1
|
Fang M, Miao Y, Zhu L, Mei Y, Zeng H, Luo L, Ding Y, Zhou L, Quan X, Zhao Q, Zhao X, An Y. Age-Related Dynamics and Spectral Characteristics of the TCRβ Repertoire in Healthy Children: Implications for Immune Aging. Aging Cell 2025; 24:e14460. [PMID: 39745194 PMCID: PMC11984678 DOI: 10.1111/acel.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 04/12/2025] Open
Abstract
T-cell receptor (TCR) diversity is crucial for adaptive immunity, yet baseline characterizations in pediatric populations remain sparse. We sequenced the TCRβ chain of 325 healthy Chinese children aged 0-18, categorized into six age groups. We also analyzed cellular composition and TCRβ associations using flow cytometry in 81 of these samples. Our results indicate a decrease in TCRβ diversity with age, characterized by an increase in high-frequency clonotypes and notable changes in CDR3 length and V(D)J gene usage. These changes are influenced by early life vaccinations and antigen exposures. Additionally, we found a significant association between reduced TCRβ diversity and a decrease in CD4+ T naïve cells. We also developed a predictive model that identifies specific TCRβ features as potential biomarkers for biological age, validated by their significant correlation with changes in the immune repertoire. These findings enhance our understanding of age-related variations in the TCRβ repertoire among children, providing resourceful information for research on pediatric TCR in health and disease.
Collapse
MESH Headings
- Humans
- Child
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Child, Preschool
- Infant
- Aging/immunology
- Aging/genetics
- Male
- Female
- Adolescent
- Infant, Newborn
- CD4-Positive T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Mingyan Fang
- BGI ResearchShenzhenChina
- School of Life SciencesLanzhou UniversityLanzhouGansu ProvinceChina
| | - Yu Miao
- BGI ResearchShenzhenChina
- Henan Academy of SciencesZhengzhouChina
| | | | - Yunpeng Mei
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Hui Zeng
- BGI ResearchShenzhenChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | - Yuan Ding
- Department of Child Health CareChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xueping Quan
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qin Zhao
- Department of EndocrinologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and DisordersChongqing Key Laboratory of Child Infection and ImmunityChongqingChina
- Department of Rheumatology and ImmunologyChildren's Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Karakus KE, Fleury T, Baschal EE, McDaniel KA, Choi H, Armstrong TK, Yu L, Simmons KM, Michels AW. Clinical Features and HLA Genetics Differ in Children at Type 1 Diabetes Onset by Hispanic Ethnicity. J Clin Endocrinol Metab 2025; 110:1187-1194. [PMID: 39231249 PMCID: PMC11913109 DOI: 10.1210/clinem/dgae608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
CONTEXT Type 1 diabetes incidence continues to increase in children, especially among Hispanic White (HW) children. OBJECTIVE We investigated the clinical, immunologic, and genetic characteristics of HW and non-Hispanic White (NHW) children who presented at type 1 diabetes diagnosis. METHODS In this single-center, observational study, children who were diagnosed with type 1 diabetes (≤20 years old) and tested for islet autoantibodies within 1 year of diagnosis were included in the study and divided into 2 groups by Hispanic ethnicity. RESULTS Of 1297 children, 398 HW children presented with a younger age at diabetes onset (10.2 ± 3.9 vs 11.1 ± 4.1 years, P < .001) and more diabetic ketoacidosis (62.4% vs 51.9%, P < .001) than NHW children (n = 899). There was no difference in sex, A1c levels, or the number and prevalence of islet autoantibodies between the 2 cohorts. A subset of our cohort was human leukocyte antigen (HLA) typed as specific alleles confer strong genetic risk for type 1 diabetes (eg, HLA-DR4 and DQ8). Among 637 HLA-typed children, HW children had a significantly higher prevalence of the DR4-DQ8 haplotype than NHW children (79.1% vs 60.1%, P < .001), and this frequency was much higher than a reference Hispanic population (OR 6.5, 95% CI 4.6-9.3). CONCLUSION Hispanic White children developing type 1 diabetes have a high prevalence of HLA DR4-DQ8, which can be utilized to select individuals for immune monitoring with islet autoantibodies to lessen diabetic ketoacidosis and potentially prevent diabetes onset.
