1
|
Seyyedi N, Farhadi A, Khajeh F, Rafiei Dehbidi G, Tandel P, Najafi M, Behzad-Behbahani A. Polyomavirus infection in urological cancers: role of SV40, BKPyV, and JCPyV in prostate, bladder, and renal carcinomas. Future Virol 2024; 19:573-580. [DOI: 10.1080/17460794.2025.2457300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/20/2025] [Indexed: 04/06/2025]
|
2
|
Chokwassanasakulkit T, McMillan NAJ. Merkel Cell Polyomavirus-Pathophysiology and Treatment in the Era of Gene-Targeted Therapies. Rev Med Virol 2024; 34:e2580. [PMID: 39228116 DOI: 10.1002/rmv.2580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Merkel cell polyomavirus (MCPyV) is a significant contributor to the development of Merkel cell carcinoma (MCC), an aggressive skin cancer with high recurrence and a low survival rate. In fact, it is the deadliest skin cancer. The precise routes of transmission for MCPyV-positive MCC remain unclear, but several factors may trigger its development. Conventional treatments for MCC are not highly effective, especially in patients with metastasis, with a clear need for new treatment options. Gene-targeted therapies hold great promise for the treatment of MCC, including the use of siRNA and CRISPR/Cas (C/Cas) but critically none have yet been translated into clinical trials. Validating this approach is the fact that several siRNA products are already FDA licenced, while C/Cas has entered clinical trial, albeit for conditions other than MCC. There are many challenges that must be overcome to move from preclinical research to the clinic. In this review, we provide a comprehensive summary of the current understanding of MCC, with a particular focus on MCPyV-positive MCC, and the status of gene-targeted therapies. Additionally, we discuss the major obstacles that impede MCC research and explore future prospects.
Collapse
Affiliation(s)
- Trairong Chokwassanasakulkit
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia
| | - Nigel A J McMillan
- Institute of Biomedicine and Glycomics and School and Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia
| |
Collapse
|
3
|
Mobaraki G, Shi S, Liu D, Smits KM, Severens K, Lommen K, Rennspiess D, Speel EJM, Winnepenninckx V, Klufah F, Samarska I, zur Hausen A. Mapping of Human Polyomavirus in Renal Cell Carcinoma Tissues. Int J Mol Sci 2024; 25:8213. [PMID: 39125783 PMCID: PMC11312419 DOI: 10.3390/ijms25158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Worldwide, the incidence of renal cell carcinoma (RCC) is rising, accounting for approximately 2% of all cancer diagnoses and deaths. The etiology of RCC is still obscure. Here, we assessed the presence of HPyVs in paraffin-embedded tissue (FFPE) resected tissue from patients with RCC by using different molecular techniques. Fifty-five FFPE tissues from 11 RCC patients were included in this study. Consensus and HPyV-specific primers were used to screen for HPyVs. Both PCR approaches revealed that HPyV is frequently detected in the tissues of RCC kidney resections. A total of 78% (43/55) of the tissues tested were positive for at least one HPyV (i.e., MCPyV, HPyV6, HPyV7, BKPyV, JCPyV, or WUyV). Additionally, 25 tissues (45%) were positive for only one HPyV, 14 (25%) for two HPyVs, 3 (5%) for three HPyVs, and 1 one (1%) tissue specimen was positive for four HPyVs. Eleven (20%) RCC specimens were completely devoid of HPyV sequences. MCPyV was found in 24/55 RCC tissues, HPyV7 in 19, and HPyV6 in 8. The presence of MCPyV and HPyV6 was confirmed by specific FISH or RNA-ISH. In addition, we aimed to confirm HPyV gene expression by IHC. Our results strongly indicate that these HPyVs infect RCC and nontumor tissues, possibly indicating that kidney tissues serve as a reservoir for HPyV latency. Whether HPyVs possibly contribute to the etiopathogenesis of RCC remains to be elucidated.
Collapse
Affiliation(s)
- Ghalib Mobaraki
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shuai Shi
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Dan Liu
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim M. Smits
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim Severens
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Kim Lommen
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Dorit Rennspiess
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Ernst-Jan M. Speel
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Faisal Klufah
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Albaha 65525, Saudi Arabia
| | - Iryna Samarska
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| | - Axel zur Hausen
- Department of Pathology, GROW-Research Institute for Oncology & Reproduction, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (G.M.); (S.S.); (D.L.); (K.M.S.); (K.S.); (K.L.); (D.R.); (E.-J.M.S.); (V.W.); (F.K.); (I.S.)
