1
|
Guiraud A, Couturier N, Christin E, Castellano L, Daura M, Kretz-Remy C, Janin A, Ghasemizadeh A, Del Carmine P, Monteiro L, Rotard L, Sanchez C, Jacquemond V, Burny C, Janczarski S, Durieux AC, Arnould D, Romero NB, Bui MT, Buchman VL, Julien L, Bitoun M, Gache V. SH3KBP1 promotes skeletal myofiber formation and functionality through ER/SR architecture integrity. EMBO Rep 2025; 26:2166-2191. [PMID: 40065183 PMCID: PMC12019163 DOI: 10.1038/s44319-025-00413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively. Additionally, in mature muscle fibers, SH3KBP1 contributes to the formation of triads and modulates the Excitation-Contraction Coupling process efficiency. In Dnm2R465W/+ mice, a model for centronuclear myopathy (CNM), depletion of Sh3kbp1 expression aggravates CNM-related atrophic phenotypes and impaired autophagic flux in mutant skeletal muscle fiber. Altogether, our results identify SH3KBP1 as a new regulator of myofiber integrity and function.
Collapse
MESH Headings
- Animals
- Mice
- Muscle Fibers, Skeletal/metabolism
- Dynamin II/metabolism
- Dynamin II/genetics
- Sarcoplasmic Reticulum/metabolism
- Humans
- Endoplasmic Reticulum/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Muscle, Skeletal/metabolism
- Protein Binding
- Myoblasts/metabolism
Collapse
Affiliation(s)
- Alexandre Guiraud
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Nathalie Couturier
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Emilie Christin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Léa Castellano
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Marine Daura
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Carole Kretz-Remy
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alexandre Janin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alireza Ghasemizadeh
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Peggy Del Carmine
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Laloe Monteiro
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Ludivine Rotard
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Colline Sanchez
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Vincent Jacquemond
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Claire Burny
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Stéphane Janczarski
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Anne-Cécile Durieux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - David Arnould
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - Norma Beatriz Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Mai Thao Bui
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Laura Julien
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Vincent Gache
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Meizoso-Huesca A, Lamboley CR, Krycer JR, Hodson MP, Hudson JE, Launikonis BS. Muscle-specific Ryanodine receptor 1 properties underlie limb-girdle muscular dystrophy 2B/R2 progression. Nat Commun 2025; 16:3056. [PMID: 40155594 PMCID: PMC11953303 DOI: 10.1038/s41467-025-58393-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Ryanodine receptor 1 Ca2+ leak is a signal in skeletal muscle, but chronic leak can underlie pathology. Here we show that in healthy male mouse, limb-girdle muscle presents higher sympathetic input, elevated ryanodine receptor 1 basal phosphorylation, Ca2+ leak and mitochondrial Ca2+ content compared to distal leg muscles. These regional differences are consistent with heat generation in resting muscle to maintain core temperature. The dysferlin-null mouse develops severe pathology in the limb-girdle but not leg muscles. Absence of dysferlin disrupts dihydropyridine receptors' inhibitory control over ryanodine receptor 1 leak, synergistically increasing leak through the already phosphorylated channel of limb-girdle muscle. This alters Ca2+ handling and distribution leading to reactive oxygen species production prior to disease onset. With age, oxidation of Ca2+ -handling proteins in dysferlin-null limb-girdle muscle alters basal Ca2+ movements. Our results show that muscle-specific pathology in dysferlin-null mice is linked to increased ryanodine receptor 1 Ca2+ leak.
