJIA), the most common chronic pediatric rheumatic disease in Western countries and a leading cause of disability. A deeper understanding of the molecular basis of OJIA pathophysiology is essential for identifying new biomarkers for earlier disease diagnosis and patient stratification and to guide targeted therapeutic intervention. Proteomic profiling of extracellular vesicles (EVs) released in biological fluids has recently emerged as a minimally invasive approach to elucidate adult arthritis pathogenic mechanisms and identify new biomarkers. However, EV-prot expression and potential as biomarkers in OJIA have not been explored. This study represents the first detailed longitudinal characterization of the EV-proteome in OJIA patients. Methods Fourty-five OJIA patients were recruited at disease onset and followed up for 24 months, and protein expression profiling was carried out by liquid chromatography-tandem mass spectrometry in EVs isolated from plasma (PL) and synovial fluid (SF) samples. Results We first compared the EV-proteome of SF vs paired PL and identified a panel of EV-prots whose expression was significantly deregulated in SF. Interaction network and GO enrichment analyses performed on deregulated EV-prots through STRING database and ShinyGO webserver revealed enrichment in processes related to cartilage/bone metabolism and inflammation, suggesting their role in OJIA pathogenesis and potential value as early molecular indicators of OJIA development. Comparative analysis of the EV-proteome in PL and SF from OJIA patients vs PL from age/gender-matched control children was then carried out. We detected altered expression of a panel of EV-prots able to differentiate new-onset OJIA patients from control children, potentially representing a disease-associated signature measurable at both the systemic and local levels with diagnostic potential. Deregulated EV-prots were significantly associated with biological processes related to innate immunity, antigen processing and presentation, and cytoskeleton organization. Finally, we ran WGCNA on the SF- and PL-derived EV-prot datasets and identified a few EV-prot modules associated with different clinical parameters stratifying OJIA patients in distinct subgroups. Discussion These data provide novel mechanistic insights into OJIA pathophysiology and an important contribution in the search of new candidate molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Federica Raggi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Martina Bartolucci
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Clinical Bioinformatics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Rossi
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Simone Pelassa
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Chiara Trincianti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
| | - Andrea Petretto
- Core Facilities, Clinical Proteomics and Metabolomics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Giovanni Filocamo
- Division of Pediatric Immunology and Rheumatology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Adele Civino
- Pediatric Rheumatology and Immunology, Ospedale “Vito Fazzi”, Lecce, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Angelo Ravelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Scientific Direction, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Consolaro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infantile Sciences (DiNOGMI), University of Genova, Genova, Italy
- Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- Unit of Autoinflammatory Diseases and Immunodeficiences, Pediatric Rheumatology Clinic, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genova, Italy
- *Correspondence: Maria Carla Bosco,
| |
Collapse
|
12
|
Johnston SN, Madhu V, Shapiro IM, Risbud MV. Conditional Deletion of HIF-2α in Mouse Nucleus Pulposus Reduces Fibrosis and Provides Mild and Transient Protection From Age-Dependent Structural Changes in Intervertebral Disc. J Bone Miner Res 2022; 37:2512-2530. [PMID: 36117450 PMCID: PMC9772060 DOI: 10.1002/jbmr.4707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023]
Abstract
