1
|
Zong J, Wang C, Zhou H, Song Y, Fang K, Chang X. ApoE [-/-] CA1-overexpressing knock-in mice aggravated atherosclerosis by increasing M1 macrophages. ATHEROSCLEROSIS PLUS 2025; 60:6-19. [PMID: 40236987 PMCID: PMC11999080 DOI: 10.1016/j.athplu.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025]
Abstract
Background Carbonic anhydrase I (CA1) has been reported to be a diagnostic and therapeutic target for atherosclerosis (AS). This study aimed to verify the essential role of CA1 in AS progression in CA1-overexpressing mice. Methods A ApoE [-/-] CA1-overexpressing knock-in mouse model was constructed via CRISPR/Cas9-mediated genome engineering. AS was then induced in these transgenic mice via the administration of a high-fat diet, and a second group simultaneously received treatment with methazolamide (MTZ), a carbonic anhydrase inhibitor. Results Compared with ApoE [-/-] mice without CA1 overexpression, CA1-overexpressing mice had a greater average body weight, regardless of whether their treatment with MTZ or their AS induction status. Sudan IV, hematoxylin and eosin and Oil Red O staining revealed more plaques and fat deposits in the cardiac aortas of CA1-overexpressing mice than in those of ordinary ApoE-/- mice when AS was induced. Moreover, the atherogenic index; low-density lipoprotein, total cholesterol and triglyceride levels were significantly elevated, and high-density lipoprotein levels were declined in the peripheral blood of CA1-overexpressing mice than in that of ordinary ApoE [-/-] mice, regardless of whether these animals were induced to AS. Immunohistochemistry, Von Kossa staining and fluorescence immunohistochemistry revealed increases in CA1 expression, calcium deposition and M1 macrophages in the aortic tissues of CA1-overexpressing mice with AS. MTZ treatment significantly suppressed AS pathologies in the above experiments. Conclusion These findings revealed aggravated AS in ApoE [-/-] CA1-overexpressing mice and suggest that CA1 aggravates AS by increasing M1-type macrophages, a proinflammatory macrophage subtype.
Collapse
Affiliation(s)
- Jinbao Zong
- Clinical Laboratory and Qingdao Key Laboratory of Immunodiagnosis, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Renmin Road 4, Qingdao, 266000, PR China
| | - Changyuan Wang
- Department of Dermatology, Qingdao Hospital, University of Health and Rehabilitation Sciences(Qingdao Municipal Hospital), Dengyun Road 369, Qingdao, 266000, PR China
| | - Hongji Zhou
- Medical Research Center, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, PR China
- Department of Cardiology, Fushun Municipal Central Hospital, Xincheng Road 5, Fushun, Liaoning, 113006, PR China
| | - Yu Song
- Medical Research Center, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, PR China
| | - Kehua Fang
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong, 266000, PR China
| | - Xiaotian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, PR China
| |
Collapse
|
2
|
Rodriguez-Jimenez S, Horst EA, Mayorga EJ, Abeyta MA, Goetz BM, Baumgard LH. Intermittent and increasing intravenous lipopolysaccharide effect on metabolism, inflammation, and production in lactating dairy cows. J Dairy Sci 2025; 108:4283-4298. [PMID: 39824498 DOI: 10.3168/jds.2024-26010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Experimental objectives were to create a chronic inflammatory model to evaluate the effects of persistent immune activation on metabolism, inflammation, and productivity in lactating dairy cows. Twelve lactating Holstein cows (631 ± 16 kg BW; 124 ± 15 DIM) were enrolled in a study with 2 experimental periods; during period 1 (P1; 5 d), cows were fed ad libitum and baseline data were obtained. At the initiation of period 2 (P2; 7 d), cows were assigned to 1 of 2 treatments: (1) saline infused and pair-fed (PF; 5 mL i.v. sterile saline on d 1, 3, and 5; n = 6) or (2) LPS infused and ad libitum fed (LPS; 0.2, 0.8, and 1.6 µg LPS/kg BW i.v. on d 1, 3, and 5, respectively; n = 6). Blood samples were collected on d 3 and 5 of P1, and d 1, 3, 5, and 7 of P2. Administering LPS induced a febrile response (∼6 h duration) following each bolus (+0.6, 0.6, and 0.8°C, for d 1, 3, and 5, respectively). Lipopolysaccharide