1
|
Jeznach A, Sidor-Dzitkowska K, Bandyszewska M, Grzanka M, Popławski P, Marszalik A, Domagała-Kulawik J, Stachowiak R, Hoser G, Skirecki T. Sepsis-induced inflammasome impairment facilitates development of secondary A. baumannii pneumonia. Emerg Microbes Infect 2025; 14:2492206. [PMID: 40202049 PMCID: PMC12016274 DOI: 10.1080/22221751.2025.2492206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/07/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Acinetobacter baumannii has become one of the most critical pathogens causing nosocomial pneumonia. Existing animal models of A. baumannii pneumonia are not relevant to the majority of critical care patients. We aimed to develop a novel model of secondary A. baumannii pneumonia in post-sepsis mice. METHODS A two-hit model of sepsis induced by cecal ligation and puncture followed by A. baumannii pneumonia on day 5 was established. In addition, the two-hit model was established in humanized mice. A period of 2 h of mechanical ventilation followed by observation was used in additional experiments. Lung histopathology, bacterial cultures, and cellular infiltration were analysed as well as markers of the inflammasome activity in vivo and ex vivo. RESULTS A. baumannii infection caused mortality and loss of body weight and temperature in post-sepsis mice. Increased lung bacterial burden and dissemination together with signs of enhanced inflammatory injury were observed in post-sepsis mice but not control mice that were challenged with A. baumannii. Post-sepsis mice were unable to mount inflammasome activation in response to secondary pneumonia to the level of control mice. Transfer of wild-type but not capsase-1 KO alveolar macrophages was able to restore the pulmonary protection against A. baumannii. Mechanical ventilation exacerbated the pathological response to pneumonia in post-sepsis mice but enhanced inflammasome signalling in non-sepsis mice with pneumonia. CONCLUSIONS We established a novel model of A. baumannii pneumonia that revealed sepsis-induced impairment of inflammasome activation in alveolar macrophages is critical for the control of secondary A. baumannii pneumonia.
Collapse
Affiliation(s)
- Aldona Jeznach
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Sidor-Dzitkowska
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Magdalena Bandyszewska
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Marszalik
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Radosław Stachowiak
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Hoser
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
2
|
Linz MS, Collins L, Keenan E, Biswas R, Levine D, Mattappallil A, Finkel D, Parker D. Biological sex influences severity and outcomes in Acinetobacter baumannii pneumonia. Microbiol Spectr 2025:e0319924. [PMID: 40237468 DOI: 10.1128/spectrum.03199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Biological sex is known to affect the incidence and outcomes of infection, varying significantly by pathogen. The bacterial pathogen Acinetobacter baumannii is recognized as a serious global healthcare threat worldwide, yet understanding of how biological sex impacts its infection course is limited. We previously documented in a murine model of acute pneumonia that female mice were more susceptible to infection, but there are no published studies looking at outcomes in humans according to biological sex. We conducted a retrospective cohort study of 220 adult patients with a positive A. baumannii culture and clinical evidence of pneumonia. Contrary to the animal data, we observed male patients to have a longer overall (32 vs 24 days, P < 0.05) and intensive care unit (ICU) length of stay (LOS) (23 vs 17 days, P < 0.001) compared to females. The primary diagnosis at admission was only a factor when it was respiratory in nature. Younger male patients had higher Pneumonia Severity Index score on admission compared to younger females. Older males required more interventions than younger males. We also observed that mortality rates were increased for patients with chronic obstructive pulmonary disease (P = 0.024) and renal disease (P < 0.001), while alcohol use or smoking within 30 days prior to admission or recent surgery all negatively impacted LOS. This study highlights the importance of sex-and-gender-based studies, identifying worse outcomes in men, the elderly, and patients with certain underlying conditions and guiding efforts to improve management of patients with A. baumannii pneumonia. IMPORTANCE Biological sex has been shown to influence the incidence and outcomes of infection. We had previously documented that in a mouse model of infection, the pathogen Acinetobacter baumannii caused more serious pulmonary disease in female animals. In this study, we aimed to determine if this was evident in human pneumonia data. We found that, opposite to the mice data, human males had extended hospital stays due to A. baumannii pneumonia. We also identified a number of risk factors that can impact mortality and duration of hospital stay. This information could be used to guide efforts to improve management of patients with A. baumannii pneumonia.
