1
|
Rahman MA, Bissa M, Scinto H, Howe SE, Sarkis S, Ma ZM, Gutowska A, Jiang X, Luo CC, Schifanella L, Moles R, Silva de Castro I, Basu S, N'guessan KF, Williams LD, Becerra-Flores M, Doster MN, Hoang T, Choo-Wosoba H, Woode E, Sui Y, Tomaras GD, Paquin-Proulx D, Rao M, Talton JD, Kong XP, Zolla-Pazner S, Cardozo T, Franchini G, Berzofsky JA. Loss of HIV candidate vaccine efficacy in male macaques by mucosal nanoparticle immunization rescued by V2-specific response. Nat Commun 2024; 15:9102. [PMID: 39438480 PMCID: PMC11496677 DOI: 10.1038/s41467-024-53359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Systemic vaccination of macaques with V1-deleted (ΔV1) envelope immunogens reduce the risk of SIVmac251 acquisition by approximately 60%, with protective roles played by V2-specific ADCC and envelope-specific mucosal IL-17+NKp44+ innate lymphoid cells (ILCs). We investigated whether increased mucosal responses to V2 benefit vaccine efficacy by delivering oral nanoparticles (NPs) that release V2-scaffolded on Typhoid Toxin B (TTB) to the large intestine. Strikingly, mucosal immunization of male macaques abrogated vaccine efficacy with control TTB or empty NPs, but vaccine efficacy of up to 47.6% was preserved with V2-TTB NPs. The deleterious effects of NPs were linked to preferential recruitment of mucosal plasmacytoid dendritic cells (pDCs), reduction of protective mucosal NKp44+ ILCs, increased non-protective mucosal PMA/Ionomycin-induced IFN-γ+NKG2A-NKp44-ILCs, and increased levels of mucosal activated Ki67+CD4+ T cells, a potential target for virus infection. V2-TTB NP mucosal boosting rescued vaccine efficacy, likely via high avidity V2-specific antibodies mediating ADCC, and higher frequencies of mucosal NKp44+ ILCs and of ∆V1gp120 binding antibody-secreting B cells in the rectal mucosa. These findings emphasize the central role of systemic immunization and mucosal V2-specific antibodies in the protection afforded by ΔV1 envelope immunogens and encourage careful evaluation of vaccine delivery platforms to avoid inducing immune responses favorable to HIV transmission.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Scinto
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Savannah E Howe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhong-Min Ma
- California National Primate Research Center, University of California, Davis, Davis, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Christina C Luo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shraddha Basu
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Kombo F N'guessan
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - LaTonya D Williams
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tanya Hoang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emmanuel Woode
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mangala Rao
- United States Military HIV Research Program, CIDR, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Timothy Cardozo
- New York University School of Medicine, NYU Langone Health, New York, NY, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
N’guessan KF, Machmach K, Swafford I, Costanzo MC, Wieczorek L, Kim D, Akapirat S, Polonis VR, Pitisuttithum P, Nitayaphan S, Gurunathan S, Sinangil F, Chariyalertsak S, Ake JA, O’connell RJ, Vasan S, Paquin-Proulx D. Innate immune cell activation after HIV-1 vaccine administration is associated with increased antibody production. Front Immunol 2024; 15:1339727. [PMID: 38420129 PMCID: PMC10900843 DOI: 10.3389/fimmu.2024.1339727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
The RV144 Thai phase III clinical trial's canarypox-protein HIV vaccine regimen showed modest efficacy in reducing infection. We therefore sought to determine the effects of vaccine administration on innate cell activation and subsequent associations with vaccine-induced immune responses. RV306 was a randomized, double-blind clinical trial in HIV-uninfected Thai adults that tested delayed boosting following the RV144 regimen. PBMC collected from RV306 participants prior to and 3 days after the last boost were used to investigate innate immune cell activation. Our analysis showed an increase in CD38+ mucosal associated invariant T (MAIT) cells, CD38+ invariant natural killer T (iNKT) cells, CD38+ γδ T cells, CD38+, CD69+ and HLA-DR+ NK cells 3 days after vaccine administration. An increase in CD14-CD16+ non-classical monocytes and CD14+CD16+ intermediate monocytes accompanied by a decrease in CD14+CD16- classical monocytes was also associated with vaccine administration. Inclusion of ALVAC-HIV in the boost did not further increase MAIT, iNKT, γδ T, and NK cell activation or increase the proportion of non-classical monocytes. Additionally, NK cell activation 3 days after vaccination was positively associated with antibody titers of HIV Env-specific total IgG and IgG1. Vδ1 T cell activation 3 days after vaccine administration was associated with HIV Env-specific IgG3 titers. Finally, we observed trending associations between MAIT cell activation and Env-specific IgG3 titers and between NK cell activation and TH023 pseudovirus neutralization titers. Our study identifies a potential role for innate cells, specifically NK, MAIT, and γδ T cells, in promoting antibody responses following HIV-1 vaccine administration.
Collapse
Affiliation(s)
- Kombo F. N’guessan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kawthar Machmach
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Isabella Swafford
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Margaret C. Costanzo
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Lindsay Wieczorek
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Dohoon Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Siriwat Akapirat
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Victoria R. Polonis
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Sorachai Nitayaphan
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, Lafayette, CA, United States
| | - Suwat Chariyalertsak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Julie A. Ake
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Robert J. O’connell
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|