binding protein, serum amyloid A, and haptoglobin concentrations increased in LPS-administered cows relative to baseline and PF animals. Cholesterol and albumin concentrations decreased in LPS relative to PF cows and effects were most prominent from d 3 to 7 of P2. Circulating cortisol in LPS-infused cows progressively increased during P2 (63% on d 7) relative to PF cows. Overall, during P2, LPS administration induced a sawtooth pattern in DMI and the negative consequences on DMI ameliorated as P2 progressed. By design, the DMI pattern in PF cows was similar to their LPS counterparts. Administering LPS also created a reciprocating response in milk yield that lessened as P2 progressed. Overall, milk yield was decreased in LPS and PF cows compared with P1 (29% and 10%, respectively). Circulating insulin decreased in both treatments relative to P1, but the decrease was more severe in PF (61%) compared with LPS-infused cows (27%). Relative to PF cows, nonesterified fatty acids (NEFA) remained similar to P1 in LPS-administered cows, but increased (3.2-fold) in PF cows. Ionized calcium decreased in LPS cows compared with PF controls. In summary, alternating and increasing LPS doses caused chronic inflammation, markedly altered metabolism, and temporarily decreased DMI and milk synthesis. However, although the acute phase proteins remained elevated throughout P2, the effect on production lessened with time.
Collapse
Affiliation(s)
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
3
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Elkins M, Horrelt M, Woods B, Lawton S, Ohsumi TK, Fleischman A, Taudte V, Chou J. Overfeeding and overweight rapidly reprogram inflammatory signaling. Clin Immunol 2025; 271:110428. [PMID: 39788355 DOI: 10.1016/j.clim.2025.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Epidemiologic studies have shown a continuous increase in mortality risk associated with overweight, thus highlighting the health risks beginning before the onset of obesity. However, early changes in inflammatory signaling induced by an obesogenic diet remain largely unknown since studies of obesity typically utilize models induced by months of continuous exposure to a high-fat diet. Here, we investigated how short-term overfeeding remodels inflammatory signaling. We developed and characterized a mouse model of overweight induced by seven days of the Western diet enriched in saturated fats and sucrose, compared to the standard, low-fat laboratory diet or a long-term Western diet for 22 weeks. The short-term Western diet caused a median weight gain of 6 %, while the long-term Western diet increased weight by 92 %. Circulating levels of cholesterol, triglycerides, insulin, and leptin were increased by both diets, but only the long-term Western diet caused transaminitis and significant hepatic steatosis. Both models reduced the alpha and beta diversity of the microbiome. Tryptophan metabolism was perturbed by both models; the long-term Western diet also affected histidine and vitamin B6 metabolism. The short-term and long-term Western diets increased expression of TLR4 on peritoneal immune cells and TLR4-driven plasma levels of proinflammatory cytokines comparably, showing one week of the Western diet was sufficient for inducing inflammation typical of chronic obesity. These findings highlight the importance of diet not only in preclinical studies, but also in the clinical care of individuals with inflammatory disorders.
Collapse
Affiliation(s)
- Megan Elkins
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States of America.
| | - Merle Horrelt
- Research Group Translational Metabolomics, Core Facility for Metabolomics, Philipps University Marburg, Marburg, Germany
| | - Brian Woods
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States of America
| | - Samira Lawton
- Microbiome Analysis, Transnetyx, Memphis, TN, United States of America
| | | | - Amy Fleischman
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States of America
| | - Verena Taudte
- Research Group Translational Metabolomics, Core Facility for Metabolomics, Philipps University Marburg, Marburg, Germany
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States of America.