Collapse
Affiliation(s)
- Matthew S Linz
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Louis Collins
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Emily Keenan
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ruchi Biswas
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dov Levine
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Arun Mattappallil
- Department of Pharmaceutical Services, University Hospital, Newark, New Jersey, USA
| | - Diana Finkel
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
3
|
Yang Y, Zeng Y, Zhu J, Li J, Gu L, Wei L, Liu Z, Huang J. OMP38 of Carbapenem-Resistant Acinetobacter Baumannii-Mediated mtDNA Release Activates the cGAS-STING Signaling to Induce Inflammatory Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2408292. [PMID: 39629993 PMCID: PMC11775518 DOI: 10.1002/advs.202408292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/18/2024] [Indexed: 01/31/2025]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) has become a major threat in the treatment of bacterial infection, and immunotherapy in a non-antibiotic-dependent manner is an effective way to overcome CRAB infection. However, the role of the innate immune response in CRAB infection is poorly understood. Here, it is reported that CRAB infection induced a cytosolic DNA-sensing signaling pathway and significant IFN-β production in mice post-CRAB infection. The knockout of STING reduced bacterial burden, the production of inflammatory cytokines, and lung injury in mice post CRAB infection. The cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) and the adaptor protein stimulator of interferon genes (STING) are required for CRAB-induced IFN-β expression in macrophages. Intriguingly, CRAB utilized outer membrane vesicles (OMVs) to transport outer membrane protein 38 (OMP38) into mitochondria, triggering mitochondrial DNA (mtDNA) release into the cytosol through the mitochondrial permeability transition pore (mPTP) and activating the cGAS-STING signaling. Finally, epigallocatechin gallate (EGCG) is demonstrated to block the activation of the cGAS-STING pathway and ameliorate CRAB-induced excessive inflammatory response. These results demonstrated that the early innate immune response to CRAB infection is activated in a cGAS-STING-dependent manner, which could be a potential therapeutic target for CRAB infection.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Institute of Respiratory DiseasesSoochow UniversitySuzhou215006China
- Suzhou Key Laboratory for Respiratory DiseasesSuzhou215006China
| | - Yuanyuan Zeng
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Institute of Respiratory DiseasesSoochow UniversitySuzhou215006China
- Suzhou Key Laboratory for Respiratory DiseasesSuzhou215006China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Institute of Respiratory DiseasesSoochow UniversitySuzhou215006China
- Suzhou Key Laboratory for Respiratory DiseasesSuzhou215006China
| | - Jianjun Li
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Institute of Respiratory DiseasesSoochow UniversitySuzhou215006China
- Suzhou Key Laboratory for Respiratory DiseasesSuzhou215006China
| | - Lei Gu
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Institute of Respiratory DiseasesSoochow UniversitySuzhou215006China
- Suzhou Key Laboratory for Respiratory DiseasesSuzhou215006China
| | - Lin Wei
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui230032China
- School of Life SciencesAnhui Medical UniversityHefeiAnhui230032China
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Institute of Respiratory DiseasesSoochow UniversitySuzhou215006China
- Suzhou Key Laboratory for Respiratory DiseasesSuzhou215006China
| | - Jian‐an Huang
- Department of Pulmonary and Critical Care Medicinethe First Affiliated Hospital of Soochow UniversitySuzhou215006China
- Institute of Respiratory DiseasesSoochow UniversitySuzhou215006China
- Suzhou Key Laboratory for Respiratory DiseasesSuzhou215006China
| |
Collapse
|
4
|
Li FJ, Starrs L, Mathur A, Enosi Tuipulotu D, Man SM, Burgio G. Interferon signalling and non-canonical inflammasome activation promote host protection against multidrug-resistant Acinetobacter baumannii. Commun Biol 2024; 7:1494. [PMID: 39533032 PMCID: PMC11557958 DOI: 10.1038/s42003-024-07204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii are of major concern worldwide due to their resistance to last resort carbapenem and polymyxin antibiotics. To develop an effective treatment strategy, it is critical to better understand how an A. baumannii MDR bacterium interacts with its mammalian host. Pattern-recognition receptors sense microbes, and activate the inflammasome pathway, leading to pro-inflammatory cytokine production and programmed cell death. Here, we examined the effects of a systemic MDR A. baumannii infection and found that MDR A. baumannii activate the NLRP3 inflammasome complex predominantly via the non-canonical caspase-11-dependent pathway. We show that caspase-1 and caspase-11-deficient mice are protected from a virulent MDR A. baumannii strain by maintaining a balance between protective and deleterious inflammation. Caspase-11-deficient mice also compromise between effector cell recruitment, phagocytosis, and programmed cell death in the lung during infection. Importantly, we found that cytosolic immunity - mediated by guanylate-binding protein 1 (GBP1) and type I interferon signalling - orchestrates caspase-11-dependent inflammasome activation. Together, our results suggest that non-canonical inflammasome activation via the (Interferon) IFN pathway plays a critical role in the host response against MDR A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora Starrs
