1
|
Yang S, Humphries F. Emerging roles of ECSIT in immunity and tumorigenesis. Trends Cell Biol 2025; 35:426-438. [PMID: 39384444 DOI: 10.1016/j.tcb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Mitochondria are signaling hubs that produce immunomodulatory metabolites during the immune response. In addition, mitochondria also facilitate the recruitment and anchoring of immune signaling complexes during infection. Evolutionary conserved signaling intermediate in toll (ECSIT) was initially described as a positive regulator of the transcription factor Nuclear factor kappa-light chain enhancer of activated B cells (NF-κB). More recently, ECSIT has emerged as a regulator of bacterial clearance, mitochondrial reactive oxygen species (mROS), and mitophagy. In addition, ECSIT has been identified as a control point in responding to viral infection and tumorigenesis. Notably, ECSIT loss in different models and cell types has been found to lead to enhanced tumorigenesis. Thus, ECSIT functions as a metabolic tumor suppressor and limits cancer pathogenesis. In this review, we highlight the key functions and crosstalk mechanisms that ECSIT bridges between cell metabolism and immunity and focus then on the antitumor role of ECSIT independent of immunity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Lu X, Tong T, Sun H, Chen Y, Shao Y, Shi P, Que L, Liu L, Zhu G, Chen Q, Li C, Li J, Yang S, Li Y. ECSIT-X4 is Required for Preventing Pressure Overload-Induced Cardiac Hypertrophy via Regulating Mitochondrial STAT3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414358. [PMID: 39746855 PMCID: PMC11848529 DOI: 10.1002/advs.202414358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Indexed: 01/04/2025]
Abstract
Mitochondrial dysfunction is a key factor in exacerbating pressure overload-induced cardiac hypertrophy and is linked to increased morbidity and mortality. ECSIT, a crucial adaptor for inflammation and mitochondrial function, has been reported to express multiple transcripts in various species and tissues, leading to distinct protein isoforms with diverse subcellular localizations and functions. However, whether an unknown ECSIT isoform exists in cardiac cells and its potential role in regulating mitochondrial function and pathological cardiac hypertrophy has remained unclear. This study identified a 42-kDa ECSIT isoform encoded by the transcript variant Ecsit-X4, which is highly expressed in the mitochondria of adult cardiomyocytes but down-regulated in hypertrophic human heart samples and TAC-treated mouse hearts. AAV9-mediated Ecsit-X4 gene therapy, administered either before or after TAC surgery, significantly attenuated cardiac hypertrophy. Cardiomyocyte-specific Ecsit deficiency worsened TAC-induced cardiac hypertrophy, while Ecsit-X4 compensation independently rescued hypertrophic phenotypes in EcsitcKO mice. Mechanistically, ECSIT-X4 localized to the mitochondria and interacted with STAT3, leading to increased STAT3 levels and enhanced serine 727 phosphorylation in cardiomyocyte mitochondria, thereby promoting strong mitochondrial bioenergetics. This study identified a novel transcript variant of ECSIT localized in the mitochondria of adult cardiomyocytes and highlights its potential as a therapeutic target for heart failure.
Collapse
Affiliation(s)
- Xia Lu
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
- Department of CardiologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Tingting Tong
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| | - Haoliang Sun
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029China
| | - Yi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| | - Yongfeng Shao
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029China
| | - Pengxi Shi
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| | - Linli Que
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| | - Li Liu
- Department of Geriatricsthe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029China
| | - Guoqing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| | - Qi Chen
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| | - Chuanfu Li
- Department of SurgeryEast Tennessee State UniversityCampus Box 70575Johnson CityTN37614‐0575USA
| | - Jiantao Li
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| | - Shuo Yang
- Department of ImmunologyKey Laboratory of Immunological Environment and DiseaseState Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingJiangsu211166China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular DiseaseCollaborative Innovation Center for Cardiovascular Disease Translational MedicineSchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsu211166China
| |
Collapse
|
3
|
Zhang T, Fan J, Wen X, Duan X. ECSIT: Biological function and involvement in diseases. Int Immunopharmacol 2024; 143:113524. [PMID: 39488037 DOI: 10.1016/j.intimp.2024.113524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Evolutionary conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, was first identified as a cytosolic adaptor protein in Toll-like receptors (TLRs) signaling-mediated innate immune responses. In the past two decades, studies have expanded the understanding of ECSIT. Nevertheless, there are still large knowledge gaps due to the inadequate number of studies regarding ECSIT, especially an overall review of ECSIT is lacking. Here, we first comprehensively summarize the biological functions of ECSIT with particular focus on innate immune responses and mitochondrial homeostasis. Cumulative studies have reinforced that ECSIT is involved in the regulation of innate immune responses through activating NF-κB signaling and potentiating the Retinoic acid-induced gene Ⅰ (RIG-Ⅰ)/ mitochondrial antiviral- signaling protein (MAVS) pathway-mediated innate antiviral immunity. In addition, ECSIT determines the mitochondrial morphology and function including mitochondrial complex Ⅰ (CⅠ) assembly, mitochondrial reactive oxygen species (mROS) production, mitochondrial membrane potential (MMP) maintenance and mitochondrial quality control. Owing to these distinct functions, ECSIT is involved in the etiology and pathology of human diseases including Alzheimer's disease (AD), cardiac hypertrophy, musculoskeletal disintegration, cancer, extranodal natural killer/T cell lymphoma (ENKTL) and ischemic stroke. Collectively, the roles and mechanisms of ECSIT under physiological and pathological conditions are critically discussed to provide a clearer view of the therapeutic potential of ECSIT.