| |
Collapse
|
4
|
Klufah F, Mobaraki G, Shi S, Marcelissen T, Alharbi RA, Mobarki M, Almalki SSR, van Roermund J, zur Hausen A, Samarska I. Human polyomaviruses JCPyV and MCPyV in urothelial cell carcinoma: a single institution experience. Front Oncol 2023; 13:1251244. [PMID: 38192628 PMCID: PMC10773619 DOI: 10.3389/fonc.2023.1251244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Objective Urothelial cell carcinoma (UCC) is the most common type of urinary bladder. JCPyV and BKPyV have been detected in the urine and tissue of urothelial cell carcinomas (UCC) in immunocompetent patients. Here, we investigated the presence of several HPyVs in UCC samples using diverse molecular techniques to study the prevalence of HPyVs in UCC. Methods A large single-institution database of urine cytology specimens (UCS; n = 22.867 UCS) has previously been searched for decoy cells (n = 30), suggesting polyomavirus infection. The available urine sediments and formalin-fixed paraffin-embedded (FFPE) tissue samples of UCC patients were tested for the presence of JCPyV-LTAg expression by immunohistochemistry (IHC) labeled with SV40-LTAg antibody (clone: PAb416) and subsequent PCR followed by sequencing. In addition, the presence of the oncogenic Merkel cell polyomavirus (MCPyV) and the presence of human polyomavirus 6 (HPyV6) and 7 (HPyV7) DNA were tested with DNA PCR or IHC. Results Of the 30 patients harboring decoy cells, 14 were diagnosed with UCC of the urinary bladder (14/30; 46.6%) before presenting with decoy cells in the urine. The SV40-LTAg IHC was positive in all 14 UCC urine sediments and negative in the FFPE tissues. JCPyV-DNA was identified in all five available UCS and in three FFPE samples of UCC (three of 14; 21.4%). Two UCC cases were positive for MCPyV-DNA (two of 14; 14.3%), and one of them showed protein expression by IHC (one of 14; 7.1%). All specimens were HPyV6 and HPyV7 negative. Conclusion Our findings show the presence of JCPyV in the urine and UCC of immunocompetent patients. Moreover, MCPyV was detected in two UCC cases. In total, five UCC cases showed the presence of either JCPyV or MCPyV. The evidence here supports the hypothesis that these viruses might sporadically be associated with UCC. Further studies are needed to confirm the relevance of JCPyV or MCPyV as a possible risk factor for UCC development.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shuai Shi
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Tom Marcelissen
- Department of Urology, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mousa Mobarki
- Pathology Department, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Shaia Saleh R. Almalki
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Joep van Roermund
- Department of Urology, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, Netherlands
| |
Collapse
|
5
|
Bellott TR, Luz FB, Silva AKFD, Varella RB, Rochael MC, Pantaleão L. Merkel cell polyomavirus and its etiological relationship with skin tumors. An Bras Dermatol 2023; 98:737-749. [PMID: 37407331 PMCID: PMC10589487 DOI: 10.1016/j.abd.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 07/07/2023] Open
Abstract
Viruses have been frequently identified in several human neoplasms, but the etiological role of these viruses in some tumors is still a matter of controversy. Polyomaviruses stand out among the main viruses with oncogenic capacity, specifically the Merkel cell polyomavirus (MCPyV). Recent revisions in the taxonomy of polyomaviruses have divided the Polyomaviridae family into six genera, including 117 species, with a total of 14 currently known human-infecting species. Although the oncogenicity of polyomaviruses has been widely reported in the literature since 1950, the first description of a polyomavirus as an etiological agent of a neoplasm in humans was made only in 2008 with the description of MCPyV, present in approximately 80% of cases of Merkel cell carcinoma (MCC), with the integration of its genome to that of the tumor cells and tumor-specific mutations, and it is considered the etiological agent of this neoplasm since then. MCPyV has also been detected in keratinocyte carcinomas, such as basal cell carcinoma and squamous cell carcinoma of the skin in individuals with and without immunosuppression. Data on the occurrence of oncogenic viruses potentially involved in oncogenesis, which cause persistence and tissue injury, related to the Merkel cell polyomavirus are still scarce, and the hypothesis that the Merkel cell polyomavirus may play a relevant role in the genesis of other cutaneous carcinomas in addition to MCC remains debatable. Therefore, the present study proposes to explore the current knowledge about the presence of MCPyV in keratinocyte carcinomas.
Collapse
Affiliation(s)
- Thiago Rubim Bellott
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Flávio Barbosa Luz
- Department of Dermatology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Rafael Brandão Varella
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mayra Carrijo Rochael
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luciana Pantaleão
- Department of Pathology, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Niterói, RJ, Brazil
| |
Collapse
|
6
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
7
|
Dimitraki MG, Sourvinos G. Merkel Cell Polyomavirus (MCPyV) and Cancers: Emergency Bell or False Alarm? Cancers (Basel) 2022; 14:cancers14225548. [PMID: 36428641 PMCID: PMC9688650 DOI: 10.3390/cancers14225548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), the sole member of Polyomavirus associated with oncogenesis in humans, is the major causative factor of Merkel cell carcinoma (MCC), a rare, neuroendocrine neoplasia of the skin. Many aspects of MCPyV biology and oncogenic mechanisms remain poorly understood. However, it has been established that oncogenic transformation is the outcome of the integration of the viral genome into the host DNA. The high prevalence of MCPyV in the population, along with the detection of the virus in various human tissue samples and the strong association of MCPyV with the emergence of MCC, have prompted researchers to further investigate the role of MCPyV in malignancies other than MCC. MCPyV DNA has been detected in several different non-MCC tumour tissues but with significantly lower prevalence, viral load and protein expression. Moreover, the two hallmarks of MCPyV MCC have rarely been investigated and the studies have produced generally inconsistent results. Therefore, the outcomes of the studies are inadequate and unable to clearly demonstrate a direct correlation between cellular transformation and MCPyV. This review aims to present a comprehensive recapitulation of the available literature regarding the association of MCPyV with oncogenesis (MCC and non-MCC tumours).
Collapse
|
8
|
Zhao J, You X, Zeng X. Research progress of BK virus and systemic lupus erythematosus. Lupus 2022; 31:522-531. [PMID: 35264023 DOI: 10.1177/09612033221084259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Systemic lupus erythematosus (SLE) is an autoimmune disease in which patients are often infected by viruses due to deficient immunity or immunosuppressant use. BK virus (BKV)mainly affects the kidney and can also cause multiple organ involvement throughout the body, which is similar to SLE. BKV is mostly a latent infection in vivo. The incidence of virus reactivation is higher in SLE patients. Reactivation of BKV can induce the production of autoantibodies, thereby promoting the occurrence and development of SLE.Purpose: Aim of this article is to review the prevalence and pathegenesis of BKV infection in SLE patients.Method: The literature search was conducted using four different databases including PubMed, Cochrane Library, Scopus and Web of Science.Results: BK virus is higher infection and reactivation in SLE patients. The "hapten carrier" mechanism may lead to the production of autoantibodies. Some immunosuppressive drugs, like leflumide and hydroxychloroquine, may show a protective effect.Conclusions: BKV infection plays a role in the occurrence and development of SLE, and its significance deserves further exploration.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 34732Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Hodel F, Chong AY, Scepanovic P, Xu ZM, Naret O, Thorball CW, Rüeger S, Marques-Vidal P, Vollenweider P, Begemann M, Ehrenreich H, Brenner N, Bender N, Waterboer T, Mentzer AJ, Hill AVS, Hammer C, Fellay J. Human genomics of the humoral immune response against polyomaviruses. Virus Evol 2021; 7:veab058. [PMID: 34532061 PMCID: PMC8438875 DOI: 10.1093/ve/veab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/30/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Human polyomaviruses are widespread in humans and can cause severe disease in immunocompromised individuals. To identify human genetic determinants of the humoral immune response against polyomaviruses, we performed genome-wide association studies and meta-analyses of qualitative and quantitative immunoglobulin G responses against BK polyomavirus (BKPyV), JC polyomavirus (JCPyV), Merkel cellpolyomavirus (MCPyV), WU polyomavirus (WUPyV), and human polyomavirus 6 (HPyV6) in 15,660 individuals of European ancestry from three independent studies. We observed significant associations for all tested viruses: JCPyV, HPyV6, and MCPyV associated with human leukocyte antigen class II variation, BKPyV and JCPyV with variants in FUT2, responsible for secretor status, MCPyV with variants in STING1, involved in interferon induction, and WUPyV with a functional variant in MUC1, previously associated with risk for gastric cancer. These results provide insights into the genetic control of a family of very prevalent human viruses, highlighting genes and pathways that play a modulating role in human humoral immunity.