| |
Collapse
|
5
|
Zhou W, Li X, Zhou H, Hu Y, Chen Y, Guo D. TNF-α/IL-1β/IL-1α/IL-12 inflammatory cytokine axes coupled with TLR1/TLR3/TLR5/MYD88 immune signaling pathway over-activation contribute to simultaneous carotid and coronary artery and occlusion in elderly patients. Cytokine 2025; 185:156808. [PMID: 39556941 DOI: 10.1016/j.cyto.2024.156808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/22/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND It remains difficult to evaluate the risk factors for concomitant carotid artery as well as coronary artery diseases in elderly patients. The aim of this research was to determine the TNF-α/IL-1β/IL-1α/IL-12 axes-TLR1/TLR3/TLR5/MYD88 immune signaling pathway interactions in coexistent carotid artery occlusion and coronary artery occlusion in elderly patients. METHODS Elderly patients, who underwent carotid ultrasonography and coronary computed tomography angiography, were consecutively included in this research. The analyzed groups consisted of those with coexistent carotid artery occlusion and coronary artery occlusion as well as healthy individuals were enrolled as control group. The circulating levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-1α (IL-1α), interleukin-12 (IL-12), toll-like receptor 1 (TLR1), toll-like receptor 3 (TLR3), toll-like receptor 5 (TLR5) and myeloid differentiation factor 88 (MYD88) were measured. RESULTS The biomarkers (TNF-α, IL-1β, IL-1α, IL-12, TLR1, TLR3, TLR5 and MYD88) were significantly increased in carotid artery occlusion + left circumflex coronary artery occlusion group when compared with control group and carotid artery occlusion + right coronary artery occlusion group, respectively (P < 0.001), and were further elevated in carotid artery occlusion + left anterior descending coronary artery occlusion group when compared to carotid artery occlusion + right coronary artery occlusion group and carotid artery occlusion + left circumflex coronary artery occlusion group, respectively (P < 0.001). CONCLUSION This research demonstrated that the TNF-α/IL-1β/IL-1α/IL-12 axes and TLR1/TLR3/TLR5/MYD88 immune signaling pathway implicated in the pathogenesis of carotid artery occlusion with coronary artery occlusion in elderly patients.
Collapse
Affiliation(s)
- Wenhang Zhou
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223005, China
| | - Xia Li
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223005, China
| | - Hualan Zhou
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Ying Chen
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Dianxuan Guo
- Xiamen Road Branch Hospital, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223005, China.
| |
Collapse
|
6
|
Costa RR, Domínguez-Arca V, Velasco B, Reis RL, Rodríguez-Cabello JC, Pashkuleva I, Taboada P, Prieto G. Cholesterol Conjugated Elastin-like Recombinamers: Molecular Dynamics Simulations, Conformational Changes, and Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561189 DOI: 10.1021/acsami.4c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Current models for elastin-like recombinamer (ELR) design struggle to predict the effects of nonprotein fused materials on polypeptide conformation and temperature-responsive properties. To address this shortage, we investigated the novel functionalization of ELRs with cholesterol (CTA). We employed GROMACS computational molecular dynamic simulations complemented with experimental evidence to validate the in silico predictions. The ELRCTA was biosynthesized and characterized by using fluorescence assays, circular dichroism, dynamic light scattering, and differential scanning calorimetry. The in silico and in vitro data showed that CTA promotes the formation of intramolecular hydrogen bonds that favor β-sheet secondary structures. Compared with an unmodified ELRVKV, CTA enhanced the hydrophobicity and stability of the system, allowing the formation of monodisperse nanoaggregates at physiologically relevant temperatures. Importantly, calorimetry assays revealed that ELRCTA interacted and intercalated with the lipid bilayers of the DPPC liposomes. To demonstrate the implications of these changes for biomedical applications, ELRCTA and DPPC-ELRCTA hybrid nanoparticles were tested with cancer and immune cell lines. Interactions with the cell membranes demonstrated a synergistic effect of the composition and size of the modified recombinamer aggregates on the internalization. The results indicated the potential use of ELR-based nanoparticles for localized and systemic drug delivery. This work sets a new precedent to design elastin-inspired biomaterials with predictable self-assembly properties and develop novel drug delivery strategies.