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
5
|
Li J, Stupak J, Haqqani AS, Harris G, Zhou H, Williamson S, Chen R, Xu HH, Chen W. Development of LC-FAIMS-MS and its application to lipidomics study of Acinetobacter baumannii infection. J Lipid Res 2024; 65:100668. [PMID: 39395788 PMCID: PMC11577210 DOI: 10.1016/j.jlr.2024.100668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
The recent advances in mass spectrometry (MS) technologies have enabled comprehensive lipid profiling in biological samples. However, the robustness and efficiency of MS-based lipidomics is compromised by the complexity of biological samples. High-field asymmetric waveform ion mobility spectrometry (FAIMS) is a technology that can continuously transmit one type of ion, independent of the mass-to-charge ratio. Here we present the development and application of LC-FAIMS-MS/MS-based platform for untargeted lipidomics. We used 3 optimally balanced compensation voltages, i.e., 29 V, 34 V and 39 V, to analyze all subclasses of glycerophospholipids. The reproducibility of the method was evaluated using reference standards. The reproducibility of retention times ranged from 0.9% to 1.5% RSD; whereas RSD values of 5%-10% were observed for peak areas. More importantly, the coupling of a FAIMS device can significantly improve the robustness and efficiency. We exploited this NPLC-FAIMS-HRMS to analyze the serum lipid profiles in mice infected intranasally with Acinetobacter baumannii. The temporal profiles of serum lipids after A. baumannii inoculation were obtained for 4 h, 8 h, and 24 h. We found that nearly all ether PC and ether PE lipids were significantly decreased 8 h after inoculation. The resultant volcano plot illustrated the distribution of 28 increased and 28 decreased lipid species in mouse sera 24 h after inoculation. We also found that a single ether PE composition can comprise multiple isomeric structures, and the relative abundance of each isomer could be quantified using the newly developed NPLC-FAIMS-PRM method. We have demonstrated that the proposed LC-FAIMS-MS is a valuable platform for lipidomics.
Collapse
Affiliation(s)
- Jianjun Li
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada.
| | - Jacek Stupak
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Harris
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hongyan Zhou
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Sam Williamson
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rui Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Wangxue Chen
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Bisaro F, Jackson-Litteken CD, McGuffey JC, Hooppaw AJ, Bodrog S, Jebeli L, Janet-Maitre M, Ortiz-Marquez JC, van Opijnen T, Scott NE, Di Venanzio G, Feldman MF. Diclofenac sensitizes multi-drug resistant Acinetobacter baumannii to colistin. PLoS Pathog 2024; 20:e1012705. [PMID: 39571043 PMCID: PMC11620633 DOI: 10.1371/journal.ppat.1012705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/05/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Acinetobacter baumannii causes life-threatening infections that are becoming difficult to treat due to increasing rates of multi-drug resistance (MDR) among clinical isolates. This has led the World Health Organization and the CDC to categorize MDR A. baumannii as a top priority for the research and development of new antibiotics. Colistin is the last-resort antibiotic to treat carbapenem-resistant A. baumannii. Not surprisingly, reintroduction of colistin has resulted in the emergence of colistin-resistant strains. Diclofenac is a non-steroidal anti-inflammatory drug used to treat pain and inflammation associated with arthritis. In this work, we show that diclofenac sensitizes colistin-resistant A. baumannii clinical strains to colistin in vitro and in a murine model of pneumonia. Diclofenac also reduced the colistin minimal inhibitory concentration (MIC) of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. Transcriptomic and proteomic analyses revealed an upregulation of oxidative stress-related genes and downregulation of type IV pili induced by the combination treatment. Notably, the concentrations of colistin and diclofenac effective in the murine model were substantially lower than those determined in vitro, implying a stronger synergistic effect in vivo compared to in vitro. A pilA mutant strain, lacking the primary component of the type IV pili, became sensitive to colistin in the absence of diclofenac. This suggest that the downregulation of type IV pili is key for the synergistic activity of these drugs in vivo and indicates that colistin and diclofenac exert an anti-virulence effect. Together, these results suggest that diclofenac can be repurposed with colistin to treat MDR A. baumannii.