Collapse
Affiliation(s)
- Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Cedric R Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - James R Krycer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mark P Hodson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Launikonis BS, Murphy RM. From Muscle-Based Nonshivering Thermogenesis to Malignant Hyperthermia in Mammals. Annu Rev Physiol 2025; 87:131-150. [PMID: 39303272 DOI: 10.1146/annurev-physiol-022724-105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
For physiological processes in the vital organs of eutherian mammals to function, it is important to maintain constant core body temperature at ∼37°C. Mammals generate heat internally by thermogenesis. The focus of this review is on heat generated in resting skeletal muscles, using the same cellular components that muscles use to regulate cytoplasmic calcium concentrations [Ca2+] and contraction. Key to this process, known as muscle-based nonshivering thermogenesis (MB-NST), are tiny Ca2+ movements and associated ATP turnover coordinated by the plasma membrane, sarcoplasmic reticulum (SR), and the mitochondria. MB-NST has made mammals with gain-of-function SR ryanodine receptor (RyR) variants vulnerable to excessive heat generation that can be potentially lethal, known as malignant hyperthermia. Studies of RyR variants using recently developed techniques have advanced our understanding of MB-NST.
Collapse
Affiliation(s)
- Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia;
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia;
| |
Collapse
|
4
|
Ganjayi MS, Frank SW, Krauss TA, York ML, Bloch RJ, Baumann CW. Skeletal muscle adaptations following eccentric contractions are not mediated by keratin 18. J Appl Physiol (1985) 2024; 137:903-909. [PMID: 39169838 PMCID: PMC11486471 DOI: 10.1152/japplphysiol.00496.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
The molecular mechanisms that drive muscle adaptations after eccentric exercise training are multifaceted and likely impacted by age. Previous studies have reported that many genes and proteins respond differently in young and older muscles following training. Keratin 18 (Krt18), a cytoskeletal protein involved in force transduction and organization, was found to be upregulated after muscles performed repeated bouts of eccentric contractions, with higher levels observed in young muscle compared with older muscle. Therefore, the purpose of this study was to determine if Krt18 mediates skeletal muscle adaptations following eccentric exercise training. The anterior crural muscles of Krt18 knockout (KO) and wild-type (WT) mice were subjected to either a single bout or repeated bouts of eccentric contractions, with isometric torque assessed across the initial and final bouts. Functionally, Krt18 KO and WT mice did not differ prior to performing any eccentric contractions (P ≥ 0.100). Muscle strength (tetanic isometric torques) and the ability to adapt to eccentric exercise training were also consistent across strains at all time points (P ≥ 0.169). Stated differently, immediate strength deficits and the recovery of strength following a single bout or multiple bouts of eccentric contractions were similar between Krt18 KO and WT mice. In summary, the absence of Krt18 does not impede the muscle's ability to adapt to repeated eccentric contractions, suggesting it is not essential for exercise-induced remodeling.NEW & NOTEWORTHY The molecular processes that underlie the changes in skeletal muscle following eccentric exercise training are complex and involve multiple factors. Our findings indicate that Krt18 may not play a significant role in muscle adaptations following eccentric exercise training, likely due to its low expression in skeletal muscle. These results underscore the complexity of the molecular mechanisms that contribute to muscle plasticity and highlight the need for further research in this area.
Collapse
Affiliation(s)
- Muni Swamy Ganjayi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
| | - Samuel W Frank
- Department of Exercise and Rehabilitation Sciences, College of Health and Human Services, University of Toledo, Toledo, Ohio, United States
| | - Thomas A Krauss
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Michael L York
- School of Applied Health Science and Wellness, Division of Exercise Physiology, Ohio University, Athens, Ohio, United States
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, United States
| | - Cory W Baumann
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
| |
Collapse
|
5
|
Nyström JH, Heikkilä TRH, Thapa K, Pulli I, Törnquist K, Toivola DM. Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism. Am J Physiol Gastrointest Liver Physiol 2024; 327:G438-G453. [PMID: 38860856 PMCID: PMC11427106 DOI: 10.1152/ajpgi.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.