Collapse
Affiliation(s)
- Kagan E Karakus
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Theodore Fleury
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Erin E Baschal
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Kristen A McDaniel
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Hyelin Choi
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Taylor K Armstrong
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Kimber M Simmons
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Sasaki T, Sowerby J, Xiao Y, Wang R, Marks KE, Horisberger A, Gao Y, Lee PY, Qu Y, Sze MA, Alves SE, Levesque MC, Fujio K, Costenbader KH, Rao DA. Clonal relationships between Tph and Tfh cells in patients with SLE and in murine lupus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635189. [PMID: 39974998 PMCID: PMC11838332 DOI: 10.1101/2025.01.27.635189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Pathologic T cell-B cell interactions drive disease in systemic lupus erythematosus (SLE). The T cells that activate B cell responses include T peripheral helper (Tph) and T follicular helper (Tfh) cells, yet the developmental and clonal relationships between these B cell-helper T cell populations are unclear. Here we use T cell receptor (TCR) profiling to demonstrate clonal overlap between Tph and Tfh cells in the circulation of patients with SLE. Expanded Tph and Tfh cell clones persist over the course of 1 year in patients with a new diagnosis of SLE, and clones are observed to shift both from Tfh to Tph cells and from Tph to Tfh cells over time. High resolution analysis of cells sorted as Tph cells (CXCR5- PD-1hi) and Tfh cells (CXCR5+ PD-1hi) from SLE patients revealed considerable heterogeneity among cells sorted as Tph cells and highlighted a specific cluster of cells that expressed transcriptomic features of activated B cell-helper T cells. This cell population, marked by expression of TOX and CXCL13, was found in both sorted Tph and Tfh cells, and was clonally linked in these two populations. Analysis of B cell-helper T cells in murine pristane-induced lupus demonstrated similar populations of Tph and Tfh cells in both lung and spleen with strong clonal overlap. T cell-specific loss of Bcl6 prevented accumulation of Tfh cells and reduced accumulation of Tph cells in pristane-treated mice, indicating a role for Bcl6 in the survival and expansion of both populations. Together, these observations demonstrate a shared developmental path among pathologically expanded Tph and Tfh cells in lupus. The persistence of expanded Tph and Tfh cells clones over time may impose barriers to induction of stable tolerance by immunosuppressive medications or by B cell depletion.
Collapse
Affiliation(s)
- Takanori Sasaki
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Sowerby
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yinan Xiao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Runci Wang
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryne E Marks
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alice Horisberger
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yidan Gao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujie Qu
- Merck & Co., Inc., Boston, MA, USA
| | | | | | | | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Karen H Costenbader
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Hanna SJ, Bonami RH, Corrie B, Westley M, Posgai AL, Luning Prak ET, Breden F, Michels AW, Brusko TM. The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository in the AIRR Data Commons: a practical guide for access, use and contributions through the Type 1 Diabetes AIRR Consortium. Diabetologia 2025; 68:186-202. [PMID: 39467874 PMCID: PMC11663175 DOI: 10.1007/s00125-024-06298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes. We therefore created the T1D TCR/BCR Repository (The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository) to study these highly variable and dynamic gene rearrangements. In addition to processed TCR and BCR sequences, the T1D TCR/BCR Repository includes detailed metadata (e.g. participant demographics, disease-associated parameters and tissue type). We introduce the Type 1 Diabetes AIRR Consortium goals and outline methods to use and deposit data to this comprehensive repository. Our ultimate goal is to facilitate research community access to rich, carefully annotated immune AIRR datasets to enable new scientific inquiry and insight into the natural history and pathogenesis of type 1 diabetes.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Stephanie J Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | - Rachel H Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
| | - Brian Corrie
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | | | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Tuong ZK, van der Merwe R, Canete PF, Roco JA. Computational estimation of clonal diversity in autoimmunity. Immunol Cell Biol 2024; 102:692-701. [PMID: 39010261 DOI: 10.1111/imcb.12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
Diversity is the cornerstone of the adaptive immune system, crucial for its effectiveness against constantly evolving pathogens that pose threats to higher vertebrates. Accurately measuring and interpreting this diversity presents challenges for immunologists, as changes in diversity and clonotype composition can tip the balance between protective immunity and autoimmunity. In this review, we present the current methods commonly used to measure diversity from single-cell T-cell receptor and B-cell receptor sequencing. We also discuss two case studies where single-cell sequencing and diversity estimations have led to breakthroughs in autoimmune disease discovery and therapeutic innovation, and reflect upon the necessity and importance of accurately defining and measuring lymphocyte diversity in these contexts.