Collapse
Affiliation(s)
- Fabiana Bisaro
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Clay D. Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Jenna C. McGuffey
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Anna J. Hooppaw
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Sophie Bodrog
- Biology Department, Boston College; Chestnut Hill, Massachusetts, United States of America
| | - Leila Jebeli
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne, Australia
| | - Manon Janet-Maitre
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Juan C. Ortiz-Marquez
- Biology Department, Boston College; Chestnut Hill, Massachusetts, United States of America
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tim van Opijnen
- Boston Children’s Hospital, Division of Infectious Diseases, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne, Australia
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis; St. Louis, Missouri, United States of America
| |
Collapse
|
7
|
Peignier A, Kim J, Lemenze A, Parker D. Monocyte-regulated interleukin 12 production drives clearance of Staphylococcus aureus. PLoS Pathog 2024; 20:e1012648. [PMID: 39418302 PMCID: PMC11521269 DOI: 10.1371/journal.ppat.1012648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Staphylococcus aureus is a versatile bacterium responsible for conditions ranging from mild skin and soft-tissue infections to serious disorders such as pneumonia and sepsis. Monocytes play a role in protection against pathogens by migrating to inflamed tissues and differentiating into macrophages but their specific role in the context of S. aureus pulmonary infection has not been fully elucidated. Using a CCR2-DTR transgenic mouse model we demonstrate that over the course of infection monocyte depletion resulted in worse airway clearance of S. aureus. The bronchoalveolar lavage fluid (BALF) of CCR2-DTR mice after S. aureus infection displayed significant decreases in interleukin-12 (IL-12), IFN-γ, IP-10, MIG and RANTES, all IFN-γ regulated, compared to wild-type (WT) infected controls. NK cells were identified as the main producers of IFN-γ, but both NK cells and IFN-γ were dispensable for clearance. We demonstrated through cytokine production and RNA-seq analysis that IL-12 and IL-12 regulated genes are strongly induced in monocytes upon S. aureus infection. Administration of IL-12 during infection restored the bacterial burdens in the BALF and lungs of monocyte-depleted CCR2-DTR mice to the levels of WT mice, independent of IFN-γ. In the absence of monocytes, alveolar macrophages are the primary phagocytic cells, and IL-12 influences their capacity to produce reactive oxygen species and clear S. aureus. These results show that production of IL-12 contributes to the control of S. aureus via its influence on alveolar macrophage function.
Collapse
Affiliation(s)
- Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Alexander Lemenze
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark New Jersey United States of America
| |
Collapse
|
8
|
Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, Miller JA, Shoe JL, Mlynek KD, Talyansky Y, Toothman RG, Qiu J, Bozue JA, Cote CK. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Front Immunol 2024; 15:1397579. [PMID: 38835755 PMCID: PMC11148226 DOI: 10.3389/fimmu.2024.1397579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.