Collapse
Affiliation(s)
- Joel H Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Taina R H Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Keshav Thapa
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Barbaro F, Conza GD, Quartulli FP, Quarantini E, Quarantini M, Zini N, Fabbri C, Mosca S, Caravelli S, Mosca M, Vescovi P, Sprio S, Tampieri A, Toni R. Correlation between tooth decay and insulin resistance in normal weight males prompts a role for myo-inositol as a regenerative factor in dentistry and oral surgery: a feasibility study. Front Bioeng Biotechnol 2024; 12:1374135. [PMID: 39144484 PMCID: PMC11321979 DOI: 10.3389/fbioe.2024.1374135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Background In an era of precision and stratified medicine, homogeneity in population-based cohorts, stringent causative entry, and pattern analysis of datasets are key elements to investigate medical treatments. Adhering to these principles, we collected in vivo and in vitro data pointing to an insulin-sensitizing/insulin-mimetic effect of myo-inositol (MYO) relevant to cell regeneration in dentistry and oral surgery. Confirmation of this possibility was obtained by in silico analysis of the relation between in vivo and in vitro results (the so-called bed-to-benchside reverse translational approach). Results Fourteen subjects over the 266 screened were young adult, normal weight, euglycemic, sedentary males having normal appetite, free diet, with a regular three-times-a-day eating schedule, standard dental hygiene, and negligible malocclusion/enamel defects. Occlusal caries were detected by fluorescence videoscanning, whereas body composition and energy balance were estimated with plicometry, predictive equations, and handgrip. Statistically significant correlations (Pearson r coefficient) were found between the number of occlusal caries and anthropometric indexes predicting insulin resistance (IR) in relation to the abdominal/visceral fat mass, fat-free mass, muscular strength, and energy expenditure adjusted to the fat and muscle stores. This indicated a role for IR in affecting dentin reparative processes. Consistently, in vitro administration of MYO to HUVEC and Swiss NIH3T3 cells in concentrations corresponding to those administered in vivo to reduce IR resulted in statistically significant cell replication (ANOVA/Turkey tests), suggesting that MYO has the potential to counteract inhibitory effects of IR on dental vascular and stromal cells turnover. Finally, in in silico experiments, quantitative evaluation (WOE and information value) of a bioinformatic Clinical Outcome Pathway confirmed that in vitro trophic effects of MYO could be transferred in vivo with high predictability, providing robust credence of its efficacy for oral health. Conclusion Our reverse bed-to-benchside data indicate that MYO might antagonize the detrimental effects of IR on tooth decay. This provides feasibility for clinical studies on MYO as a regenerative factor in dentistry and oral surgery, including dysmetabolic/aging conditions, bone reconstruction in oral destructive/necrotic disorders, dental implants, and for empowering the efficacy of a number of tissue engineering methodologies in dentistry and oral surgery.
Collapse
Affiliation(s)
- Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Francesca Pia Quartulli
- Department of Medicine and Surgery - DIMEC, Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Enrico Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Marco Quarantini
- Odontostomatology Unit, and R&D Center for Artificial Intelligence in Biomedicine and Odontostomatology (A.I.B.O), Galliera Medical Center, San Venanzio di Galliera, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, Bologna, Italy
| | - Celine Fabbri
- Course on Odontostomatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- O.U. Orthopedics Bentivoglio, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Vescovi
- Department of Medicine and Surgery - DIMEC, Odontostomatology Section, University of Parma, Parma, Italy
| | | | | | - Roberto Toni
- CNR - ISSMC, Faenza, Italy
- Academy of Sciences of the Institute of Bologna, Section IV - Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic - OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and R&D Center A.I.B.O, Centro Medico Galliera, San Venanzio di Galliera, Italy
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