Collapse
MESH Headings
- Humans
- Autoimmunity
- Animals
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Single-Cell Analysis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Autoimmune Diseases/immunology
- Computational Biology/methods
- Genetic Variation
- B-Lymphocytes/immunology
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Rohan van der Merwe
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Pablo F Canete
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jonathan A Roco
- Biological Data Science Institute, College of Science, The Australian National University, Canberra, ACT, Australia
- Clinical Hub for Interventional Research, College of Health & Medicine, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Yu X, Pan M, Ye J, Hathaway CA, Tworoger SS, Lea J, Li B. Quantifiable TCR repertoire changes in prediagnostic blood specimens among patients with high-grade ovarian cancer. Cell Rep Med 2024; 5:101612. [PMID: 38878776 PMCID: PMC11293308 DOI: 10.1016/j.xcrm.2024.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
High-grade ovarian cancer (HGOC) is a major cause of death in women. Early detection of HGOC usually leads to a cure, yet it remains a clinical challenge with over 90% HGOCs diagnosed at advanced stages. This is mainly because conventional biomarkers are not sensitive enough to detect the microscopic yet metastatic early lesions. In this study, we sequence the blood T cell receptor (TCR) repertoires of 466 patients with ovarian cancer and controls and systematically investigate the immune repertoire signatures in HGOCs. We observe quantifiable changes of selected TCRs in HGOCs that are reproducible in multiple independent cohorts. Importantly, these changes are stronger during stage I. Using pre-diagnostic patient blood samples from the Nurses' Health Study, we confirm that HGOC signals can be detected in the blood TCR repertoire up to 4 years preceding conventional diagnosis. Our findings may provide the basis for future immune-based HGOC early detection criteria.
Collapse
Affiliation(s)
- Xuexin Yu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mingyao Pan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jianfeng Ye
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Shelley S Tworoger
- Knight Cancer Institute and Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jayanthi Lea
- Department of Gynecology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Long SA, Linsley PS. Integrating Omics into Functional Biomarkers of Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041602. [PMID: 38772709 PMCID: PMC11216170 DOI: 10.1101/cshperspect.a041602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Biomarkers are critical to the staging and diagnosis of type 1 diabetes (T1D). Functional biomarkers offer insights into T1D immunopathogenesis and are often revealed using "omics" approaches that integrate multiple measures to identify involved pathways and functions. Application of the omics biomarker discovery may enable personalized medicine approaches to circumvent the more recently appreciated heterogeneity of T1D progression and treatment. Use of omics to define functional biomarkers is still in its early years, yet findings to date emphasize the role of cytokine signaling and adaptive immunity in biomarkers of progression and response to therapy. Here, we share examples of the use of omics to define functional biomarkers focusing on two signatures, T-cell exhaustion and T-cell help, which have been associated with outcomes in both the natural history and treatment contexts.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington 98101, USA
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington 98101, USA
| |
Collapse
|
8
|