Hypoxia-inducible factors (HIFs) are critical to the development and homeostasis of hypoxic tissues. Although HIF-2α, one of the main HIF-α isoforms, is expressed in nucleus pulposus (NP) cells, its functions remain unknown. We deleted HIF-2α in the NP tissue using a notochord-specific FoxA2Cre allele to study HIF-2α function in the adult intervertebral disc. Unlike observations in HIF-1αcKO mice, fate mapping studies using Rosa26-mTmG reporter showed that HIF-2α loss in NP did not negatively impact cell survival or affect compartment development. Rather, loss of HIF-2α resulted in slightly better attributes of NP morphology in 14-month-old HIF-2αcKO mice as evident from lower scores of degeneration. These 14-month-old HIF-2αcKO mice also exhibited significant reduction in NP tissue fibrosis and lower collagen turnover in the annulus fibrosis (AF) compartment. Imaging-Fourier transform-infrared (FTIR) analyses showed decreased collagen and protein content in the NP and maintained chondroitin sulfate levels in 14-month-old HIF-2αcKO . Mechanistically, global transcriptomic analysis showed enrichment of differentially expressed genes with Gene Ontology (GO) terms related to metabolic processes and cell development, molecular functions concerned with histone and protein binding, and associated pathways, including oxidative stress. Noteworthy, these morphological differences were not apparent in 24-month-old HIF-2αcKO , indicating that aging is the dominant factor in governing disc health. Together these data suggest that loss of HIF-2α in the NP compartment is not detrimental to the intervertebral disc development but rather mitigates NP tissue fibrosis and offers mild but transient protection from age-dependent early degenerative changes. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shira N. Johnston
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Irving M. Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA USA
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA USA
| |
Collapse
|
13
|
Qiu F, Long H, Zhang L, Liu J, Yang Z, Huang X. Dermcidin Enhances the Migration, Invasion, and Metastasis of Hepatocellular Carcinoma Cells In Vitro and In Vivo. J Clin Transl Hepatol 2022; 10:429-438. [PMID: 35836774 PMCID: PMC9240242 DOI: 10.14218/jcth.2021.00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/09/2021] [Accepted: 09/17/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a common primary liver neoplasm with high mortality. Dermcidin (DCD), an antimicrobial peptide, has been reported to participate in oncogenesis. This study assessed the effects and underlying molecular events of DCD overexpression and knockdown on the regulation of HCC progression in vitro and in vivo. METHODS The serum DCD level was detected using enzyme-linked immunosorbent assay. DCD overexpression, knockdown, and Ras-related C3 botulinum toxin substrate 1 (Rac1) rescue were performed in SK-HEP-1 cells using plasmids. Immunofluorescence staining, quantitative PCR, and Western blotting were used to detect the expression of different genes and proteins. Differences in HCC cell migration and invasion were detected by Transwell migration and invasion assays. A nude mouse HCC cell orthotopic model was employed to verify the in vitro data. RESULTS The level of serum DCD was higher in patients with HCC and in SK-HEP-1 cells. DCD overexpression caused upregulation of DCD, fibronectin, Rac1, and cell division control protein 42 homologue (Cdc42) mRNA and proteins as well as actin-related protein 2/3 (Arp2/3) protein (but reduced Arp2/3 mRNA levels) and activated Rac1 and Cdc42. Phenotypically, DCD overexpression induced HCC cell migration and invasion in vitro, whereas knockout of DCD expression had the opposite effects. A Rac1 rescue experiment in DCD-knockdown HCC cells increased HCC cell migration and invasion and increased the levels of active Rac1/total Rac1, Wiskott-Aldrich syndrome family protein (WASP), Arp2/3, and fibronectin. DCD overexpression induced HCC cell metastasis to the abdomen and liver in vivo. CONCLUSIONS DCD promotes HCC cell migration, invasion, and metastasis through upregulation of noncatalytic region of tyrosine kinase adaptor protein 1 (Nck1), Rac1, Cdc42, WASP, and Arp2/3, which induce actin cytoskeletal remodeling and fibronectin-mediated cell adhesion in HCC cells.