Collapse
Affiliation(s)
- Rui R Costa
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal
- Colloids and Polymers Physics Group, Department of Applied Physics, Faculty of Physics and Institute of Materials (iMATUS) and Institute of Health Research (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vicente Domínguez-Arca
- Biosystems and Bioprocess Engineering (Bio2Eng) Group, Institute of Marine Research of Spanish Research Council, IIM-CSIC, 36208 Vigo, Spain
- Colloids Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, Bielefeld 33615, Germany
| | - Brenda Velasco
- Colloids and Polymers Physics Group, Department of Applied Physics, Faculty of Physics and Institute of Materials (iMATUS) and Institute of Health Research (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rui L Reis
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal
| | - José Carlos Rodríguez-Cabello
- Bioforge Lab, Group for Advanced Materials and Nanobiotechnology, Biomedical Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Edificio LUCIA, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs─Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4805-694 Braga, Guimarães, Portugal
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Department of Applied Physics, Faculty of Physics and Institute of Materials (iMATUS) and Institute of Health Research (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gerardo Prieto
- Colloids and Polymers Physics Group, Department of Applied Physics, Faculty of Physics and Institute of Materials (iMATUS) and Institute of Health Research (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
Chandramouli A, Kamat SS. A Facile LC-MS Method for Profiling Cholesterol and Cholesteryl Esters in Mammalian Cells and Tissues. Biochemistry 2024; 63:2300-2309. [PMID: 38986142 DOI: 10.1021/acs.biochem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cholesterol is central to mammalian lipid metabolism and serves many critical functions in the regulation of diverse physiological processes. Dysregulation in cholesterol metabolism is causally linked to numerous human diseases, and therefore, in vivo, the concentrations and flux of cholesterol and cholesteryl esters (fatty acid esters of cholesterol) are tightly regulated. While mass spectrometry has been an analytical method of choice for detecting cholesterol and cholesteryl esters in biological samples, the hydrophobicity, chemically inert nature, and poor ionization of these neutral lipids have often proved a challenge in developing lipidomics compatible liquid chromatography-mass spectrometry (LC-MS) methods to study them. To overcome this problem, here, we report a reverse-phase LC-MS method that is compatible with existing high-throughput lipidomics strategies and capable of identifying and quantifying cholesterol and cholesteryl esters from mammalian cells and tissues. Using this sensitive yet robust LC-MS method, we profiled different mammalian cell lines and tissues and provide a comprehensive picture of cholesterol and cholesteryl esters content in them. Specifically, among cholesteryl esters, we find that mammalian cells and tissues largely possess monounsaturated and polyunsaturated variants. Taken together, our lipidomics compatible LC-MS method to study this lipid class opens new avenues in understanding systemic and tissue-level cholesterol metabolism under various physiological conditions.
Collapse
Affiliation(s)
- Aakash Chandramouli
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
8
|
Harvei S, Skogen V, Egelandsdal B, Birkeland S, Paulsen JE, Carlsen H. Chronic oral LPS administration does not increase inflammation or induce metabolic dysregulation in mice fed a western-style diet. Front Nutr 2024; 11:1376493. [PMID: 39077160 PMCID: PMC11284168 DOI: 10.3389/fnut.2024.1376493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharides (LPS) present in the intestine are suggested to enter the bloodstream after consumption of high-fat diets and cause systemic inflammation and metabolic dysregulation through a process named "metabolic endotoxemia." This study aimed to determine the role of orally administered LPS to mice in the early stage of chronic low-grade inflammation induced by diet. Methods We supplemented the drinking water with E. coli derived LPS to mice fed either high-fat Western-style diet (WSD) or standard chow (SC) for 7 weeks (n = 16-17). Body weight was recorded weekly. Systemic inflammatory status was assessed by in vivo imaging of NF-κB activity at different time points, and glucose dysregulation was assessed by insulin sensitivity test and glucose tolerance test near the end of the study. Systemic LPS exposure was estimated indirectly via quantification of LPS-binding protein (LBP) and antibodies against LPS in plasma, and directly using an LPS-sensitive cell reporter assay. Results and discussion Our results demonstrate that weight development and glucose regulation are not affected by LPS. We observed a transient LPS dependent upregulation of NF-κB activity in the liver region in both diet groups, a response that disappeared within the first week of LPS administration and remained low during the rest of the study. However, WSD fed mice had overall a higher NF-κB activity compared to SC fed mice at all time points independent of LPS administration. Our findings indicate that orally administered LPS has limited to no impact on systemic inflammation and metabolic dysregulation in mice fed a high-fat western diet and we question the capability of intestinally derived LPS to initiate systemic inflammation through a healthy and uncompromised intestine, even when exposed to a high-fat diet.
Collapse
Affiliation(s)
- Silje Harvei
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Vemund Skogen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Jan Erik Paulsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
9
|
Kim J, Kim JY, Byeon HE, Kim JW, Kim HA, Suh CH, Choi S, Linton MF, Jung JY. Inhibition of Toll-like Receptors Alters Macrophage Cholesterol Efflux and Foam Cell Formation. Int J Mol Sci 2024; 25:6808. [PMID: 38928513 PMCID: PMC11203583 DOI: 10.3390/ijms25126808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis.
