1
|
Khan S, Naveed F, Arshad F, Khan A, Ahmad R. Letter: factors associated with comorbidity development in atopic dermatitis: a cross-sectional study : Addressing bias and inconsistencies in AntiTNF-induced psoriasis management. Arch Dermatol Res 2025; 317:509. [PMID: 40019573 DOI: 10.1007/s00403-025-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/09/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Affiliation(s)
- Saad Khan
- Saidu Medical College, Saidu Sharif, Pakistan
| | - Fatima Naveed
- Rawal Institute of Health Sciences, Islamabad, Pakistan
| | | | - Ayesha Khan
- Nishtar Medical University and Hospital, Multan, Pakistan
| | | |
Collapse
|
2
|
Livshits G, Kalinkovich A. Resolution of Chronic Inflammation, Restoration of Epigenetic Disturbances and Correction of Dysbiosis as an Adjunctive Approach to the Treatment of Atopic Dermatitis. Cells 2024; 13:1899. [PMID: 39594647 PMCID: PMC11593003 DOI: 10.3390/cells13221899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with multifactorial and unclear pathogenesis. Its development is characterized by two key elements: epigenetic dysregulation of molecular pathways involved in AD pathogenesis and disrupted skin and gut microbiota (dysbiosis) that jointly trigger and maintain chronic inflammation, a core AD characteristic. Current data suggest that failed inflammation resolution is the main pathogenic mechanism underlying AD development. Inflammation resolution is provided by specialized pro-resolving mediators (SPMs) derived from dietary polyunsaturated fatty acids acting through cognate receptors. SPM levels are reduced in AD patients. Administration of SPMs or their stable, small-molecule mimetics and receptor agonists, as well as supplementation with probiotics/prebiotics, demonstrate beneficial effects in AD animal models. Epidrugs, compounds capable of restoring disrupted epigenetic mechanisms associated with the disease, improve impaired skin barrier function in AD models. Based on these findings, we propose a novel, multilevel AD treatment strategy aimed at resolving chronic inflammation by application of SPM mimetics and receptor agonists, probiotics/prebiotics, and epi-drugs. This approach can be used in conjunction with current AD therapy, resulting in AD alleviation.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| |
Collapse
|
3
|
Čelakovská J, Čermákova E, Andrýs C, Boudkova P, Krejsek J. Sensitization to latex and food allergens in atopic dermatitis patients according to ALEX2 Allergy Xplorer test. Mol Immunol 2024; 175:89-102. [PMID: 39326227 DOI: 10.1016/j.molimm.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Aim of our study is to analyse the sensitisation profile to molecular components of latex and of food allergens with the use of ALEX2 Allergy Xplorer test and to compare these results with the anamnestical data after latex exposure and with the anamnestical data after exposure to food allergens in atopic dermatitis patients. METHODS 100 patients were included in the study (49 men and 51 women with the average age 40.6 years). The specific IgE was examined with the use of ALEX2 Allergy Xplorer test. A detailed personal history of allergic reaction to latex and allergic reaction to food allergens was taken in all included patients. RESULTS The sensitisation to latex was recorded in 17 % of patients, majority of patients have positive results of specific IgE to Hev b 8 without clinical reaction to latex. In 7 % of patients with positive results of specific IgE to Hev b 1, Hev b 3, Hev b 5, Hev b 6.02 and Hev b 11 the contact urticaria or contact dermatitis were recorded. The latex fruit syndrome was recorded in 7 % of patients; in another 10 % of patients we recorded no clinical reaction to latex, but the positive results to molecular components of latex and the clinical symptoms after ingestion of different kinds of fruits. CONCLUSION The significant relation between the results of specific IgE to molecular components Hev b 3, Hev b 5 and Hev b 6.02 and the clinical reaction to latex was confirmed; these components significantly imply clinical reactivity to latex.