Collapse
Affiliation(s)
| | - A Y Chong
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - P Scepanovic
- Roche Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd, Headquarters Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Z M Xu
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland,Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - O Naret
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland,Swiss Institute of Bioinformatics, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - C W Thorball
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - S Rüeger
- Institute for Molecular Medicine Finland, Institute of Life Science HiLIFE, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - P Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | | | - M Begemann
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - H Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - N Brenner
- Infections and Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - N Bender
- Infections and Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - T Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | - A V S Hill
- The Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom,The Jenner Institute, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Oxford OX1 2JD, United Kingdom
| | | | | |
Collapse
|
10
|
Klufah F, Mobaraki G, Liu D, Alharbi RA, Kurz AK, Speel EJM, Winnepenninckx V, Zur Hausen A. Emerging role of human polyomaviruses 6 and 7 in human cancers. Infect Agent Cancer 2021; 16:35. [PMID: 34001216 PMCID: PMC8130262 DOI: 10.1186/s13027-021-00374-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently 12 human polyomaviruses (HPyVs) have been identified, 6 of which have been associated with human diseases, including cancer. The discovery of the Merkel cell polyomavirus and its role in the etiopathogenesis in the majority of Merkel cell carcinomas has drawn significant attention, also to other novel HPyVs. In 2010, HPyV6 and HPyV7 were identified in healthy skin swabs. Ever since it has been speculated that they might contribute to the etiopathogenesis of skin and non-cutaneous human cancers. MAIN BODY Here we comprehensively reviewed and summarized the current evidence potentially indicating an involvement of HPyV6 and HPyV7 in the etiopathogenesis of neoplastic human diseases. The seroprevalence of both HPyV6 and 7 is high in a normal population and increases with age. In skin cancer tissues, HPyV6- DNA was far more often prevalent than HPyV7 in contrast to cancers of other anatomic sites, in which HPyV7 DNA was more frequently detected. CONCLUSION It is remarkable to find that the detection rate of HPyV6-DNA in tissues of skin malignancies is higher than HPyV7-DNA and may indicate a role of HPyV6 in the etiopathogenesis of the respected skin cancers. However, the sheer presence of viral DNA is not enough to prove a role in the etiopathogenesis of these cancers.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Dan Liu
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Raed A Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, Aachen, Germany
| | - Ernst Jan M Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
11
|
Ko CJ, Wang A, Panse G, Lee EE, Wang RC, Whang PG, Bosenberg M, Damsky W. HPyV6- and HPyV7-negative parakeratosis and dyskeratosis in squamous cell carcinoma in situ. J Cutan Pathol 2021; 48:998-1000. [PMID: 33813761 DOI: 10.1111/cup.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Christine J Ko
- Department of Dermatology, Yale University Medical School, New Haven, Connecticut, USA.,Department of Pathology, Yale University Medical School, New Haven, Connecticut, USA
| | - Alice Wang
- Department of Dermatology, Yale University Medical School, New Haven, Connecticut, USA
| | - Gauri Panse
- Department of Dermatology, Yale University Medical School, New Haven, Connecticut, USA.,Department of Pathology, Yale University Medical School, New Haven, Connecticut, USA
| | | | - Richard C Wang
- Department of Dermatology, University of Texas Southwestern, Dallas, Texas, USA
| | - Peter G Whang
- Department of Orthopaedic Surgery, Yale University Medical School, New Haven, Connecticut, USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University Medical School, New Haven, Connecticut, USA.,Department of Pathology, Yale University Medical School, New Haven, Connecticut, USA
| | - William Damsky
- Department of Dermatology, Yale University Medical School, New Haven, Connecticut, USA.,Department of Pathology, Yale University Medical School, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Dolci M, Signorini L, Toumi W, Basile G, D'Alessandro S, Ferrante P, Delbue S. Human polyomaviruses genomes in clinical specimens of colon cancer patients. J Med Virol 2021; 93:6333-6339. [PMID: 33547809 DOI: 10.1002/jmv.26851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 11/11/2022]
Abstract
Colon cancer is the third cause of cancer death in the developed countries. Some environmental factors are involved in its pathogenesis, including viral infections. The possible involvement of human polyomaviruses (HPyVs) in colon cancer pathogenesis has been previously reported, leading to inconsistent conclusions. Clinical specimens were collected from 125 colon cancer patients. Specifically, 110 tumor tissues, 55 negative surgical margins, and 39 peripheral blood samples were analyzed for the presence of six HPyVs: JC polyomavirus (JCPyV), BK polyomavirus (BKPyV), Merkel cell PyV (MCPyV), HPyV -6, -7, and -9 by means of DNA isolation and subsequent duplex Real Time quantitative polymerase chain reaction. HPyVs genome was detected in 33/204 samples (16.2%): the significant higher positivity was found in tumor tissues (26/110, 23.6%), followed by negative surgical margins (3/55, 5.5%, p < .05), and peripheral blood mononuclear cells (PBMCs) (4/39; 10.3%). HPyVs load was statistically higher only in the tumor tissues compared to negative surgical margins (p < .05). Specifically, MCPyV was detected in 19.1% (21/110) of tumor tissues, 3.6% (2/55) of negative surgical margins (p < .05), and 7.7% (3/39) of PBMCs; HPyV-6 in 2.7% (3/110) of tumor tissues, and 1.8% (1/55) of negative surgical margins; one tumor tissue (1/110, 0.9%) and one PBMCs sample (1/39, 2.6%) were positive for BKPyV; JCPyV was present in 0.9% (1/110) of tumor tissues. HPyV-7 and 9 were not detected in any sample. High prevalence and load of MCPyV genome in the tumor tissues might be indicative of a relevant rather than bystander role of the virus in the colon tumorigenesis.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Lucia Signorini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Wafa Toumi