Collapse
Affiliation(s)
- Jaemi Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Ji-Yun Kim
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Hye-Eun Byeon
- Institute of Medical Science, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.-Y.K.)
| | - Ji-Won Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Hyoun-Ah Kim
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Chang-Hee Suh
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
| | - MacRae F. Linton
- Department of Medicine, Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Ju-Yang Jung
- Department of Rheumatology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (J.K.); (C.-H.S.)
| |
Collapse
|
10
|
Joshi S, López L, Morosi LG, Amadio R, Pachauri M, Bestagno M, Ogar IP, Giacca M, Piperno GM, Vorselen D, Benvenuti F. Tim4 enables large peritoneal macrophages to cross-present tumor antigens at early stages of tumorigenesis. Cell Rep 2024; 43:114096. [PMID: 38607919 DOI: 10.1016/j.celrep.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Receptors controlling the cross-presentation of tumor antigens by macrophage subsets in cancer tissues are poorly explored. Here, we show that TIM4+ large peritoneal macrophages efficiently capture and cross-present tumor-associated antigens at early stages of peritoneal infiltration by ovarian cancer cells. The phosphatidylserine (PS) receptor TIM4 promotes maximal uptake of dead cells or PS-coated artificial targets and triggers inflammatory and metabolic gene programs in combination with cytoskeletal remodeling and upregulation of transcriptional signatures related to antigen processing. At the cellular level, TIM4-mediated engulfment induces nucleation of F-actin around nascent phagosomes, delaying the recruitment of vacuolar ATPase, acidification, and cargo degradation. In vivo, TIM4 deletion blunts induction of early anti-tumoral effector CD8 T cells and accelerates the progression of ovarian tumors. We conclude that TIM4-mediated uptake drives the formation of specialized phagosomes that prolong the integrity of ingested antigens and facilitate cross-presentation, contributing to immune surveillance of the peritoneum.
Collapse
Affiliation(s)
- Sonal Joshi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lucía López
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luciano Gastón Morosi
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roberto Amadio
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Manendra Pachauri
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Bestagno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Ironya Paul Ogar
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria
| | - Mauro Giacca
- Department of Medical, Surgical, and Health Sciences, University of Trieste and International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; King's College London, British Heart Foundation Center of Research Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Giulia Maria Piperno
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Daan Vorselen
- Department of Cell Biology & Immunology, Wageningen University & Research, 6708 PD Wageningen, the Netherlands
| | - Federica Benvenuti
- Cellular Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
11
|
Zhang S, Tamura A, Yui N. Supramolecular nanoarchitectonics of propionylated polyrotaxanes with bulky nitrobenzyl stoppers for light-triggered drug release. RSC Adv 2024; 14:3798-3806. [PMID: 38274164 PMCID: PMC10809058 DOI: 10.1039/d4ra00213j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Cyclodextrin (CD)-based polyrotaxanes (PRXs) are supramolecular polymers comprising multiple CDs mechanically interlocked onto a linear polymer chain by capping the polymer ends with bulky stoppers. Among various PRX derivatives, propionylated PRXs (Pr-PRXs) composed of propionylated α-CD and high molecular-weight poly(ethylene glycol) (PEG) form self-assembled nanoparticles in aqueous solution through hydrophobic interactions. Although Pr-PRX nanoparticles can encapsulate hydrophobic drugs in their hydrophobic domains, their release rate is limited. To improve the efficiency of drug release from Pr-PRX nanoparticles, ultraviolet (UV) light-dissociable Pr-PRXs were designed using 4,5-dimethoxy 2-nitrobenzyl groups as UV-cleavable bulky stopper molecules to facilitate UV-induced drug release. Photodegradable Pr-PRX (Pr-PD-PRX) was synthesized, and its UV-induced dissociation was examined. Pr-PD-PRX was completely dissociated via UV irradiation (365 nm) for 30 min. Additionally, Pr-PD-PRX nanoparticles encapsulating hydrophobic drugs collapsed upon UV irradiation, which promoted the release of the encapsulated drugs compared to non-degradable Pr-PRX nanoparticles. UV irradiation of drug-loaded Pr-PD-PRX nanoparticles resulted in higher cytotoxicity than non-irradiated Pr-PD-PRX and non-degradable Pr-PRX. Consequently, designing photodegradable PRX-based nanoparticles provides new insights into developing photoresponsive drug carriers and smart biomedical materials.