Collapse
Affiliation(s)
- Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China.
| | - Jingcheng Fan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xin Wen
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| | - Xuemei Duan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai 200438, PR China
| |
Collapse
|
4
|
Rai V. Transcriptomics Revealed Differentially Expressed Transcription Factors and MicroRNAs in Human Diabetic Foot Ulcers. Proteomes 2024; 12:32. [PMID: 39585119 PMCID: PMC11587442 DOI: 10.3390/proteomes12040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
Non-healing diabetic foot ulcers (DFUs) not only significantly increase morbidity and mortality but also cost a lot and drain healthcare resources. Persistent inflammation, decreased angiogenesis, and altered extracellular matrix remodeling contribute to delayed healing or non-healing. Recent studies suggest an increasing trend of DFUs in diabetes patients, and non-healing DFYs increase the incidence of amputation. Despite the current treatment with offloading, dressing, antibiotics use, and oxygen therapy, the risk of amputation persists. Thus, there is a need to understand the molecular and cellular factors regulating healing in DFUs. The ongoing research based on proteomics and transcriptomics has predicted multiple potential targets, but there is no definitive therapy to enhance healing in chronic DFUs. Increased or decreased expression of various proteins encoded by genes, whose expression transcriptionally and post-transcriptionally is regulated by transcription factors (TFs) and microRNAs (miRs), regulates DFU healing. For this study, RNA sequencing was conducted on 20 DFU samples of ulcer tissue and non-ulcerated nearby healthy tissues. The IPA analysis revealed various activated and inhibited transcription factors and microRNAs. Further network analysis revealed interactions between the TFs and miRs and the molecular targets of these TFs and miRs. The analysis revealed 30 differentially expressed transcription factors (21 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and seven miRs, including mir-486, mir-324, mir-23, mir-186, mir-210, mir-199, and mir-338 in upstream regulators (p < 0.05), while causal network analysis (p < 0.05) revealed 28 differentially expressed TFs (19 activated and 9 inhibited), two translational regulators (RPSA and EIF4G2), and five miRs including mir-155, mir-486, mir-324, mir-210, and mir-1225. The protein-protein interaction analysis revealed the interaction of various novel proteins with the proteins involved in regulating DFU pathogenesis and healing. The results of this study highlight many activated and inhibited novel TFs and miRs not reported in the literature so far, as well as the targeted molecules. Since proteins are the functional units during biological processes, alteration of gene expression may result in different proteoforms and protein species, making the wound microenvironment a complex protein interaction (proteome complexity). Thus, investigating the effects of these TFs and miRs on protein expression using proteomics and combining these results with transcriptomics will help advance research on DFU healing and delineate potential therapeutic strategies.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766-1854, USA
| |
Collapse
|
5
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
6
|
Anderson CL, Brown KA, North RJ, Walters JK, Kaska ST, Wolff MR, Kamp TJ, Ge Y, Eckhardt LL. Global Proteomic Analysis Reveals Alterations in Differentially Expressed Proteins between Cardiopathic Lamin A/C Mutations. J Proteome Res 2024; 23:1970-1982. [PMID: 38718259 PMCID: PMC11218822 DOI: 10.1021/acs.jproteome.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.
Collapse
Affiliation(s)
- Corey L. Anderson
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Ryan J. North
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Janay K. Walters
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Sara T. Kaska
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Mathew R. Wolff
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Timothy J. Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Lee L. Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
7
|
Yang Y, Wang Y, Wang Z, Yan H, Gong Y, Hu Y, Jiang Y, Wen S, Xu F, Wang B, Humphries F, Chen Y, Wang X, Yang S. ECSIT facilitates memory CD8 + T cell development by mediating fumarate synthesis during viral infection and tumorigenesis. Nat Cell Biol 2024; 26:450-463. [PMID: 38326554 DOI: 10.1038/s41556-024-01351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Memory CD8+ T cells play a crucial role in infection and cancer and mount rapid responses to repeat antigen exposure. Although memory cell transcriptional programmes have been previously identified, the regulatory mechanisms that control the formation of CD8+ T cells have not been resolved. Here we report ECSIT as an essential mediator of memory CD8+ T cell differentiation. Ablation of ECSIT in T cells resulted in loss of fumarate synthesis and abrogated TCF-1 expression via demethylation of the TCF-1 promoter by the histone demethylase KDM5, thereby impairing memory CD8+ T cell development in a cell-intrinsic manner. In addition, ECSIT expression correlated positively with stem-like memory progenitor exhausted CD8+ T cells and the survival of patients with cancer. Our study demonstrates that ECSIT-mediated fumarate synthesis stimulates TCF-1 activity and memory CD8+ T cell development during viral infection and tumorigenesis and highlights the utility of therapeutic fumarate analogues and PD-L1 inhibition for tumour immunotherapy.