Collapse
Affiliation(s)
- Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jeremy A Miller
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ju Qiu
- Regulated Research Administration: Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
9
|
Kim J, Kim GL, Norambuena J, Boyd JM, Parker D. Impact of the pentose phosphate pathway on metabolism and pathogenesis of Staphylococcus aureus. PLoS Pathog 2023; 19:e1011531. [PMID: 37440594 PMCID: PMC10368262 DOI: 10.1371/journal.ppat.1011531] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/25/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that leads to significant disease through multiple routes of infection. We recently published a transposon sequencing (Tn-seq) screen in a mouse acute pneumonia model and identified a hypothetical gene (SAUSA300_1902, pgl) with similarity to a lactonase of Escherichia coli involved in the pentose phosphate pathway (PPP) that was conditionally essential. Limited studies have investigated the role of the PPP in physiology and pathogenesis of S. aureus. We show here that mutation of pgl significantly impacts ATP levels and respiration. RNA-seq analysis of the pgl mutant and parent strains identified compensatory changes in gene expression for glucose and gluconate as well as reductions in the pyrimidine biosynthesis locus. These differences were also evident through unbiased metabolomics studies and 13C labeling experiments that showed mutation of pgl led to reductions in pyrimidine metabolism including decreases in ribose-5P, UMP and GMP. These nucleotide reductions impacted the amount of extracellular DNA in biofilms and reduced biofilm formation. Mutation also limited the capacity of the strain to resist oxidant damage induced by hydrogen peroxide and paraquat and subsequent intracellular survival inside macrophages. Changes in wall teichoic acid impacted susceptibility to hydrogen peroxide. We demonstrated the importance of these changes on virulence in three different models of infection, covering respiratory, skin and septicemia, demonstrating the need for proper PPP function in all models. This work demonstrates the multifaceted role metabolism can play in multiple aspects of S. aureus pathogenesis.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Gyu-Lee Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| |
Collapse
|
10
|
Abstract
There is a growing awareness of the importance of sex and gender in medicine and research. Women typically have stronger immune responses to self and foreign antigens than men, resulting in sex-based differences in autoimmunity and infectious diseases. In both animals and humans, males are generally more susceptible than females to bacterial infections. At the same time, gender differences in health-seeking behavior, quality of health care, and adherence to treatment recommendations have been reported. This review explores our current understanding of differences between males and females in bacterial diseases. We describe how genetic, immunological, hormonal, and anatomical factors interact to influence sex-based differences in pathophysiology, epidemiology, clinical presentation, disease severity, and prognosis, and how gender roles affect the behavior of patients and providers in the health care system.
Collapse
|
11
|
Hu MY, Yu QZ, Lin JQ, Fang SG. Sexual Dimorphism of the Gut Microbiota in the Chinese Alligator and Its Convergence in the Wild Environment. Int J Mol Sci 2022; 23:12140. [PMID: 36292992 PMCID: PMC9603114 DOI: 10.3390/ijms232012140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022] Open
Abstract
The gut microbiota forms a complex microecosystem in vertebrates and is affected by various factors. As a key intrinsic factor, sex has a persistent impact on the formation and development of gut microbiota. Few studies have analyzed sexual dimorphism of gut microbiota, particularly in wild animals. We used 16S rRNA gene sequencing to analyze the gut microbiota of juvenile and adult Chinese alligators, and untargeted metabolomics to study serum metabolomes of adult alligators. We observed significant sexual differences in the community diversity in juvenile, but not adult, alligators. In terms of taxonomic composition, the phylum Fusobacteriota and genus Cetobacterium were highly abundant in adult alligators, similar to those present in carnivorous fishes, whereas the gut microbiota composition in juvenile alligators resembled that in terrestrial reptiles, indicating that adults are affected by their wild aquatic environment and lack sex dimorphism in gut microbiota. The correlation analysis revealed that the gut microbiota of adults was also affected by cyanobacteria in the external environment, and this effect was sex-biased and mediated by sex hormones. Overall, this study reveals sexual differences in the gut microbiota of crocodilians and their convergence in the external environment, while also providing insights into host-microbiota interactions in wildlife.