Collapse
Affiliation(s)
- Fanghua Qiu
- Department of Hospital Acquired Infection Control, Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huajing Long
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieyuan Liu
- University of California, San Diego, Warren College, San Diego, CA, USA
| | - Zetian Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianzhang Huang
- Department of Clinical Laboratory, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence to: Xianzhang Huang, Department of Clinical Laboratory, Second Affiliated Hospital to Guangzhou University of Chinese Medicine, 58 Dade Road, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0003-4320-9181. Tel: +86-13544549165, Fax: +86-20-81887233, E-mail:
| |
Collapse
|
14
|
Ottone OK, Kim C, Collins JA, Risbud MV. The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Front Immunol 2022; 13:882407. [PMID: 35769461 PMCID: PMC9235924 DOI: 10.3389/fimmu.2022.882407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The DNA-sensing cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) and mediates type-I interferon inflammatory responses to foreign viral and bacterial DNA as well as self-DNA. Studies of the intervertebral disc in humans and mice demonstrate associations between aging, increased cell senescence, and disc degeneration. Herein we assessed the role of STING in SASP promotion in STING gain- (N153S) and loss-of-function mouse models. N153S mice evidenced elevated circulating levels of proinflammatory markers including IL-1β, IL-6, and TNF-α, showed elevated monocyte and macrophage abundance in the vertebral marrow, and exhibited a mild trabecular and cortical bone phenotype in caudal vertebrae. Interestingly, despite systemic inflammation, the structural integrity of the disc and knee articular joint remained intact, and cells did not show a loss of their phenotype or elevated SASP. Transcriptomic analysis of N153S tissues demonstrated an upregulated immune response by disc cells, which did not closely resemble inflammatory changes in human tissues. Interestingly, STING-/- mice also showed a mild vertebral bone phenotype, but the absence of STING did not reduce the abundance of SASP markers or improve the age-associated disc phenotype. Overall, the analyses of N153S and STING-/- mice suggest that the cGAS-STING pathway is not a major contributor to SASP induction and consequent disc aging and degeneration but may play a minor role in the maintenance of trabecular bone in the vertebrae. This work contributes to a growing body of work demonstrating that systemic inflammation is not a key driver of disc degeneration.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cheeho Kim
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Makarand V. Risbud,
| |
Collapse
|
15
|
Sun J, Zhong X, Fu X, Miller H, Lee P, Yu B, Liu C. The Actin Regulators Involved in the Function and Related Diseases of Lymphocytes. Front Immunol 2022; 13:799309. [PMID: 35371070 PMCID: PMC8965893 DOI: 10.3389/fimmu.2022.799309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Actin is an important cytoskeletal protein involved in signal transduction, cell structure and motility. Actin regulators include actin-monomer-binding proteins, Wiskott-Aldrich syndrome (WAS) family of proteins, nucleation proteins, actin filament polymerases and severing proteins. This group of proteins regulate the dynamic changes in actin assembly/disassembly, thus playing an important role in cell motility, intracellular transport, cell division and other basic cellular activities. Lymphocytes are important components of the human immune system, consisting of T-lymphocytes (T cells), B-lymphocytes (B cells) and natural killer cells (NK cells). Lymphocytes are indispensable for both innate and adaptive immunity and cannot function normally without various actin regulators. In this review, we first briefly introduce the structure and fundamental functions of a variety of well-known and newly discovered actin regulators, then we highlight the role of actin regulators in T cell, B cell and NK cell, and finally provide a landscape of various diseases associated with them. This review provides new directions in exploring actin regulators and promotes more precise and effective treatments for related diseases.
Collapse
Affiliation(s)
- Jianxuan Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Zhong
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, United States
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
17
|
Wang Y, Peng Z, Wang Y, Yang Y, Fan R, Gao K, Zhang H, Xie Z, Jiang W. Immune Microenvironment Change and Involvement of Circular RNAs in TIL Cells of Recurrent Nasopharyngeal Carcinoma. Front Cell Dev Biol 2021; 9:722224. [PMID: 34422839 PMCID: PMC8377430 DOI: 10.3389/fcell.2021.722224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022] Open
Abstract
Nasopharyngeal carcinoma is a malignant tumor that is highly prevalent in southern China and the Southeast Asian belt. Recent studies have shown that the T cells play important regulatory roles in tumorigenesis and progression. We test TIL cell of recurrent nasopharyngeal carcinoma and primary nasopharyngeal carcinoma cell. We found that T cell change in recurrent nasopharyngeal carcinoma and primary nasopharyngeal carcinoma cell. Based on GEO database, we selected differently expressed circRNAs in nasopharyngeal carcinoma tissues. qRTPCR show that some circRNAs also highly expressed in TIL cells. In conclusion, immune microenvironment changed in recurrent nasopharyngeal carcinoma. There is involvement of circular RNAs in this progress, with should be researched further.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhouying Peng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yaxuan Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ruohao Fan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Kelei Gao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihai Xie