Di Fonso A, Serano M, He M, Leigh J, Rastelli G, Dirksen RT, Protasi F, Pietrangelo L. Constitutive, Muscle-Specific Orai1 Knockout Results in the Incomplete Assembly of Ca 2+ Entry Units and a Reduction in the Age-Dependent Formation of Tubular Aggregates. Biomedicines 2024; 12:1651. [PMID: 39200116 PMCID: PMC11351919 DOI: 10.3390/biomedicines12081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous cellular mechanism that cells use to activate extracellular Ca2+ entry when intracellular Ca2+ stores are depleted. In skeletal muscle, SOCE occurs within Ca2+ entry units (CEUs), intracellular junctions between stacks of SR membranes containing STIM1 and transverse tubules (TTs) containing ORAI1. Gain-of-function mutations in STIM1 and ORAI1 are linked to tubular aggregate (TA) myopathy, a disease characterized by the atypical accumulation of tubes of SR origin. Moreover, SOCE and TAs are increased in the muscles of aged male mice. Here, we assessed the longitudinal effects (from 4-6 months to 10-14 months of age) of constitutive, muscle-specific Orai1 knockout (cOrai1 KO) on skeletal muscle structure, function, and the assembly of TAs and CEUs. The results from these studies indicate that cOrai1 KO mice exhibit a shorter lifespan, reduced body weight, exercise intolerance, decreased muscle-specific force and rate of force production, and an increased number of structurally damaged mitochondria. In addition, electron microscopy analyses revealed (i) the absence of TAs with increasing age and (ii) an increased number of SR stacks without adjacent TTs (i.e., incomplete CEUs) in cOrai1 KO mice. The absence of TAs is consistent with TAs being formed as a result of excessive ORAI1-dependent Ca2+ entry.
Collapse
Affiliation(s)
- Alessia Di Fonso
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
| | - Matteo Serano
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Neuroscience and Clinical Sciences (DNISC), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
8
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. J Clin Invest 2024; 134:e170317. [PMID: 38300705 PMCID: PMC10977986 DOI: 10.1172/jci170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.
Collapse
Affiliation(s)
| | - Chaojian Wang
- Department of Medicine
- Duke Cardiovascular Research Center
| | | | | | | | - Eda Yildirim
- Department of Cell Biology
- Duke Cancer Institute, Duke University Medical Center, and
| | - Paul Rosenberg
- Department of Medicine
- Duke Cardiovascular Research Center
- Duke Molecular Physiology Institute, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Datta S, Antonio BM, Zahler NH, Theile JW, Krafte D, Zhang H, Rosenberg PB, Chaves AB, Muoio DM, Zhang G, Silas D, Li G, Soldano K, Nystrom S, Ferreira D, Miller SE, Bain JR, Muehlbauer MJ, Ilkayeva O, Becker TC, Hohmeier HE, Newgard CB, Olabisi OA. APOL1-mediated monovalent cation transport contributes to APOL1-mediated podocytopathy in kidney disease. J Clin Invest 2024; 134:e172262. [PMID: 38227370 PMCID: PMC10904047 DOI: 10.1172/jci172262] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Somenath Datta
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | | | | | | | | | - Hengtao Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Paul B. Rosenberg
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alec B. Chaves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Guofang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Daniel Silas
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Guojie Li
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Karen Soldano
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Sarah Nystrom
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| | - Davis Ferreira
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - James R. Bain
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael J. Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas C. Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hans-Ewald Hohmeier
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher B. Newgard
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Opeyemi A. Olabisi
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, North Carolina, USA
- Duke University School of Medicine, Department of Medicine, Division of Nephrology, Durham, North Carolina, USA
| |
Collapse
|
10
|
Schwarz N, Leube RE. Plasticity of cytoplasmic intermediate filament architecture determines cellular functions. Curr Opin Cell Biol 2023; 85:102270. [PMID: 37918274 DOI: 10.1016/j.ceb.2023.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Cytoplasmic intermediate filaments endow cells with mechanical stability. They are subject to changes in morphology and composition if needed. This remodeling encompasses entire cells but can also be restricted to specific intracellular regions. Intermediate filaments thereby support spatially and temporally defined cell type-specific functions. This review focuses on recent advances in our understanding of how intermediate filament dynamics affect the underlying regulatory pathways. We will elaborate on the role of intermediate filaments for the formation and maintenance of surface specializations, cell migration, contractility, organelle positioning, nucleus protection, stress responses and axonal conduction velocity. Together, the selected examples highlight the modulatory role of intermediate filament plasticity for multiple cellular functions.