Collapse
Affiliation(s)
- Meng-Yuan Hu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qin-Zhang Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian-Qing Lin
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou 515063, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Arrazuria R, Kerscher B, Huber KE, Hoover JL, Lundberg CV, Hansen JU, Sordello S, Renard S, Aranzana-Climent V, Hughes D, Gribbon P, Friberg LE, Bekeredjian-Ding I. Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents. Front Microbiol 2022; 13:988728. [PMID: 36160241 PMCID: PMC9493352 DOI: 10.3389/fmicb.2022.988728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded “Collaboration for prevention and treatment of MDR bacterial infections” (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Karen E. Huber
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jennifer L. Hoover
- Infectious Diseases Research Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, PA, United States
| | | | - Jon Ulf Hansen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | | | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- *Correspondence: Isabelle Bekeredjian-Ding,
| |
Collapse
|
13
|
Arrazuria R, Kerscher B, Huber KE, Hoover JL, Lundberg CV, Hansen JU, Sordello S, Renard S, Aranzana-Climent V, Hughes D, Gribbon P, Friberg LE, Bekeredjian-Ding I. Expert workshop summary: Advancing toward a standardized murine model to evaluate treatments for antimicrobial resistance lung infections. Front Microbiol 2022; 13:988725. [PMID: 36160186 PMCID: PMC9493304 DOI: 10.3389/fmicb.2022.988725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The rise in antimicrobial resistance (AMR), and increase in treatment-refractory AMR infections, generates an urgent need to accelerate the discovery and development of novel anti-infectives. Preclinical animal models play a crucial role in assessing the efficacy of novel drugs, informing human dosing regimens and progressing drug candidates into the clinic. The Innovative Medicines Initiative-funded “Collaboration for prevention and treatment of MDR bacterial infections” (COMBINE) consortium is establishing a validated and globally harmonized preclinical model to increase reproducibility and more reliably translate results from animals to humans. Toward this goal, in April 2021, COMBINE organized the expert workshop “Advancing toward a standardized murine model to evaluate treatments for AMR lung infections”. This workshop explored the conduct and interpretation of mouse infection models, with presentations on PK/PD and efficacy studies of small molecule antibiotics, combination treatments (β-lactam/β-lactamase inhibitor), bacteriophage therapy, monoclonal antibodies and iron sequestering molecules, with a focus on the major Gram-negative AMR respiratory pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Here we summarize the factors of variability that we identified in murine lung infection models used for antimicrobial efficacy testing, as well as the workshop presentations, panel discussions and the survey results for the harmonization of key experimental parameters. The resulting recommendations for standard design parameters are presented in this document and will provide the basis for the development of a harmonized and bench-marked efficacy studies in preclinical murine pneumonia model.
Collapse
Affiliation(s)
- Rakel Arrazuria
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Karen E. Huber
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
| | - Jennifer L. Hoover
- Infectious Diseases Research Unit, GlaxoSmithKline Pharmaceuticals, Collegeville, PA, United States
| | | | - Jon Ulf Hansen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Discovery Research ScreeningPort, Hamburg, Germany
| | | | - Isabelle Bekeredjian-Ding
- Division of Microbiology, Paul-Ehrlich-Institut, Langen, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- *Correspondence: Isabelle Bekeredjian-Ding,
| |
Collapse
|
14
|
Liu Z, Xu W. Neutrophil and Macrophage Response in Acinetobacter Baumannii Infection and Their Relationship to Lung Injury. Front Cell Infect Microbiol 2022; 12:890511. [PMID: 35873147 PMCID: PMC9298752 DOI: 10.3389/fcimb.2022.890511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Acinetobacter baumannii (AB) infection has become a threat to global public health. AB is one of the main pathogens causing nosocomial infections, especially ventilator-associated pneumonia. AB easily develops resistance against a variety of antibiotics, which makes the treatment of AB infections difficult. Therefore, it is necessary to study new treatment plans like anti-infection immunity. Both animal models of AB infection and in vitro cell experiments show that macrophages are activated in the early stage of the immune response and regulate the recruitment of neutrophils, thus playing a role in clearing AB. AB components and the immune responses they induce can lead to injury of the infected organ, mostly in the lungs. Understanding the response of innate immunity to ABs at different stages after infection and the relationship between the response and lung injury can help to develop new immunotherapy methods and prevent lung injury. This article provides a comprehensive review of the response of neutrophils and macrophages to AB infection and their association with lung injury to develop effective therapies for AB infection and prevent lung injury.