- Viral and Molecular Tumor Diagnostics Unit, Laboratory Services, Habib Thameur Hospital, Tunis, Tunisia
| | - Giuseppe Basile
- Service of Legal Medicine, San Siro Clinical Insitute, Milan, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Curman P, Näsman A, Brauner H. Trichodysplasia spinulosa: a comprehensive review of the disease and its treatment. J Eur Acad Dermatol Venereol 2021; 35:1067-1076. [PMID: 33559344 PMCID: PMC8247895 DOI: 10.1111/jdv.17081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Trichodysplasia spinulosa (TS) is a rare dermatological disease caused by TS‐associated polyomavirus (TSPyV) in immunosuppressed patients. The seroprevalence of TSPyV in immunocompetent adults is high and the number of immunosuppressed patients developing TS remains low, suggesting that TS is underdiagnosed and/or that additional unknown factors are needed in order to develop TS. There is no well‐established treatment for TS, and to date a majority of reported cases have consequently received ineffective therapies, likely due to the unavailability of reviews and recommendations of treatments for TS. The few treatments reported in case reports to be effective include topical cidofovir 3%, reduction of immunosuppression and oral valganciclovir. In this comprehensive review, we present all published cases to date, together with a summary of all treatments for TS categorized by overall clinical efficacy, thus addressing this rare disease and what appears to be its clinically efficacious treatment.
Collapse
Affiliation(s)
- P Curman
- Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - A Näsman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology and Pathology (OnkPat), Karolinska Institutet, Stockholm, Sweden
| | - H Brauner
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.,Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020; 12:v12121406. [PMID: 33297530 PMCID: PMC7762344 DOI: 10.3390/v12121406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The genomes of polyomaviruses are characterized by their tripartite organization with an early region, a late region and a noncoding control region (NCCR). The early region encodes proteins involved in replication and transcription of the viral genome, while expression of the late region generates the capsid proteins. Transcription regulatory sequences for expression of the early and late genes, as well as the origin of replication are encompassed in the NCCR. Cell tropism of polyomaviruses not only depends on the appropriate receptors on the host cell, but cell-specific expression of the viral genes is also governed by the NCCR. Thus far, 15 polyomaviruses have been isolated from humans, though it remains to be established whether all of them are genuine human polyomaviruses (HPyVs). The sequences of the NCCR of these HPyVs show high genetic variability and have been best studied in the human polyomaviruses BK and JC. Rearranged NCCRs in BKPyV and JCPyV, the first HPyVs to be discovered approximately 30 years ago, have been associated with the pathogenic properties of these viruses in nephropathy and progressive multifocal leukoencephalopathy, respectively. Since 2007, thirteen novel PyVs have been isolated from humans: KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10, STLPyV, HPyV12, NJPyV, LIPyV and QPyV. This review describes all NCCR variants of the new HPyVs that have been reported in the literature and discusses the possible consequences of NCCR diversity in terms of promoter strength, putative transcription factor binding sites and possible association with diseases.
Collapse
|
15
|
Toptan T, Cantrell PS, Zeng X, Liu Y, Sun M, Yates NA, Chang Y, Moore PS. Proteomic approach to discover human cancer viruses from formalin-fixed tissues. JCI Insight 2020; 5:143003. [PMID: 33055416 PMCID: PMC7710300 DOI: 10.1172/jci.insight.143003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
The challenge of discovering a completely new human tumor virus of unknown phylogeny or sequence depends on detecting viral molecules and differentiating them from host molecules in the virus-associated neoplasm. We developed differential peptide subtraction (DPS) using differential mass spectrometry (dMS) followed by targeted analysis to facilitate this discovery. We validated this approach by analyzing Merkel cell carcinoma (MCC), an aggressive human neoplasm, in which ~80% of cases are caused by the human Merkel cell polyomavirus (MCV). Approximately 20% of MCC have a high mutational burden and are negative for MCV, but are microscopically indistinguishable from virus positive cases. Using 23 (12 MCV+, 11 MCV-) formalin-fixed MCC, DPS identified both viral and human biomarkers (MCV large T antigen, CDKN2AIP, SERPINB5, and TRIM29) that discriminate MCV+ and MCV- MCC. Statistical analysis of 498,131 dMS features not matching the human proteome by DPS revealed 562 (0.11%) to be upregulated in virus-infected samples. Remarkably, 4 (20%) of the top 20 candidate MS spectra originated from MCV T oncoprotein peptides and confirmed by reverse translation degenerate oligonucleotide sequencing. DPS is a robust proteomic approach to identify potentially novel viral sequences in infectious tumors when nucleic acid-based methods are not feasible.
