1
|
Hua S, Latha K, Marlin R, Benmeziane K, Bossevot L, Langlois S, Relouzat F, Dereuddre-Bosquet N, Le Grand R, Cavarelli M. Intestinal immunological events of acute and resolved SARS-CoV-2 infection in non-human primates. Mucosal Immunol 2024; 17:25-40. [PMID: 37827377 DOI: 10.1016/j.mucimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023]
Abstract
SARS-CoV-2 infection has been associated with intestinal mucosal barrier damage, leading to microbial and endotoxin translocation, heightened inflammatory responses, and aggravated disease outcomes. This study aimed to investigate the immunological mechanisms associated with impaired intestinal barrier function. We conducted a comprehensive analysis of gut damage and inflammation markers and phenotypic characterization of myeloid and lymphoid populations in the ileum and colon of SARS-CoV-2-exposed macaques during both the acute and resolved infection phases. Our findings revealed a significant accumulation of terminally differentiated and activated CD4+ and CD8+ T cells, along with memory B cells, within the gastrointestinal tract up to 43 days after exposure to SARS-CoV-2. This robust infection-induced immune response was accompanied by a notable depletion of plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, particularly affecting the colon during the resolved infection phase. Additionally, we identified a population of CX3CR1Low inflammatory macrophages associated with intestinal damage during active viral replication. Elevated levels of immune activation and gut damage markers, and perturbation of macrophage homeostasis, persisted even after the resolution of the infection, suggesting potential long-term clinical sequelae. These findings enhance our understanding of gastrointestinal immune pathology following SARS-CoV-2 infection and provide valuable information for developing and testing medical countermeasures.
Collapse
Affiliation(s)
- Stéphane Hua
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Krishna Latha
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Keltouma Benmeziane
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Augello M, Bono V, Rovito R, Tincati C, Marchetti G. Immunologic Interplay Between HIV/AIDS and COVID-19: Adding Fuel to the Flames? Curr HIV/AIDS Rep 2023; 20:51-75. [PMID: 36680700 PMCID: PMC9860243 DOI: 10.1007/s11904-023-00647-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW HIV/AIDS and COVID-19 have been the major pandemics overwhelming our times. Given the enduring immune disfunction featuring people living with HIV (PLWH) despite combination antiretroviral therapy (cART), concerns for higher incidence and severity of SARS-CoV-2 infection as well as for suboptimal responses to the newly developed vaccines in this population arose early during the pandemics. Herein, we discuss the complex interplay between HIV and SARS-CoV-2, with a special focus on the immune responses to SARS-CoV-2 natural infection and vaccination in PLWH. RECENT FINDINGS Overall, current literature shows that COVID-19 severity and outcomes may be worse and immune responses to infection or vaccination lower in PLWH with poor CD4 + T-cell counts and/or uncontrolled HIV viremia. Data regarding the risk of post-acute sequelae of SARS-CoV-2 infection (PASC) among PLWH are extremely scarce, yet they seem to suggest a higher incidence of such condition. Scarce immunovirological control appears to be the major driver of weak immune responses to SARS-CoV-2 infection/vaccination and worse COVID-19 outcomes in PLWH. Therefore, such individuals should be prioritized for vaccination and should receive additional vaccine doses. Furthermore, given the potentially higher risk of developing long-term sequelae, PLWH who experienced COVID-19 should be ensured a more careful and prolonged follow-up.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, Department of Health Sciences, San Paolo Hospital, ASST Santi Paolo E Carlo, University of Milan, Via A. Di Rudinì, 8, 20142, Milan, Italy.
| |
Collapse
|
5
|
Kummerlowe C, Mwakamui S, Hughes TK, Mulugeta N, Mudenda V, Besa E, Zyambo K, Shay JES, Fleming I, Vukovic M, Doran BA, Aicher TP, Wadsworth MH, Bramante JT, Uchida AM, Fardoos R, Asowata OE, Herbert N, Yilmaz ÖH, Kløverpris HN, Garber JJ, Ordovas-Montanes J, Gartner Z, Wallach T, Shalek AK, Kelly P. Single-cell profiling of environmental enteropathy reveals signatures of epithelial remodeling and immune activation. Sci Transl Med 2022; 14:eabi8633. [PMID: 36044598 PMCID: PMC9594855 DOI: 10.1126/scitranslmed.abi8633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental enteropathy (EE) is a subclinical condition of the small intestine that is highly prevalent in low- and middle-income countries. It is thought to be a key contributing factor to childhood malnutrition, growth stunting, and diminished oral vaccine responses. Although EE has been shown to be the by-product of a recurrent enteric infection, its full pathophysiology remains unclear. Here, we mapped the cellular and molecular correlates of EE by performing high-throughput, single-cell RNA-sequencing on 33 small intestinal biopsies from 11 adults with EE in Lusaka, Zambia (eight HIV-negative and three HIV-positive), six adults without EE in Boston, United States, and two adults in Durban, South Africa, which we complemented with published data from three additional individuals from the same clinical site. We analyzed previously defined bulk-transcriptomic signatures of reduced villus height and decreased microbial translocation in EE and showed that these signatures may be driven by an increased abundance of surface mucosal cells-a gastric-like subset previously implicated in epithelial repair in the gastrointestinal tract. In addition, we determined cell subsets whose fractional abundances associate with EE severity, small intestinal region, and HIV infection. Furthermore, by comparing duodenal EE samples with those from three control cohorts, we identified dysregulated WNT and MAPK signaling in the EE epithelium and increased proinflammatory cytokine gene expression in a T cell subset highly expressing a transcriptional signature of tissue-resident memory cells in the EE cohort. Together, our work elucidates epithelial and immune correlates of EE and nominates cellular and molecular targets for intervention.