Collapse
Affiliation(s)
- Zhaojun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Golestani F, Malekan M, Rasooli I, Jahangiri A, Ramezanalizadeh F, Chaudhuri S, Farshchi Andisi V, Schryvers AB. Immunogenicity of loop 3 of Omp34 from A. Baumannii in loopless C-lobe of TbpB of N. meningitidis. Int Immunopharmacol 2022; 110:109013. [PMID: 35785727 DOI: 10.1016/j.intimp.2022.109013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022]
Abstract
Acinetobacter baumannii is a common causative agent of nosocomial infections, with a mortality rate of 43% in infected patients. Due to the emergence of multidrug-resistant (MDR) strains, vaccine development has become necessary. Since the 34 kDa outer membrane protein Omp34 has been identified as a potential vaccine target, we implemented a hybrid antigen approach to target its extracellular loops. Using bioinformatic and structural analyses, we selected Loop 3 from Omp34 and displayed it on the loopless C-lobe (LCL) of TbpB of Neisseria meningitidis. The hybrid antigen and the LCL were produced and used to immunize mice for passive and active immunization and challenge experiments in which the reactivity of the sera was assessed by ELISAs, the bacterial load in the tissues measured and the survival of immunized mice compared. LCL was ineffective in immunization against A. baumannii thus the resulting immunity was due to the presence of Omp34 loop 3. It resulted in increased survival and a reduced bacterial load in the tissues compared to the control groups. The findings indicate that the immunogenicity of Omp34 loops can induce protection against A. baumannii infection, and it could probably be used as a vaccine candidate to control the pathogenesis of A. baumannii.
Collapse
Affiliation(s)
| | | | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center and Department of Biology, Shahed University, Tehran, Iran.
| | - Abolfazl Jahangiri
- Applied Microbiology Research Center, Systems biology and poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Somshukla Chaudhuri
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Canada
| | - Vahid Farshchi Andisi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Canada
| |
Collapse
|
16
|
Han L, Ji X, Liu X, Xu S, Li F, Che Y, Qiu X, Sun L, Li Z. Estradiol Aggravate Nocardia farcinica Infections in Mice. Front Immunol 2022; 13:858609. [PMID: 35309304 PMCID: PMC8924065 DOI: 10.3389/fimmu.2022.858609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Males are generally more susceptible to Nocardia infection than females, with a male-to-female ratio of 2 and higher clinical disease. 17β-Estradiol has been implicated in affecting the sex-based gap by inhibiting the growth of N. brasiliensis in experiments, but the underlying mechanisms have not yet been fully clarified. In the present study, however, we report increased severity in N. farcinica IFM 10152-infected female mice compared with male mice with increased mortality, elevated lung bacterial loads and an exaggerated pulmonary inflammatory response, which was mimicked in ovariectomized female mice supplemented with E2. Similarly, the overwhelming increase in bacterial loads was also evident in E2-treated host cells, which were associated with downregulating the phosphorylation level of the MAPK pathway by binding the estrogen receptor. We conclude that although there are more clinical cases of Nocardia infection in males, estrogen promotes the survival of the bacteria, which leads to aggravated inflammation in females. Our data emphasize the need to include and separately analyze both sexes in future studies of Nocardia to understand the sex differences in immune responses and disease pathogenesis.
Collapse
Affiliation(s)
- Lichao Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Shandong Key Laboratory of Infections Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueping Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuai Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Li
- Department of Medical, Tibet University, Lhasa, China
| | - Yanlin Che
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaotong Qiu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lina Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
17
|
Akoolo L, Pires S, Kim J, Parker D. The Capsule of Acinetobacter baumannii Protects against the Innate Immune Response. J Innate Immun 2022; 14:543-554. [PMID: 35320810 PMCID: PMC9485954 DOI: 10.1159/000522232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/24/2022] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that has recently emerged as a global threat associated with high morbidity, mortality, and antibiotic resistance. We determined the role of type I interferon (IFN) signaling in A. baumannii infection. We report that A. baumannii can induce a type I IFN response that is dependent upon TLR4-TRIF-IRF3 and phagocytosis of the bacterium. Phase variants of A. baumannii that have a reduced capsule, lead to enhanced TLR4-dependent type I IFN induction. This was also observed in a capsule-deficient strain. However, we did not observe a role for this pathway in vivo. The enhanced signaling could be accounted for by increased phagocytosis in capsule-deficient strains that also lead to enhanced host cell-mediated killing. The increased cytokine response in the absence of the capsule was not exclusive to type I IFN signaling. Several cytokines, including the proinflammatory IL-6, were increased in cells stimulated with the capsule-deficient strain, also observed in vivo. After 4 h in our acute pneumonia model, the burden of a capsule-null strain was significantly reduced, yet we observed increases in innate immune cells and inflammatory markers compared to wild-type A. baumannii. This study underscores the role of phase variation in the modulation of host immune responses and indicates that the capsule of A. baumannii plays an important role in protection against host cell killing and evasion from activation of the innate immune response.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Silvia Pires
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jisun Kim
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
18
|
Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021; 10:pathogens10040387. [PMID: 33804894 PMCID: PMC8063835 DOI: 10.3390/pathogens10040387] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.