Collapse
Affiliation(s)
- Tuna Toptan
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | | | - Yang Liu
- Biomedical Mass Spectrometry Center and
| | - Mai Sun
- Biomedical Mass Spectrometry Center and
| | - Nathan A. Yates
- Biomedical Mass Spectrometry Center and
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Chang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick S. Moore
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Ewald PW, Swain Ewald HA. The scope of viral causation of human cancers: interpreting virus density from an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180304. [PMID: 30955500 DOI: 10.1098/rstb.2018.0304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most known oncogenic viruses of humans use DNA as their genomic material. Research over the past quarter century has revealed that their oncogenicity results largely from direct interference with barriers to oncogenesis. In contrast to viruses that have been accepted causes of particular cancers, candidate viral causes tend to have fewer viral than cellular genomes in the tumours. These low viral loads have caused researchers to conclude that the associated viruses are not primary causes of the associated cancers. Consideration of differential survival, reproduction and infiltration of cells in a tumour suggest, however, that viral loads could be low even when viruses are primary causes of cancer. Resolution of this issue has important implications for human health because medical research tends to be effective at preventing and controlling infectious diseases. Mathematical models may clarify the problem and help guide future research by assessing whether low viral loads are likely outcomes of the differential survival, reproduction, and infiltration of cells in a tumour and, more generally, the extent to which viruses contribute to cancer. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Paul W Ewald
- Department of Biology, University of Louisville , Louisville, KY 40292 , USA
| | - Holly A Swain Ewald
- Department of Biology, University of Louisville , Louisville, KY 40292 , USA
| |
Collapse
|
17
|
Limam S, Missaoui N, Bdioui A, Yacoubi MT, Krifa H, Mokni M, Selmi B. Investigation of simian virus 40 (SV40) and human JC, BK, MC, KI, and WU polyomaviruses in glioma. J Neurovirol 2020; 26:347-357. [PMID: 32124265 DOI: 10.1007/s13365-020-00833-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
The gliomagenesis remains not fully established and their etiological factors still remain obscure. Polyomaviruses were detected and involved in several human tumors. Their potential implication in gliomas has been not yet surveyed in Africa and Arab World. Herein, we investigated the prevalence of six polyomaviruses (SV40, JCPyV, BKPyV, MCPyV, KIPyV, and WUPyV) in 112 gliomas from Tunisian patients. The DNA sequences of polyomaviruses were examined by PCR assays. Viral infection was confirmed by DNA in situ hybridization (ISH) and/or immunohistochemistry (IHC). The relationships between polyomavirus infection and tumor features were evaluated. Specific SV40 Tag, viral regulatory, and VP1 regions were identified in 12 GBM (10.7%). DNA ISH targeting the whole SV40 genome and SV40 Tag IHC confirmed the PCR findings. Five gliomas yielded JCPyV positivity by PCR and DNA ISH (2.7%). However, no BKPyV, KIPyV, and WUPyV DNA sequences were identified in all samples. MCPyV DNA was identified in 30 gliomas (26.8%). For GBM samples, MCPyV was significantly related to patient age (p = 0.037), tumor recurrence (p = 0.024), and SV40 (p = 0.045) infection. No further significant association was identified with the remaining tumor features (p > 0.05) and patient survival (Log Rank, p > 0.05). Our study indicates the presence of SV40, JCPyV, and MCPyV DNA in Tunisian gliomas. Further investigations are required to more elucidate the potential involvement of polyomaviruses in these destructive malignancies.
Collapse
Affiliation(s)
- Sarra Limam
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | - Nabiha Missaoui
- Faculty of Sciences and Techniques of Sidi Bouzid, Kairouan University, Kairouan, Tunisia.
| | - Ahlem Bdioui
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | | | - Hedi Krifa
- Neurosurgery Department, Sahloul University Hospital, 4000, Sousse, Tunisia
| | - Moncef Mokni
- Pathology Department, Farhet Hached University Hospital, 4000, Sousse, Tunisia
| | - Boulbeba Selmi
- Laboratory of Bioresources, Integrative Biology and Exploiting, ISB, 5000, Monastir, Tunisia
| |
Collapse
|
18
|
Csoboz B, Rasheed K, Sveinbjørnsson B, Moens U. Merkel cell polyomavirus and non-Merkel cell carcinomas: guilty or circumstantial evidence? APMIS 2020; 128:104-120. [PMID: 31990105 DOI: 10.1111/apm.13019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
Abstract
Merkel cell polyomavirus (MCPyV) is the major causative factor of the rare but aggressive cancer, Merkel cell carcinoma (MCC). Two characteristics of MCPyV-positive MCCs are integration of the viral genome and expression of a truncated version of one of its oncogenic proteins, namely large T antigen. The strong association of MCPyV with MCC development has incited researchers to further investigate a possible role of this virus in other cancers. However, many of the examples displaying the presence of the virus in the various non-MCC cancers are not able to clearly demonstrate a direct connection between cellular transformation and the presence of the virus. The prevalence of the virus is significantly lower in non-MCC cancers compared to MCCs, with a lower level of viral load and sparse viral protein expression. Moreover, the state of the viral genome, and whether a truncated large T antigen is expressed, has rarely been investigated. Nonetheless, considering the strong oncogenic potential of MCPyV proteins in MCC, the plausible contribution of MCPyV to transformation and cancer growth in non-MCC tumors cannot be ruled out. Furthermore, the absence of MCPyV in cancers does not exclude a hit-and-run mechanism, or the oncoproteins of MCPyV may potentiate the neoplastic process mediated by co-infecting oncoviruses such as high-risk human papillomaviruses and Epstein-Barr virus. The current review is focusing on the available data describing the presence of MCPyV in non-MCC tumors, with an aim to provide a comprehensive overview of the corresponding literature and to discuss the potential contribution of MCPyV to non-MCC cancer in light of this.