Collapse
Affiliation(s)
- Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
12
|
Wu S, Zhang X, Wang Y, Zheng H, Zhu M. Lipid Metabolism Reprogramming of Immune Cells in Acne: An Update. Clin Cosmet Investig Dermatol 2023; 16:2391-2398. [PMID: 37675181 PMCID: PMC10478778 DOI: 10.2147/ccid.s424478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Acne vulgaris is one of the most widespread skin conditions and the main reason for visiting a dermatologist. Inflammatory response and abnormal infiltrations of immune cells are the main pathogenesis of acne. The increased lipid is the prerequisite for the acne, and the perturbation of lipid composition and content is consistent with the severity of acne. Furthermore, the increased lipid production not only contributes to the occurrence and development of acne, but also sensitizes the function of immune cells. The lipid metabolic dysfunction aggravates the severity of local tissue and provides pro-inflammatory-cytokine cues, which indicates the crucial roles of lipid metabolism on immune cells. Recent advances have demonstrated the lipid metabolism reprogramming of various immune cells in acne lesion. The abnormal lipid accumulation, lipolysis, and fatty acid oxidation lead to the activation and differentiation of immune cells, which promotes the pro-inflammatory cytokines production. Thus, this review discusses the emerging role of lipid metabolism reprogramming of immune cells in the progress of acne and aims to constitute food for others' projects involved in acne research.
Collapse
Affiliation(s)
- Shuhui Wu
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Xi Zhang
- Department of Physical Education and Health Promotion, Hunan University of Technology and Business, Changsha, Hunan, People’s Republic of China
| | - Yun Wang
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Huie Zheng
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| | - Mingfang Zhu
- Department of Dermatology, Key Laboratory of Vascular Biology and Translational Medicine, Education Department of Hunan Province, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
13
|
Wiener JP, Desire S, Garliyev V, Lyssenko III N, Praticò D, Lyssenko NN. Down-Regulation of ABCA7 in Human Microglia, Astrocyte and THP-1 Cell Lines by Cholesterol Depletion, IL-1β and TNFα, or PMA. Cells 2023; 12:2143. [PMID: 37681876 PMCID: PMC10486366 DOI: 10.3390/cells12172143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Adenosine triphosphate-binding cassette transporter subfamily A member 7 (ABCA7) is a major risk factor for Alzheimer's disease. Human neural cell lines were used to investigate the regulation of ABCA7 expression by cholesterol and pro-inflammatory cytokines. Cholesterol was depleted by methyl-β-cyclodextrin, followed by treatment with rosuvastatin to suppress de novo synthesis, while the cells underwent adjustment to low cholesterol. Cholesterol depletion by 50-76% decreased ABCA7 expression by ~40% in C20 microglia and ~21% in A172 astrocytes but had no effect on the protein in SK-N-SH neurons. Cholesterol depletion also suppressed ABCA7 in HMC3 microglia. Previously, cholesterol loss was reported to up-regulate ABCA7 in murine macrophages. ABCA7 was down-regulated during PMA-induced differentiation of human THP-1 monocytes to macrophages. But, cholesterol depletion in THP-1 macrophages by ~71% had no effect on ABCA7. IL-1β and TNFα reduced ABCA7 expression in C20 and HMC3 microglia but not in A172 astrocytes or SK-N-SH neurons. IL-6 did not affect ABCA7 in the neural cells. These findings suggest that ABCA7 is active in regular homeostasis in human neural cells, is regulated by cholesterol in a cell type-dependent manner, i.e., cholesterol depletion down-regulates it in human neuroglia but not neurons, and is incompatible with IL-1β and TNFα inflammatory responses in human microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicholas N. Lyssenko
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