Collapse
|
19
|
Ma C, Chen W. Where are we and how far is there to go in the development of an Acinetobacter vaccine? Expert Rev Vaccines 2021; 20:281-295. [PMID: 33554671 DOI: 10.1080/14760584.2021.1887735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Healthcare-associated infections caused by multidrug-resistant Acinetobacter baumannii are becoming alarming worldwide. However, the pipeline of new antibiotics is very limited. Vaccination is one of the most cost effective and promising strategies to prevent infections and can play an important role in combat multidrug resistance A. baumannii and prevent the development of new drug resistance. AREA COVERED This review gives an overview of the research and development of A. baumannii vaccines during the past five years (2015-2020), discusses the key progresses and current challenges of the field, and speculates on the future of A. baumannii vaccine development. EXPERT OPINION Moderate progresses have been made in the research and development of A. baumannii vaccine in the last five years, in particular in the areas of identification of new protein targets, development of multicomponent vaccines, and use of vaccines and antibodies as adjuncts for antibiotics therapies. However, substantial scientific and logistic challenges, such as selection of lead vaccine candidates and formulation, vaccine clinical trials and targeted population, and financial incentives, remain. Thus, innovative strategies will be needed before an A. baumannii vaccine candidate can be brought into late stage of preclinical development in next five years.
Collapse
Affiliation(s)
- Crystal Ma
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Ontario Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center (HHT), National Research Council Canada, Ottawa, Ontario Canada.,Department of Biology, Brock University, St. Catharines, Ontario Canada
| |
Collapse
|
20
|
Antibiogram, Prevalence of OXA Carbapenemase Encoding Genes, and RAPD-Genotyping of Multidrug-Resistant Acinetobacter baumannii Incriminated in Hidden Community-Acquired Infections. Antibiotics (Basel) 2020; 9:antibiotics9090603. [PMID: 32942596 PMCID: PMC7558960 DOI: 10.3390/antibiotics9090603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter spp. has gained fame from their ability to resist difficult conditions and their constant development of antimicrobial resistance. This study aimed to investigate the prevalence, susceptibility testing, OXA carbapenemase-encoding genes, and RAPD-genotyping of multidrug resistant Acinetobacter baumannii incriminated in hidden community-acquired infections in Egypt. The antimicrobial susceptibility testing was assessed phenotypically using Kirby–Bauer disk diffusion method. Also, Modified-Hodge test (MHT) was carried out to detect the carbapenemases production. Multiplex-PCR was used to detect the carbapenemase-encoding genes. Furthermore, the genetic relationship among the isolated strains was investigated using RAPD fingerprinting. The bacteriological examination revealed that, out of 200 Gram-negative non-fermentative isolates, 44 (22%) were identified phenotypically and biochemically as Acinetobacter spp. and 23 (11.5%) were molecularly confirmed as A.baumannii. The retrieved A.baumannii strains were isolated from urine (69%), sputum (22%), and cerebrospinal fluid (csf) (9%). The isolated A. baumannii strains exhibited multidrug resistance and the production rates of carbapenemases were 56.5, 60.9, and 78.3% with meropenem, imipenem, and ertapenem disks, respectively. The blaOXA-24-like genes were the most predominant among the tested strains (65.2%), followed by blaOXA-23 (30.4%) and blaOXA-58 (17.4%), in addition, the examined strains are harbored IMP, VIM, and NDM genes with prevalence of 60.9, 43.5, and 13%, respectively, while KPC and GES genes were not detected. RAPD-PCR revealed that the examined strains are clustered into 11 different genotypes at ≥90% similarity. Briefly, to the best of our knowledge, this study is the first report concerning community-associated A. baumannii infections in Egypt. The high prevalence of hidden multidrug-resistant (MDR) and extensively drug-resistant (XDR) A.baumannii strains associated with non-hospitalized patients raises an alarm for healthcare authorities to set strict standards to control the spread of such pathogens with high rates of morbidity and mortality.
Collapse
|
21
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|