Collapse
Affiliation(s)
- Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
11
|
Hewitt T, Alural B, Tilak M, Wang J, Becke N, Chartley E, Perreault M, Haggarty SJ, Sheridan SD, Perlis RH, Jones N, Mellios N, Lalonde J. Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca 2+ entry and accelerated differentiation. Mol Psychiatry 2023; 28:5237-5250. [PMID: 37402854 DOI: 10.1038/s41380-023-02152-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
While most of the efforts to uncover mechanisms contributing to bipolar disorder (BD) focused on phenotypes at the mature neuron stage, little research has considered events that may occur during earlier timepoints of neurodevelopment. Further, although aberrant calcium (Ca2+) signaling has been implicated in the etiology of this condition, the possible contribution of store-operated Ca2+ entry (SOCE) is not well understood. Here, we report Ca2+ and developmental dysregulations related to SOCE in BD patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells (BD-NPCs) and cortical-like glutamatergic neurons. First, using a Ca2+ re-addition assay we found that BD-NPCs and neurons had attenuated SOCE. Intrigued by this finding, we then performed RNA-sequencing and uncovered a unique transcriptome profile in BD-NPCs suggesting accelerated neurodifferentiation. Consistent with these results, we measured a slower rate of proliferation, increased neurite outgrowth, and decreased size in neurosphere formations with BD-NPCs. Also, we observed decreased subventricular areas in developing BD cerebral organoids. Finally, BD NPCs demonstrated high expression of the let-7 family while BD neurons had increased miR-34a, both being microRNAs previously implicated in neurodevelopmental deviations and BD etiology. In summary, we present evidence supporting an accelerated transition towards the neuronal stage in BD-NPCs that may be indicative of early pathophysiological features of the disorder.
Collapse
Affiliation(s)
- Tristen Hewitt
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Begüm Alural
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Natalina Becke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Ellis Chartley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Stephen J Haggarty
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
12
|
Pearce L, Meizoso-Huesca A, Seng C, Lamboley CR, Singh DP, Launikonis BS. Ryanodine receptor activity and store-operated Ca 2+ entry: Critical regulators of Ca 2+ content and function in skeletal muscle. J Physiol 2023; 601:4183-4202. [PMID: 35218018 DOI: 10.1113/jp279512] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation-contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+ ] of the junctional SR terminal cisternae ([Ca2+ ]jSR ) depletes. [Ca2+ ]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+ ]jSR with RyR1 activity probably depends on the SR Ca2+ -buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in-phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in-phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.
Collapse
Affiliation(s)
- Luke Pearce
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Crystal Seng
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Cedric R Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel P Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Di Conza G, Barbaro F, Zini N, Spaletta G, Remaggi G, Elviri L, Mosca S, Caravelli S, Mosca M, Toni R. Woven bone formation and mineralization by rat mesenchymal stromal cells imply increased expression of the intermediate filament desmin. Front Endocrinol (Lausanne) 2023; 14:1234569. [PMID: 37732119 PMCID: PMC10507407 DOI: 10.3389/fendo.2023.1234569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Background Disordered and hypomineralized woven bone formation by dysfunctional mesenchymal stromal cells (MSCs) characterize delayed fracture healing and endocrine -metabolic bone disorders like fibrous dysplasia and Paget disease of bone. To shed light on molecular players in osteoblast differentiation, woven bone formation, and mineralization by MSCs we looked at the intermediate filament desmin (DES) during the skeletogenic commitment of rat bone marrow MSCs (rBMSCs), where its bone-related action remains elusive. Results Monolayer cultures of immunophenotypically- and morphologically - characterized, adult male rBMSCs showed co-localization of desmin (DES) with vimentin, F-actin, and runx2 in all cell morphotypes, each contributing to sparse and dense colonies. Proteomic analysis of these cells revealed a topologically-relevant interactome, focused on cytoskeletal and related enzymes//chaperone/signalling molecules linking DES to runx2 and alkaline phosphatase (ALP). Osteogenic differentiation led to mineralized woven bone nodules confined to dense colonies, significantly smaller and more circular with respect to controls. It significantly increased also colony-forming efficiency and the number of DES-immunoreactive dense colonies, and immunostaining of co-localized DES/runx-2 and DES/ALP. These data confirmed pre-osteoblastic and osteoblastic differentiation, woven bone formation, and mineralization, supporting DES as a player in the molecular pathway leading to the osteogenic fate of rBMSCs. Conclusion Immunocytochemical and morphometric studies coupled with proteomic and bioinformatic analysis support the concept that DES may act as an upstream signal for the skeletogenic commitment of rBMSCs. Thus, we suggest that altered metabolism of osteoblasts, woven bone, and mineralization by dysfunctional BMSCs might early be revealed by changes in DES expression//levels. Non-union fractures and endocrine - metabolic bone disorders like fibrous dysplasia and Paget disease of bone might take advantage of this molecular evidence for their early diagnosis and follow-up.