Bauer R, Meyer SP, Raue R, Palmer MA, Guerrero Ruiz VM, Cardamone G, Rösser S, Heffels M, Roesmann F, Wilhelm A, Lütjohann D, Zarnack K, Fuhrmann DC, Widera M, Schmid T, Brüne B. Hypoxia-altered cholesterol homeostasis enhances the expression of interferon-stimulated genes upon SARS-CoV-2 infections in monocytes. Front Immunol 2023; 14:1121864. [PMID: 37377965 PMCID: PMC10291055 DOI: 10.3389/fimmu.2023.1121864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Hypoxia contributes to numerous pathophysiological conditions including inflammation-associated diseases. We characterized the impact of hypoxia on the immunometabolic cross-talk between cholesterol and interferon (IFN) responses. Specifically, hypoxia reduced cholesterol biosynthesis flux and provoked a compensatory activation of sterol regulatory element-binding protein 2 (SREBP2) in monocytes. Concomitantly, a broad range of interferon-stimulated genes (ISGs) increased under hypoxia in the absence of an inflammatory stimulus. While changes in cholesterol biosynthesis intermediates and SREBP2 activity did not contribute to hypoxic ISG induction, intracellular cholesterol distribution appeared critical to enhance hypoxic expression of chemokine ISGs. Importantly, hypoxia further boosted chemokine ISG expression in monocytes upon infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Mechanistically, hypoxia sensitized toll-like receptor 4 (TLR4) signaling to activation by SARS-CoV-2 spike protein, which emerged as a major signaling hub to enhance chemokine ISG induction following SARS-CoV-2 infection of hypoxic monocytes. These data depict a hypoxia-regulated immunometabolic mechanism with implications for the development of systemic inflammatory responses in severe cases of coronavirus disease-2019 (COVID-19).
Collapse
Affiliation(s)
- Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Megan A. Palmer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Giulia Cardamone
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Milou Heffels
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Fabian Roesmann
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexander Wilhelm
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS), Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominik Christian Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Marek Widera
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
15
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
16
|
Supermolecule—Drug Conjugates Based on Acid-Degradable Polyrotaxanes for pH-Dependent Intracellular Release of Doxorubicin. Molecules 2023; 28:molecules28062517. [PMID: 36985487 PMCID: PMC10056152 DOI: 10.3390/molecules28062517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Doxorubicin (DOX)-conjugated acid-degradable polyrotaxanes (PRXs) were designed as supramolecular drug carriers capable of releasing drugs in acidic cellular environments. Acid-degradable PRXs composed of α-cyclodextrin (α-CD) as a cyclic molecule, poly(ethylene glycol) (PEG) as a polymer axis, and N-triphenylmethyl (N-Trt) groups as an acid-labile stopper molecules were synthesized and DOX was conjugated with the threaded α-CDs in the PRXs. Because the acid-induced cleavage of N-Trt groups in PRXs leads to PRX dissociation, the DOX-modified α-CDs were released under acidic conditions (pH 5.0). The cytotoxicity of DOX-conjugated PRXs in colon-26 cells revealed significant cell death for DOX-conjugated PRXs after 48 h of treatment. Confocal laser scanning microscopy (CLSM) analysis revealed that the fluorescence signals derived from DOX-conjugated PRXs were observed in cellular nuclei after 48 h, suggesting that the DOX-modified α-CDs were released and accumulated in cellular nuclei. These results confirmed that acid-degradable PRXs can be utilized as drug carriers capable of releasing drug-modified α-CDs in acidic lysosomes and eliciting cytotoxicity. Overall, acid-degradable PRXs represent a promising supramolecular framework for the delivery and intracellular release of drug-modified α-CDs, and PRX–drug conjugates are expected to contribute to the development of pH-responsive drug carriers for cancer therapy.
Collapse
|
17
|
Bauer R, Brüne B, Schmid T. Cholesterol metabolism in the regulation of inflammatory responses. Front Pharmacol 2023; 14:1121819. [PMID: 36744258 PMCID: PMC9895399 DOI: 10.3389/fphar.2023.1121819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
The importance of biologically active lipid mediators, such as prostanoids, leukotrienes, and specialized pro-resolving mediators, in the regulation of inflammation is well established. While the relevance of cholesterol in the context of atherosclerosis is also widely accepted, the role of cholesterol and its biosynthetic precursors on inflammatory processes is less comprehensively described. In the present mini-review, we summarize the current understanding of the inflammation-regulatory properties of cholesterol and relevant biosynthetic intermediates taking into account the implications of different subcellular distributions. Finally, we discuss the inflammation-regulatory effect of cholesterol homeostasis in the context of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK) Partner Site Frankfurt, Frankfurt, Germany
| |
Collapse
|