Collapse
Affiliation(s)
- Balint Csoboz
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kashif Rasheed
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
19
|
Ramqvist T, Ortiz-Villalon C, Brandén E, Koyi H, de Petris L, Wagenius G, Brodin O, Reuterswärd C, Dalianis T, Jönsson M, Staaf J, Lewensohn R, Planck M. Analysis of human papillomaviruses and human polyomaviruses in lung cancer from Swedish never-smokers. Acta Oncol 2020; 59:28-32. [PMID: 31460811 DOI: 10.1080/0284186x.2019.1657588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Torbjörn Ramqvist
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Christian Ortiz-Villalon
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Eva Brandén
- Centre for Research and Development, Uppsala University, Gävle, Sweden
| | - Hirsh Koyi
- Centre for Research and Development, Uppsala University, Gävle, Sweden
| | - Luigi de Petris
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Gunnar Wagenius
- National Lung Cancer Registry, Regional Cancer Centre Uppsala Örebro, Uppsala University Hospital, Uppsala, Sweden
| | - Ola Brodin
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Christel Reuterswärd
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Mats Jönsson
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Johan Staaf
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Maria Planck
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Del Valle L, Piña-Oviedo S. Human Polyomavirus JCPyV and Its Role in Progressive Multifocal Leukoencephalopathy and Oncogenesis. Front Oncol 2019; 9:711. [PMID: 31440465 PMCID: PMC6694743 DOI: 10.3389/fonc.2019.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
The human neurotropic virus JCPyV, a member of the Polyomaviridiae family, is the opportunistic infectious agent of Progressive Multifocal Leukoencephalopathy (PML), a fatal disease seen in severe immunosuppressive conditions and, during the last decade, in patients undergoing immunotherapy. JCPyV is a ubiquitous pathogen with up to 85% of the adult population word-wide exhibiting antibodies against it. Early experiments demonstrated that direct inoculation of JCPyV into the brain of different species resulted in the development of brain tumors and other neuroectodermal-derived neoplasias. Later, several reports showed the detection of viral sequences in medulloblastomas and glial tumors, as well as expression of the viral protein T-Antigen. Few oncogenic viruses, however, have caused so much controversy regarding their role in the pathogenesis of brain tumors, but the discovery of new Polyomaviruses that cause Merkel cell carcinomas in humans and brain tumors in racoons, in addition to the role of JCPyV in colon cancer and multiple mechanistic studies have shed much needed light on the role of JCPyV in cancer. The pathways affected by the viral protein T-Antigen include cell cycle regulators, like p53 and pRb, and transcription factors that activate pro-proliferative genes, like c-Myc. In addition, infection with JCPyV causes chromosomal damage and T-Antigen inhibits homologous recombination, and activates anti-apoptotic proteins, such as Survivin. Here we review the different aspects of the biology and physiopathology of JCPyV.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Pathology and Stanley S. Scott Cancer Center, Louisiana State University Health, New Orleans, LA, United States
| | - Sergio Piña-Oviedo
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
21
|
Frigerio A, Toptan T, Chang Y, Abbott J, Cipriano SD, Bowen AR. Widespread keratosis pilaris-like eruption in an immunocompromised child. JAAD Case Rep 2019; 5:352-354. [PMID: 31008165 PMCID: PMC6453831 DOI: 10.1016/j.jdcr.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alice Frigerio
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tuna Toptan
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yuan Chang
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - James Abbott
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sarah D Cipriano
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Anneli R Bowen
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
22
|
Toptan T, Brusadelli MG, Turpin B, Witte DP, Surrallés J, Velleuer E, Schramm M, Dietrich R, Brakenhoff RH, Moore PS, Chang Y, Wells SI. Limited detection of human polyomaviruses in Fanconi anemia related squamous cell carcinoma. PLoS One 2018; 13:e0209235. [PMID: 30589865 PMCID: PMC6307729 DOI: 10.1371/journal.pone.0209235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Fanconi anemia is a rare genome instability disorder with extreme susceptibility to squamous cell carcinoma of the head and neck and anogenital tract. In patients with this inherited disorder, the risk of head and neck cancer is 800-fold higher than in the general population, a finding which might suggest a viral etiology. Here, we analyzed the possible contribution of human polyomaviruses to FA-associated head and neck squamous cell carcinoma (HNSCC) by a pan-polyomavirus immunohistochemistry test which detects the T antigens of all known human polyomaviruses. We observed weak reactivity in 17% of the HNSCC samples suggesting that based on classical criteria, human polyomaviruses are not causally related to squamous cell carcinomas analyzed in this study.
Collapse
Affiliation(s)
- Tuna Toptan
- University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Marion G. Brusadelli
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Brian Turpin
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David P. Witte
- Division of Pathology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Genetics Department and Biomedical Research Institute of Hospital de les Santes Creus i Sant Pau, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Eunike Velleuer
- Department of Pediatrics, Hospital Neuwerk Maria von den Aposteln, Mönchengladbach, Germany
| | - Martin Schramm
- Department of Cytopathology, Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - Ralf Dietrich
- Deutsche Fanconi-Anämie-Hilfe e.V., Unna-Siddinghausen, Germany
| | - Ruud H. Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology - Head and Neck Surgery, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Patrick S. Moore
- University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Yuan Chang
- University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Susanne I. Wells
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Nguyen KD, Chamseddin BH, Cockerell CJ, Wang RC. The Biology and Clinical Features of Cutaneous Polyomaviruses. J Invest Dermatol 2018; 139:285-292. [PMID: 30470393 DOI: 10.1016/j.jid.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
Human polyomaviruses are double-stand DNA viruses with a conserved genomic structure, yet they present with diverse tissue tropisms and disease presentations. Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7, and Malawi polyomavirus are shed from the skin, and Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7 have been linked to specific skin diseases. We present an update on the genomic and clinical features of these cutaneous polyomaviruses.
Collapse
Affiliation(s)
- Khang D Nguyen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Bahir H Chamseddin
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Clay J Cockerell
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA.
| |
Collapse
|
24
|
Prado JCM, Monezi TA, Amorim AT, Lino V, Paladino A, Boccardo E. Human polyomaviruses and cancer: an overview. Clinics (Sao Paulo) 2018; 73:e558s. [PMID: 30328951 PMCID: PMC6157077 DOI: 10.6061/clinics/2018/e558s] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/15/2018] [Indexed: 12/27/2022] Open
Abstract
The name of the family Polyomaviridae, derives from the early observation that cells infected with murine polyomavirus induced multiple (poly) tumors (omas) in immunocompromised mice. Subsequent studies showed that many members of this family exhibit the capacity of mediating cell transformation and tumorigenesis in different experimental models. The transformation process mediated by these viruses is driven by viral pleiotropic regulatory proteins called T (tumor) antigens. Similar to other viral oncoproteins T antigens target cellular regulatory factors to favor cell proliferation, immune evasion and downregulation of apoptosis. The first two human polyomaviruses were isolated over 45 years ago. However, recent advances in the DNA sequencing technologies led to the rapid identification of additional twelve new polyomaviruses in different human samples. Many of these viruses establish chronic infections and have been associated with conditions in immunosuppressed individuals, particularly in organ transplant recipients. This has been associated to viral reactivation due to the immunosuppressant therapy applied to these patients. Four polyomaviruses namely, Merkel cell polyomavirus (MCPyV), Trichodysplasia spinulosa polyomavirus (TSPyV), John Cunningham Polyomavirus (JCPyV) and BK polyomavirus (BKPyV) have been associated with the development of specific malignant tumors. However, present evidence only supports the role of MCPyV as a carcinogen to humans. In the present review we present a summarized discussion on the current knowledge concerning the role of MCPyV, TSPyV, JCPyV and BKPyV in human cancers.