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Melgoza IP, Chenna SS, Tessier S, Zhang Y, Tang SY, Ohnishi T, Novais EJ, Kerr GJ, Mohanty S, Tam V, Chan WCW, Zhou C, Zhang Y, Leung VY, Brice AK, Séguin CA, Chan D, Vo N, Risbud MV, Dahia CL. Development of a standardized histopathology scoring system using machine learning algorithms for intervertebral disc degeneration in the mouse model-An ORS spine section initiative. JOR Spine 2021; 4:e1164. [PMID: 34337338 PMCID: PMC8313179 DOI: 10.1002/jsp2.1164] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have been increasingly used as preclinical model to elucidate mechanisms and test therapeutics for treating intervertebral disc degeneration (IDD). Several intervertebral disc (IVD) histological scoring systems have been proposed, but none exists that reliably quantitate mouse disc pathologies. Here, we report a new robust quantitative mouse IVD histopathological scoring system developed by building consensus from the spine community analyses of previous scoring systems and features noted on different mouse models of IDD. The new scoring system analyzes 14 key histopathological features from nucleus pulposus (NP), annulus fibrosus (AF), endplate (EP), and AF/NP/EP interface regions. Each feature is categorized and scored; hence, the weight for quantifying the disc histopathology is equally distributed and not driven by only a few features. We tested the new histopathological scoring criteria using images of lumbar and coccygeal discs from different IDD models of both sexes, including genetic, needle-punctured, static compressive models, and natural aging mice spanning neonatal to old age stages. Moreover, disc sections from common histological preparation techniques and stains including H&E, SafraninO/Fast green, and FAST were analyzed to enable better cross-study comparisons. Fleiss's multi-rater agreement test shows significant agreement by both experienced and novice multiple raters for all 14 features on several mouse models and sections prepared using various histological techniques. The sensitivity and specificity of the new scoring system was validated using artificial intelligence and supervised and unsupervised machine learning algorithms, including artificial neural networks, k-means clustering, and principal component analysis. Finally, we applied the new scoring system on established disc degeneration models and demonstrated high sensitivity and specificity of histopathological scoring changes. Overall, the new histopathological scoring system offers the ability to quantify histological changes in mouse models of disc degeneration and regeneration with high sensitivity and specificity.
Collapse
Affiliation(s)
- Itzel Paola Melgoza
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Srish S. Chenna
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
| | - Steven Tessier
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Yejia Zhang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Simon Y. Tang
- Department of Orthopaedic SurgeryWashington University in St LouisMissouriUSA
| | - Takashi Ohnishi
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryFaculty of Medicine and Graduate School of Medicine, Hokkaido UniversitySapporoJapan
| | - Emanuel José Novais
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Geoffrey J. Kerr
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | | | - Vivian Tam
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Wilson C. W. Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Chao‐Ming Zhou
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Ying Zhang
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
| | - Victor Y. Leung
- Department of Orthopaedics and TraumatologyThe University of Hong KongPokfulamHong Kong
| | | | - Cheryle A. Séguin
- Department of Physiology & PharmacologyBone & Joint Institute, University of Western OntarioLondonOntarioCanada
| | - Danny Chan
- School of Biomedical SciencesThe University of Hong KongPokfulamHong Kong
- Department of Orthopaedic and TraumatologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdongChina
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPennsylvaniaUSA
| | - Makarand V. Risbud
- Department of Orthopaedic SurgerySidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Chitra L. Dahia
- Orthopedic Soft Tissue Research ProgramHospital for Special SurgeryNew York CityNew YorkUSA
- Department of Cell & Developmental BiologyWeill Cornell Medicine Graduate School of Medical SciencesNew York CityNew YorkUSA
| |
Collapse
|
19
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
20
|
Novais EJ, Choi H, Madhu V, Suyama K, Anjo SI, Manadas B, Shapiro IM, Salgado AJ, Risbud MV. Hypoxia and Hypoxia-Inducible Factor-1α Regulate Endoplasmic Reticulum Stress in Nucleus Pulposus Cells: Implications of Endoplasmic Reticulum Stress for Extracellular Matrix Secretion. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:487-502. [PMID: 33307037 PMCID: PMC7927276 DOI: 10.1016/j.ajpath.2020.