Collapse
Affiliation(s)
- Giusy Di Conza
- Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Nicoletta Zini
- Unit of Bologna, National Research Council of Italy (CNR) Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Spaletta
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Roberto Toni
- Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic, Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies (OSTEONET) Unit, Galliera Medical Center (GMC), San Venanzio di Galliera, BO, Italy
- Section IV - Medical Sciences, Academy of Sciences of the Institute of Bologna, Bologna, Italy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center - Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
14
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539279. [PMID: 37205564 PMCID: PMC10187192 DOI: 10.1101/2023.05.03.539279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca 2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle where it is best known for its role in store operated Ca 2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focus on a gain of function mutation that occurs in humans and mice (STIM1 +/D84G mice) where muscles exhibit constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca 2+ transients, SR Ca 2+ content or excitation contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1 +/D84G muscle disrupts nuclear-cytosolic coupling causing severe derangement in nuclear architecture, DNA damage, and altered lamina A associated gene expression. Functionally, we found D84G STIM1 reduced the transfer of Ca 2+ from the cytosol to the nucleus in myoblasts resulting in a reduction of [Ca 2+ ] N . Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca 2+ signaling to nuclear stability in skeletal muscle.
Collapse
|
15
|
Bragato C, Pistocchi A, Bellipanni G, Confalonieri S, Balciunie J, Monastra FM, Carra S, Vitale G, Mantecca P, Cotelli F, Gaudenzi G. Zebrafish dnm1a gene plays a role in the formation of axons and synapses in the nervous tissue. J Neurosci Res 2023. [PMID: 37031448 DOI: 10.1002/jnr.25197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.
Collapse
Affiliation(s)
- Cinzia Bragato
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Jorune Balciunie
- Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Federica Maria Monastra
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Silvia Carra
- Laboratory of Endocrine and Metabolic Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Giovanni Vitale
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, POLARIS Research Center, University of Milano-Bicocca, Milan, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
16
|
Searching for Mechanisms Underlying the Assembly of Calcium Entry Units: The Role of Temperature and pH. Int J Mol Sci 2023; 24:ijms24065328. [PMID: 36982401 PMCID: PMC10049691 DOI: 10.3390/ijms24065328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a mechanism that allows muscle fibers to recover external Ca2+, which first enters the cytoplasm andthen, via SERCA pump, also refills the depleted intracellular stores (i.e., the sarcoplasmic reticulum, SR). We recently discovered that SOCE is mediated by Calcium Entry Units (CEUs), intracellular junctions formed by: (i) SR stacks containing STIM1; and (ii) I-band extensions of the transverse tubule (TT) containing Orai1. The number and size of CEUs increase during prolonged muscle activity, though the mechanisms underlying exercise-dependent formation of new CEUs remain to be elucidated. Here, we first subjected isolated extensor digitorum longus (EDL) muscles from wild type mice to an exvivo exercise protocol and verified that functional CEUs can assemble alsoin the absence of blood supply and innervation. Then, we evaluated whetherparameters that are influenced by exercise, such as temperature and pH, may influence the assembly of CEUs. Results collected indicate that higher temperature (36 °C vs. 25 °C) and lower pH (7.2 vs. 7.4) increase the percentage of fibers containing SR stacks, the n. of SR stacks/area, and the elongation of TTs at the I band. Functionally, assembly of CEUs at higher temperature (36 °C) or at lower pH (7.2) correlates with increased fatigue resistance of EDL muscles in the presence of extracellular Ca2+. Taken together, these results indicate that CEUs can assemble in isolated EDL muscles and that temperature and pH are two of the possible regulators of CEU formation.