Linsley PS, Nakayama M, Balmas E, Chen J, Barahmand-Pour-Whitman F, Bansal S, Bottorff T, Serti E, Speake C, Pugliese A, Cerosaletti K. Germline-like TCR-α chains shared between autoreactive T cells in blood and pancreas. Nat Commun 2024; 15:4971. [PMID: 38871688 PMCID: PMC11176301 DOI: 10.1038/s41467-024-48833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Human type 1 diabetes (T1D) is caused by autoimmune attack on the insulin-producing pancreatic beta cells by islet antigen-reactive T cells. How human islet antigen-reactive (IAR) CD4+ memory T cells from peripheral blood affect T1D progression in the pancreas is poorly understood. Here, we aim to determine if IAR T cells in blood could be detected in pancreas. We identify paired αβ (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new-onset, and established T1D donors, and measured sequence overlap with TCRs in pancreata from healthy, at risk and T1D organ donors. We report extensive TRA junction sharing between IAR T cells and pancreas-infiltrating T cells (PIT), with perfect-match or single-mismatch TRA junction amino acid sequences comprising ~29% total unique IAR TRA junctions (942/3,264). PIT-matched TRA junctions were largely public and enriched for TRAV41 usage, showing significant nucleotide sequence convergence, increased use of germline-encoded versus non-templated residues in epitope engagement, and a potential for cross-reactivity. Our findings thus link T cells with distinctive germline-like TRA chains in the peripheral blood with T cells in the pancreas.
Collapse
Affiliation(s)
- Peter S Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elisa Balmas
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Janice Chen
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Shubham Bansal
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Ty Bottorff
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Alberto Pugliese
- Department of Diabetes Immunology & The Wanek Family Project for Type 1 Diabetes, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | | |
Collapse
|
9
|
Mitchell AM, Baschal EE, McDaniel KA, Fleury T, Choi H, Pyle L, Yu L, Rewers MJ, Nakayama M, Michels AW. Tracking DNA-based antigen-specific T cell receptors during progression to type 1 diabetes. SCIENCE ADVANCES 2023; 9:eadj6975. [PMID: 38064552 PMCID: PMC10708189 DOI: 10.1126/sciadv.adj6975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRβ sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRβ sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRβ sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRβ sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.
Collapse
Affiliation(s)
- Angela M. Mitchell
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin E. Baschal
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen A. McDaniel
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Theodore Fleury
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hyelin Choi
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Laura Pyle
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marian J. Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maki Nakayama
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
10
|
Linsley P, Nakayama M, Balmas E, Chen J, Pour F, Bansal S, Serti E, Speake C, Pugliese A, Cerosaletti K. Self-reactive germline-like TCR alpha chains shared between blood and pancreas. RESEARCH SQUARE 2023:rs.3.rs-3446917. [PMID: 37886513 PMCID: PMC10602137 DOI: 10.21203/rs.3.rs-3446917/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Human islet antigen reactive CD4 + memory T cells (IAR T cells) from peripheral blood have been studied extensively for their role in the pathogenesis of autoimmune type 1 diabetes (T1D). However, IAR T cells are rare, and it remains poorly understood how they affect T1D progression in the pancreas. Using single cell RNA-sequencing coupled with a multiplexed activation induced marker (AIM) enrichment assay, we identified paired TCR alpha/beta (TRA/TRB) T cell receptors (TCRs) in IAR T cells from the blood of healthy, at-risk, new onset, and established T1D donors. Using TCR sequences as barcodes, we measured infiltration of IAR T cells from blood into pancreas of organ donors with and without T1D. We detected extensive TCR sharing between IAR T cells from peripheral blood and pancreatic infiltrating T cells (PIT), with perfectly matched or single mismatched TRA junctions and J gene regions, comprising ~ 34% of unique IAR TCRs. PIT-matching IAR T cells had public TRA chains that showed increased use of germline-encoded residues in epitope engagement and a propensity for cross-reactivity. The link with T cells in the pancreas implicates autoreactive IAR T cells with shared TRA junctions and increased levels in blood with the prediabetic and new onset phases of T1D progression.
Collapse
|