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress is shown to promote nucleus pulposus (NP) cell apoptosis and intervertebral disc degeneration. However, little is known about ER stress regulation by the hypoxic disc microenvironment and its contribution to extracellular matrix homeostasis. NP cells were cultured under hypoxia (1% partial pressure of oxygen) to assess ER stress status, and gain-of-function and loss-of-function approaches were used to assess the role of hypoxia-inducible factor (HIF)-1α in this pathway. In addition, the contribution of ER stress induction on the NP cell secretome was assessed by a nontargeted quantitative proteomic analysis by sequential windowed data independent acquisition of the total high-resolution mass spectra-mass spectrometry. NP cells exhibited a lower ER stress burden under hypoxia. Knockdown of HIF-1α increased C/EBP homologous protein, protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6) levels, whereas HIF-1α stabilization decreased the expression of ER stress markers Ddit3, Hsp5a, Atf6, and Eif2a. Interestingly, ER stress inducers tunicamycin and thapsigargin induced HIF-1α activity under hypoxia while promoting the unfolded protein response. NP cell secretome analysis demonstrated an impact of ER stress induction on extracellular matrix secretion, with decreases in collagens and cell adhesion-related proteins. Moreover, analysis of transcriptomic data of NP tissues from aged mice and degenerated human discs showed higher levels of unfolded protein response markers and decreased levels of matrix components. Our study shows, for the first time, that hypoxia and HIF-1α attenuate ER stress responses in NP cells, and ER stress promotes inefficient extracellular matrix secretion under hypoxia.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics (ICVS/3B's) - PT Government Associate Laboratory, Braga, Portugal
| | - Hyowon Choi
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vedavathi Madhu
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kaori Suyama
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Anatomy and Cellular Biology, Tokai University School of Medicine, Isehara, Japan
| | - Sandra I Anjo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Irving M Shapiro
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - António J Salgado
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal; Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics (ICVS/3B's) - PT Government Associate Laboratory, Braga, Portugal
| | - Makarand V Risbud
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Madhu V, Guntur AR, Risbud MV. Role of autophagy in intervertebral disc and cartilage function: implications in health and disease. Matrix Biol 2020; 100-101:207-220. [PMID: 33301899 DOI: 10.1016/j.matbio.2020.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
The intervertebral disc and cartilage are specialized, extracellular matrix-rich tissues critical for absorbing mechanical loads, providing flexibility to the joints, and longitudinal growth in the case of growth plate cartilage. Specialized niche conditions in these tissues, such as hypoxia, are critical in regulating cellular activities including autophagy, a lysosomal degradation pathway that promotes cell survival. Mounting evidence suggests that dysregulation of autophagic pathways underscores many skeletal pathologies affecting the spinal column, articular and growth plate cartilages. Many lysosomal storage disorders characterized by the accumulation of partially degraded glycosaminoglycans (GAGs) due to the lysosomal dysfunction thus affect skeletal tissues and result in altered ECM structure. Likewise, pathologies that arise from mutations in genes encoding ECM proteins and ECM processing, folding, and post-translational modifications, result in accumulation of misfolded proteins in the ER, ER stress and autophagy dysregulation. These conditions evidence reduced secretion of ECM proteins and/or increased secretion of mutant proteins, thereby impairing matrix quality and the integrity of affected skeletal tissues and causing a lack of growth and degeneration. In this review, we discuss the role of autophagy and mechanisms of its regulation in the intervertebral disc and cartilages, as well as how dysregulation of autophagic pathways affects these skeletal tissues.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Tufts University, Boston, MA USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA; Cell Biology and Regenerative Medicine Graduate Program, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Tsingas M, Ottone OK, Haseeb A, Barve RA, Shapiro IM, Lefebvre V, Risbud MV. Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biol 2020; 94:110-133. [PMID: 33027692 DOI: 10.1016/j.matbio.2020.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
SOX9 plays an important role in chondrocyte differentiation and, in the developing axial skeleton, maintains the notochord and the demarcation of intervertebral disc compartments. Diminished expression is linked to campomelic dysplasia, resulting in severe scoliosis and progressive disc degeneration. However, the specific functions of SOX9 in the adult spinal column and disc are largely unknown. Accordingly, employing a strategy to conditionally delete Sox9 in Acan-expressing cells (AcanCreERT2Sox9fl/fl), we delineated these functions in the adult intervertebral disc. AcanCreERT2Sox9fl/fl mice (Sox9cKO) showed extensive and progressive remodeling of the extracellular matrix in nucleus pulposus (NP) and annulus fibrosus (AF), consistent with human disc degeneration. Progressive degeneration of the cartilaginous endplates (EP) was also evident in Sox9cKO mice, and it preceded morphological changes seen in the NP and AF compartments. Fate mapping using tdTomato reporter, EdU chase, and quantitative immunohistological studies demonstrated that SOX9 is crucial for disc cell survival and phenotype maintenance. Microarray analysis showed that Sox9 regulated distinct compartment-specific transcriptomic landscapes, with prominent contributions to the ECM, cytoskeleton-related, and metabolic pathways in the NP and ion transport, the cell cycle, and signaling pathways in the AF. In summary, our work provides new insights into disc degeneration in Sox9cKO mice at the cellular, molecular, and transcriptional levels, underscoring tissue-specific roles of this transcription factor. Our findings may direct future cell therapies targeting SOX9 to mitigate disc degeneration.