Collapse
|
17
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
18
|
Kittelberger JM, Franzini-Armstrong C, Boncompagni S. Ca 2+ entry units in a superfast fish muscle. Front Physiol 2022; 13:1036594. [PMID: 36388096 PMCID: PMC9649577 DOI: 10.3389/fphys.2022.1036594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/13/2022] [Indexed: 05/07/2025] Open
Abstract
Over the past two decades, mounting evidence has demonstrated that a mechanism known as store-operated Ca2+ entry (SOCE) plays a crucial role in sustaining skeletal muscle contractility by facilitating Ca2+ influx from the extracellular space during sarcoplasmic reticulum (SR) Ca2+ depletion. We recently demonstrated that, in exercised fast-twitch muscle from mice, the incidence of Ca2+ entry units (CEUs), newly described intracellular junctions between dead-end longitudinal transverse tubular (T-tubule) extensions and stacks of sarcoplasmic reticulum (SR) flat cisternae, strictly correlate with both the capability of fibers to maintain contractions during fatigue and enhanced Ca2+ influx via SOCE. Here, we tested the broader relevance of this result across vertebrates by searching for the presence of CEUs in the vocal muscles of a teleost fish adapted for extended, high-frequency activity. Specifically, we examined active vs. inactive superfast sonic muscles of plainfin midshipman (Porichthys notatus). Interestingly, muscles from actively humming territorial males had a much higher incidence of CEU SR stacks relative to territorial males that were not actively vocalizing, strengthening the concept that assembly of these structures is dynamic and use-dependent, as recently described in exercised muscles from mice. Our results support the hypothesis that CEUs represent a conserved mechanism, across vertebrates, for enabling high levels of repetitive muscle activity, and also provide new insights into the adaptive mechanisms underlying the unique properties of superfast midshipman sonic muscles.
Collapse
Affiliation(s)
- J. Matthew Kittelberger
- Department of Biology, Gettysburg College, Gettysburg, PA, United States
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Simona Boncompagni
- Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Center for Advanced Studies and Technology (CAST), University G. d' Annunzio (Ud'A) of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
19
|
Wilson RJ, Lyons SP, Koves TR, Bryson VG, Zhang H, Li T, Crown SB, Ding JD, Grimsrud PA, Rosenberg PB, Muoio DM. Disruption of STIM1-mediated Ca 2+ sensing and energy metabolism in adult skeletal muscle compromises exercise tolerance, proteostasis, and lean mass. Mol Metab 2022; 57:101429. [PMID: 34979330 PMCID: PMC8814391 DOI: 10.1016/j.molmet.2021.101429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear. METHODS Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis. RESULTS This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis. CONCLUSION These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.
Collapse
Affiliation(s)
- Rebecca J Wilson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Scott P Lyons
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Geriatrics, Duke University School of Medicine, Durham, NC 27705, USA
| | - Victoria G Bryson
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Hengtao Zhang
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - TianYu Li
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Scott B Crown
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA
| | - Jin-Dong Ding
- Department of Medicine, Division of Ophthalmology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA
| | - Paul B Rosenberg
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University School of Medicine, Durham, NC 27705, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA.
| |
Collapse
|