Collapse
Affiliation(s)
- José Carlos Mann Prado
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Telma Alves Monezi
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Aline Teixeira Amorim
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Vanesca Lino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Andressa Paladino
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Enrique Boccardo
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
25
|
Moens U, Song X, Van Ghelue M, Lednicky JA, Ehlers B. A Role of Sp1 Binding Motifs in Basal and Large T-Antigen-Induced Promoter Activities of Human Polyomavirus HPyV9 and Its Variant UF-1. Int J Mol Sci 2017; 18:ijms18112414. [PMID: 29135936 PMCID: PMC5713382 DOI: 10.3390/ijms18112414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Human polyomavirus 9 (HPyV9) was originally detected in the serum of a renal transplant patient. Seroepidemiological studies showed that ~20-50% of the human population have antibodies against this virus. HPyV9 has not yet been associated with any disease and little is known about the route of infection, transmission, host cell tropism, and genomic variability in circulating strains. Recently, the HPyV9 variant UF-1 with an eight base-pair deletion, a thirteen base-pair insertion and with point mutations, creating three putative Sp1 binding sites in the late promoter was isolated from an AIDS patient. Transient transfection studies with a luciferase reporter plasmid driven by HPyV9 or UF1 promoter demonstrated that UF1 early and late promoters were stronger than HPyV9 promoters in most cell lines, and that the UF1 late promoter was more potently activated by HPyV9 large T-antigen (LTAg). Mutation of two Sp1 motifs strongly reduced trans-activation of the late UF1 promoter by HPyV9 LTAg in HeLa cells. In conclusion, the mutations in the UF1 late promoter seem to strengthen its activity and its response to stimulation by HPyV9 LTAg in certain cells. It remains to be investigated whether these promoter changes have an influence on virus replication and affect the possible pathogenic properties of the virus.
Collapse
Affiliation(s)
- Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway.
| | - Xiaobo Song
- Host Microbe Interaction Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway.
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital Northern-Norway, 9038 Tromsø, Norway.
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville , FL 32603, USA.
| | - Bernhard Ehlers
- Division 12, Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, 13353 Berlin, Germany.
| |
Collapse
|
26
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|
27
|
Qi D, Shan T, Liu Z, Deng X, Zhang Z, Bi W, Owens JR, Feng F, Zheng L, Huang F, Delwart E, Hou R, Zhang W. A novel polyomavirus from the nasal cavity of a giant panda (Ailuropoda melanoleuca). Virol J 2017; 14:207. [PMID: 29078783 PMCID: PMC5658932 DOI: 10.1186/s12985-017-0867-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Polyomaviruses infect a wide variety of mammalian and avian hosts with a broad spectrum of outcomes including asymptomatic infection, acute systemic disease, and tumor induction. Methods Viral metagenomics and general PCR methods were used to detected viral nucleic acid in the samples from a diseased and healthy giant pandas. Results A novel polyomavirus, the giant panda polyomavirus 1 (GPPyV1) from the nasal cavity of a dead giant panda (Ailuropoda melanoleuca) was characterized. The GPPyV1 genome is 5144 bp in size and reveals five putative open-reading frames coding for the classic small and large T antigens in the early region, and the VP1, VP2 and VP3 capsid proteins in the late region. Phylogenetic analyses of the large T antigen of the GPPyV1 indicated GPPyV1 belonged to a putative new species within genus Deltapolyomavirus, clustering with four human polyomavirus species. The GPPyV1 VP1 and VP2 clustered with genus Alphapolyomavirus. Our epidemiologic study indicated that this novel polyomavirus was also detected in nasal swabs and fecal samples collected from captive healthy giant pandas. Conclusion A novel polyomavirus was detected in giant pandas and its complete genome was characterized, which may cause latency infection in giant pandas.
Collapse
Affiliation(s)
- Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China.,Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhijian Liu
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, 94118, USA
| | - Zhihe Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Jacob Robert Owens
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Feifei Feng
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China
| | - Lisong Zheng
- Liziping Nature Reserve, YaAn, Sichuan Province, Sichuan, 625499, China
| | - Feng Huang
- Liziping Nature Reserve, YaAn, Sichuan Province, Sichuan, 625499, China
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, 94118, USA
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, 610081, China.
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
28
|
Biology, evolution, and medical importance of polyomaviruses: An update. INFECTION GENETICS AND EVOLUTION 2017. [DOI: 10.1016/j.meegid.2017.06.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Csoma E, Bidiga L, Méhes G, Katona M, Gergely L. Survey of KI, WU, MW, and STL Polyomavirus in Cancerous and Non-Cancerous Lung Tissues. Pathobiology 2017; 85:179-185. [PMID: 28965121 DOI: 10.1159/000481174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The pathogenesis of the human polyomavirus (PyV) KI, WU, MW, and STL has not been elucidated yet. Respiratory transmission is suggested, but the site of the replication, tissue, and cell tropism is not clarified. KIPyV and WUPyV DNA and/or antigen were detected in normal lung tissues previously by others. In fact, a KIPyV DNA sequence was found in lung cancer samples. Up to date, there is no publication about the DNA prevalence of MWPyV and STLPyV neither in normal nor in cancerous lung tissues. The aim of the present study was to examine the DNA prevalence of these polyomaviruses in cancerous and non-cancerous lung tissue samples, in order to study the possible site for viral replication and/or persistence, and the potential association of these viruses with lung carcinogenesis as well. METHODS 100 cancerous and 47 non-cancerous, formalin-fixed paraffin-embedded lung tissue samples were studied for KIPyV, WUPyV, MWPyV, and STLPyV by real-time PCR. RESULTS AND CONCLUSION Neither of the viruses was found in samples from small-cell, non-small-cell (adenocarcinoma, squamous-cell carcinoma and large-cell neuroendocrine lung cancer), mixed-type and non-differentiated lung carcinoma, and non-cancerous lung tissues (from patients with pneumonia, emphysema and fibrosis).