Collapse
Affiliation(s)
- Conner Kummerlowe
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Simutanyi Mwakamui
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Travis K. Hughes
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Nolawit Mulugeta
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Victor Mudenda
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Kanekwa Zyambo
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine; Lusaka, Zambia
| | - Jessica E. S. Shay
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114, USA
| | - Ira Fleming
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marko Vukovic
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ben A. Doran
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
| | - Toby P. Aicher
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marc H. Wadsworth
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Amiko M. Uchida
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Cancer Immunology and Virology, Dana Farber Cancer Institute; Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School; Boston MA, 02115, USA
| | - Rabiah Fardoos
- Africa Health Research Institute, Durban, 4001, South Africa
| | | | | | - Ömer H. Yilmaz
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, 02115, USA
| | | | - John J. Garber
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School; Boston MA, 02115, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital; Boston, MA 02115, USA
- Program in Immunology, Harvard Medical School; Boston, MA, 02115, USA
- Harvard Stem Cell Institute; Cambridge, MA, 02138, USA
| | - Zev Gartner
- University of California San Francisco; San Francisco, CA, 94185 USA
| | - Thomas Wallach
- SUNY Downstate Health Sciences University; Department of Pediatrics, Brooklyn, NY, 11203, USA
| | - Alex K. Shalek
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, 02139, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA, 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Pathology, MGH, Harvard Medical School, Boston, MA, 02115, USA
- Program in Immunology, Harvard Medical School; Boston, MA, 02115, USA
| | - Paul Kelly
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital; Boston, MA, 02114, USA
- Blizard Institute, Queen Mary University of London; London E1 2AT, United Kingdom
| |
Collapse
|
6
|
Hu S, Buser E, Arredondo J, Relyea D, Santos Rocha C, Dandekar S. Altered Expression of ACE2 and Co-receptors of SARS-CoV-2 in the Gut Mucosa of the SIV Model of HIV/AIDS. Front Microbiol 2022; 13:879152. [PMID: 35495669 PMCID: PMC9048205 DOI: 10.3389/fmicb.2022.879152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the cause of the COVID-19 pandemic, is initiated by its binding to the ACE2 receptor and other co-receptors on mucosal epithelial cells. Variable outcomes of the infection and disease severity can be influenced by pre-existing risk factors. Human immunodeficiency virus (HIV), the cause of AIDS, targets the gut mucosal immune system and impairs epithelial barriers and mucosal immunity. We sought to determine the impact and mechanisms of pre-existing HIV infection increasing mucosal vulnerability to SARS-CoV-2 infection and disease. We investigated changes in the expression of ACE2 and other SARS-CoV-2 receptors and related pathways in virally inflamed gut by using the SIV infected rhesus macaque model of HIV/AIDS. Immunohistochemical analysis showed sustained/enhanced ACE2 expression in the gut epithelium of SIV infected animals compared to uninfected controls. Gut mucosal transcriptomic analysis demonstrated enhanced expression of host factors that support SARS-CoV-2 entry, replication, and infection. Metabolomic analysis of gut luminal contents revealed the impact of SIV infection as demonstrated by impaired mitochondrial function and decreased immune response, which render the host more vulnerable to other pathogens. In summary, SIV infection resulted in sustained or increased ACE2 expression in an inflamed and immune-impaired gut mucosal microenvironment. Collectively, these mucosal changes increase the susceptibility to SARS-CoV-2 infection and disease severity and result in ineffective viral clearance. Our study highlights the use of the SIV model of AIDS to fill the knowledge gap of the enteric mechanisms of co-infections as risk factors for poor disease outcomes, generation of new viral variants and immune escape in COVID-19.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Elise Buser
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Juan Arredondo
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Dylan Relyea
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Clarissa Santos Rocha
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|