Collapse
Affiliation(s)
- Yongbing Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Yanan Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhongcheng Wang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Huanyu Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yi Gong
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yingchao Hu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuying Jiang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shuang Wen
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. The Genetic Diversity of Stallions of Different Breeds in Russia. Genes (Basel) 2023; 14:1511. [PMID: 37510415 PMCID: PMC10378902 DOI: 10.3390/genes14071511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The specifics of breeding and selection significantly affect genetic diversity and variability within a breed. We present the data obtained from the genetic analysis of 21 thoroughbred and warmblood horse breeds. The most detailed information is described from the following breeds: Arabian, Trakehner, French Trotter, Standardbred, and Soviet Heavy Horse. The analysis of 509,617 SNP variants in 87 stallions from 21 populations made it possible to estimate the genetic diversity at the genome-wide level and distinguish the studied horse breeds from each other. In this study, we searched for heterozygous and homozygous ROH regions, evaluated inbreeding using FROH analysis, and generated a population structure using Admixture 1.3 software. Our findings indicate that the Arabian breed is an ancestor of many horse breeds. The study of the full-genome architectonics of breeds is of great practical importance for preserving the genetic characteristics of breeds and managing breeding. Studies were carried out to determine homozygous regions in individual breeds and search for candidate genes in these regions. Fifty-six candidate genes for the influence of selection pressure were identified. Our research reveals genetic diversity consistent with breeding directions and the breeds' history of origin.
Collapse
Affiliation(s)
- Natalia Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Elena Nikitkina
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Yuri Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Olga Mitrofanova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Anna Ryabova
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, 55A, Moskovskoye Sh., Tyarlevo, Pushkin, St. Petersburg 196625, Russia
| | - Mikhail Atroshchenko
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Oksana Makhmutova
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| | - Alexander Zaitsev
- All-Russian Research Institute of Horse Breeding (ARRIH), Ryazan Region, Divovo, Rybnovskij District 391105, Russia
| |
Collapse
|
9
|
Qi Z, Pi X, Xu Y, Zhang Q, Wangkahart E, Meng F, Wang Z. Molecular characterization of the evolutionary conserved signaling intermediate in Toll pathways (ECSIT) of soiny mullet (Liza haematocheila). FISH & SHELLFISH IMMUNOLOGY 2022; 130:79-85. [PMID: 36087818 DOI: 10.1016/j.fsi.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Mammalian evolutionary conserved signaling intermediate in Toll pathways (ECSIT) is an important intracellular protein that involves in innate immunity, embryogenesis, and assembly or stability of the mitochondrial complex I. In the present study, the ECSIT was characterized in soiny mullet (Liza haematocheila). The full-length cDNA of mullet ECSIT was 1860 bp, encoding 449 amino acids. Mullet ECSIT shared 60.4%∼78.2% sequence identities with its teleost counterparts. Two conserved protein domains, ECSIT domain and C-terminal domain, were found in mullet ECSIT. Realtime qPCR analysis revealed that mullet ECSIT was distributed in all examined tissues with high expressions in spleen, head kidney (HK) and gill. Further analysis showed that mullet ECSIT in spleen was up-regulated from 6 h to 48 h after Streptococcus dysgalactiae infection. In addition, the co-immunoprecipitation (co-IP) assay confirmed that mullet ECSIT could interact with tumor necrosis factor receptor-associated factor 6 (TRAF6). Molecular docking revealed that the polar interaction and hydrophobic interaction play crucial roles in the forming of ECSIT-TRAF6 complex. The resides of mullet ECSIT that involved in the interaction between ECSIT and TRAF6 were Arg107, Glu113, Phe114, Glu124, Lys120 and Lys121, which mainly located in the ECSIT domain. Our results demonstrated that mullet ECSIT involved in the immune defense against bacterial and regulation of TLRs signaling pathway by interaction with TRAF6. To the best of our knowledge, this is the first report on ECSIT of soiny mullet, which deepen the understanding of ECSIT and its functions in the immune response of teleosts.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China.
| | - Xiangyu Pi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Yang Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham, Thailand
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
10
|
Chaitanya NSN, Tammineni P, Nagaraju GP, Reddy ABM. Pleiotropic roles of evolutionarily conserved signaling intermediate in toll pathway (ECSIT) in pathophysiology. J Cell Physiol 2022; 237:3496-3504. [DOI: 10.1002/jcp.30832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Nyshadham S. N. Chaitanya
- Department of Animal Biology, School of Life Sciences University of Hyderabad Hyderabad Telangana India
| | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences University of Hyderabad Hyderabad Telangana India
| | | | - Aramati BM Reddy
- Department of Animal Biology, School of Life Sciences University of Hyderabad Hyderabad Telangana India
| |
Collapse
|