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bidiga
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Debrecen, Hungary
| | - Melinda Katona
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Gergely
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
30
|
Ribero S, Costa C, Sidoti F, Osella-Abate S, Senetta R, Cassoni P, Fierro M, Cavallo R. No evidence of association of human polyomaviruses V6, V7 and V12, and Saint Louis human polyomavirus with squamous cell carcinoma. Br J Dermatol 2017; 177:e112-e113. [DOI: 10.1111/bjd.15388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- S. Ribero
- Department of Medical Sciences; Section of Dermatology; University of Turin; Turin Italy
| | - C. Costa
- SC Microbiologia e Virologia U; Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino; Italy
| | - F. Sidoti
- SC Microbiologia e Virologia U; Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino; Italy
| | - S. Osella-Abate
- Department of Medical Sciences; Section of Surgical Pathology; University of Turin; Turin Italy
| | - R. Senetta
- Pathology Unit; Fondazione del Piemonte per l'Oncologia (FPO); Candiolo Cancer Institute (IRCCS); Candiolo Italy
| | - P. Cassoni
- Department of Medical Sciences; Section of Surgical Pathology; University of Turin; Turin Italy
| | - M.T. Fierro
- Department of Medical Sciences; Section of Dermatology; University of Turin; Turin Italy
| | - R. Cavallo
- SC Microbiologia e Virologia U; Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino; Italy
| |
Collapse
|
31
|
Korup-Schulz SV, Lucke C, Moens U, Schmuck R, Ehlers B. Large T antigen variants of human polyomaviruses 9 and 12 and seroreactivity against their N terminus. J Gen Virol 2017; 98:704-714. [PMID: 28113048 DOI: 10.1099/jgv.0.000714] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumour antigens (TAgs) of mammalian polyomaviruses (PyVs) are key proteins responsible for modulating the host cell cycle and are involved in virus replication as well as cell transformation and tumour formation. Here we aimed to identify mRNA sequences of known and novel TAgs encoded by the recently discovered human polyomaviruses 9 and 12 (HPyV9 and HPyV12) in cell culture. Synthetic viral genomes were transfected into human and animal cell lines. Gene expression occurred in most cell lines, as measured by quantitative PCR of cDNA copies of mRNA encoding major structural protein VP1. Large TAg- and small TAg-encoding mRNAs were detected in all cell lines, and additional spliced mRNAs were identified encoding TAg variants of 145 aa (HPyV9) and 84 aa (HPyV12). Using as antigens in ELISA the N-terminal 78 aa common to all respective TAg variants of HPyV9 and HPyV12, seroreactivity of 100 healthy blood donors, 54 patients with malignant diseases of the gastrointestinal tract (GIT) and 32 patients with non-malignant diseases of the GIT was analysed. For comparison, the corresponding TAg N termini of BK PyV (BKPyV) and Merkel cell PyV (MCPyV) were included. Frequent reactivity against HPyV9, HPyV12 and BKPyV TAgs, but not MCPyV TAg, was observed in all tested groups. This indicates expression activity of the early region of three human PyVs in healthy and diseased subjects.
Collapse
Affiliation(s)
- Sarah-Verena Korup-Schulz
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| | - Claudia Lucke
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| | - Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø, NO-9037 Tromsø, Norway
| | - Rosa Schmuck
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 'Measles, Mumps, Rubella, and Viruses Affecting Immunocompromised Patients', Robert Koch Institute, Berlin, Germany
| |
Collapse
|
32
|
Identification and Characterization of Novel Rat Polyomavirus 2 in a Colony of X-SCID Rats by P-PIT assay. mSphere 2016; 1:mSphere00334-16. [PMID: 28028546 PMCID: PMC5177731 DOI: 10.1128/msphere.00334-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 11/20/2022] Open
Abstract
Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies. Polyomaviruses (PyVs) are known to infect a wide range of vertebrates and invertebrates and are associated with a broad spectrum of diseases, including cancers, particularly in immune-suppressed hosts. A novel polyomavirus, designated rat polyomavirus 2 (RatPyV2), was identified from a breeding colony of rats having X-linked severe combined immunodeficiency. Using a human panpolyomavirus immunohistochemistry test (P-PIT), RatPyV2 was initially detected in the parotid salivary gland of a colony member. Rolling circle amplification using DNA from harderian and parotid glands identified a novel 5.1-kb polyomavirus genome closely related to human Washington University (WU) and Karolinska Institute (KI) and vole polyomaviruses but notably divergent from Rattus norvegicus PyV1 (RnorPyV1; also designated RatPyV1). Further screening showed RatPyV2 inclusion body infection in the lung epithelium and variably in other respiratory, reproductive, and glandular tissues of 12/12 (100%) rats. IMPORTANCE Although P-PIT was developed to detect diseases associated with known human polyomaviruses, the identification of a new polyomavirus in rats suggests that it may have utility as a broad-based screen for new, as well as known polyomaviruses. Our findings suggest that RatPyV2 may be a commensal infection of laboratory rats that can lead to disseminated disease in T cell immune-deficient rats. Infection of the X-SCID rats with RatPyV2 and Pneumocystis carinii is a potential model for coinfection pathogenesis and treatment options during transplant preclinical studies.
Collapse
|
33
|
Mirvish ED, Shuda M. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction. Front Microbiol 2016; 7:676. [PMID: 27242703 PMCID: PMC4865503 DOI: 10.3389/fmicb.2016.00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023] Open
Abstract
Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV.
Collapse
Affiliation(s)
- Ezra D Mirvish
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh PA, USA
| | - Masahiro Shuda
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|