Collapse
Affiliation(s)
- Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdul Haseeb
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
23
|
Tessier S, Risbud MV. Understanding embryonic development for cell-based therapies of intervertebral disc degeneration: Toward an effort to treat disc degeneration subphenotypes. Dev Dyn 2020; 250:302-317. [PMID: 32564440 DOI: 10.1002/dvdy.217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic low back and neck pain are associated with intervertebral disc degeneration and are major contributors to the global burden of disability. New evidence now suggests that disc degeneration comprises a spectrum of subphenotypes influenced by genetic background, age, and environmental factors, which may be contributing to the mixed outcomes seen in clinical trials of cell-based therapies that aim to treat disc degeneration. This problem is further compounded by the fact that disc degeneration and aging coincide with an exhaustion of endogenous progenitor cells, imposing limitations on the regenerative capacity of the disc. At the bench-side, current work is focused on applying our knowledge of embryonic disc development to direct and refine differentiation of adult and human-induced pluripotent stem cells into notochord-like and nucleus pulposus-like cells for use in novel cell-based therapies. Accordingly, this review presents the salient features of intervertebral disc development, post-natal maintenance, and regeneration, with emphasis on recent advancements. We also discuss how a stratified approach can be undertaken for the development of future cell-based therapies to bring emerging subphenotypes into consideration.
Collapse
Affiliation(s)
- Steven Tessier
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Ohnishi T, Novais EJ, Risbud MV. Alterations in ECM signature underscore multiple sub-phenotypes of intervertebral disc degeneration. Matrix Biol Plus 2020; 6-7:100036. [PMID: 33543030 PMCID: PMC7852332 DOI: 10.1016/j.mbplus.2020.100036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The intervertebral disc is a specialized connective tissue critical for absorption of mechanical loads and providing flexibility to the spinal column. The disc ECM is complex and plays a vital role in imparting tissue its biomechanical function. The central NP is primarily composed of large aggregating proteoglycans (PGs) while surrounding AF is composed of fibrillar collagens, I and II. Aggrecan and versican in particular, due to their high concentration of sulfated GAG chains form large aggregates with hyaluronic acid (HA) and provide water binding capacity to the disc. Degradation of aggrecan core protein due to aggrecanase and MMP activity, SNPs that affect number of chondroitin sulfate (CS) substitutions and alteration in enzymes critical in synthesis of CS chains can impair the aggrecan functionality. Similarly, levels of many matrix and matrix-related molecules e.g. Col2, Col9, HAS2, ccn2 are dysregulated during disc degeneration and genetic animal models have helped establish causative link between their expression and disc health. In the degenerating and herniated discs, increased levels of inflammatory cytokines such as TNF-α, IL-1β and IL-6 are shown to promote matrix degradation through regulating expression and activity of critical proteases and stimulate immune cell activation. Recent studies of different mouse strains have better elucidated the broader impact of spontaneous degeneration on disc matrix homeostasis. SM/J mice showed an increased cell apoptosis, loss of cell phenotype, and cleavage of aggrecan during early stages followed by tissue fibrosis evident by enrichment of several collagens, SLRPs and fibronectin. In summary, while disc degeneration encompasses wide spectrum of degenerative phenotypes extensive matrix degradation and remodeling underscores all of them. The intervertebral disc absorbs loads and provides flexibility to the spine. The ECM is complex and vital for imparting tissue its biomechanical function. Numerous types of proteoglycans and collagens designate the quality of the disc. Many matrix and matrix-related molecules are dysregulated during disc degeneration. Matrix degradation and remodeling underscores wide spectrum of phenotype.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|