Collapse
Affiliation(s)
- J Čelakovská
- Department of Dermatology and Venereology Faculty Hospital and Medical Faculty of Charles University, Hradec Králové 50002, Czech Republic.
| | - E Čermákova
- Department of Medical Biophysics, Medical Faculty of Charles University, Hradec Králové 50002, Czech republic.
| | - C Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové 50002, Czech Republic.
| | - P Boudkova
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové 50002, Czech Republic
| | - J Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, Hradec Králové 50002, Czech Republic.
| |
Collapse
|
4
|
Qin Z, Chen Y, Wang Y, Xu Y, Liu T, Mu Q, Huang C. Immunometabolism in the pathogenesis of asthma. Immunology 2024; 171:1-17. [PMID: 37652466 DOI: 10.1111/imm.13688] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Bronchial asthma is a heterogeneous disease characterised by chronic airway inflammation. A variety of immune cells such as eosinophils, mast cells, T lymphocytes, neutrophils and airway epithelial cells are involved in the airway inflammation and airway hyperresponsiveness in asthma pathogenesis, resulting in extensive and variable reversible expiratory airflow limitation. However, the precise molecular mechanisms underlying the allergic immune responses, particularly immunometabolism, remains unclear. Studies have detected enhanced oxidative stress, and abnormal metabolic progresses of glycolysis, fatty acid and amino acid in various immune cells, inducing dysregulation of innate and adaptive immune responses in asthma pathogenesis. Immunometabolism mechanisms contain multiple signalling pathways, providing novel therapy targets for asthma. This review summarises the current knowledge on immunometabolism reprogramming in asthma pathogenesis, as well as potential therapy strategies.
Collapse
Affiliation(s)
- Ziwen Qin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yujuan Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yue Wang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yeyang Xu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tingting Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qian Mu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuanjun Huang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Julliard WA, Myo YPA, Perelas A, Jackson PD, Thatcher TH, Sime PJ. Specialized pro-resolving mediators as modulators of immune responses. Semin Immunol 2022; 59:101605. [PMID: 35660338 PMCID: PMC9962762 DOI: 10.1016/j.smim.2022.101605] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Specialized pro-resolving mediators (SPMs) are endogenous small molecules produced mainly from dietary omega-3 polyunsaturated fatty acids by both structural cells and cells of the active and innate immune systems. Specialized pro-resolving mediators have been shown to both limit acute inflammation and promote resolution and return to homeostasis following infection or injury. There is growing evidence that chronic immune disorders are characterized by deficiencies in resolution and SPMs have significant potential as novel therapeutics to prevent and treat chronic inflammation and immune system disorders. This review focuses on important breakthroughs in understanding how SPMs are produced by, and act on, cells of the adaptive immune system, specifically macrophages, B cells and T cells. We also highlight recent evidence demonstrating the potential of SPMs as novel therapeutic agents in topics including immunization, autoimmune disease and transplantation.
Collapse
Affiliation(s)
- Walker A Julliard
- Department of Surgery, Virginia Commonwealth University, Richmond VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond VA, USA
| | - Apostolos Perelas
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Peter D. Jackson
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Thomas H. Thatcher
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond VA, USA
| | - Patricia J Sime
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Perez-Hernandez J, Chiurchiù V, Perruche S, You S. Regulation of T-Cell Immune Responses by Pro-Resolving Lipid Mediators. Front Immunol 2021; 12:768133. [PMID: 34868025 PMCID: PMC8635229 DOI: 10.3389/fimmu.2021.768133] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Both the initiation and the resolution of inflammatory responses are governed by the sequential activation, migration, and control/suppression of immune cells at the site of injury. Bioactive lipids play a major role in the fine-tuning of this dynamic process in a timely manner. During inflammation and its resolution, polymorphonuclear cells (PMNs) and macrophages switch from producing pro-inflammatory prostaglandins and leukotrienes to specialized pro-resolving lipid mediators (SPMs), namely, lipoxins, resolvins, protectins, and maresins, which are operative at the local level to limit further inflammation and tissue injury and restore homeostasis. Accumulating evidences expand now the role and actions of these lipid mediators from innate to adaptive immunity. In particular, SPMs have been shown to contribute to the control of chronic inflammation, and alterations in their production and/or function have been associated with the persistence of several pathological conditions, including autoimmunity, in human and experimental models. In this review, we focus on the impact of pro-resolving lipids on T cells through their ability to modulate T-cell responses. In particular, the effects of the different families of SPMs to restrain effector T-cell functions while promoting regulatory T cells will be reviewed, along with the underlying mechanisms. Furthermore, the emerging concept of SPMs as new biological markers for disease diagnostic and progression and as putative therapeutic tools to regulate the development and magnitude of inflammatory and autoimmune diseases is discussed.
Collapse
Affiliation(s)
- Javier Perez-Hernandez
- Université de Paris, Institut Cochin, CNRS, Institut National de la Santé et de le Recherche Médicale (INSERM), Paris, France.,Departament of Nutrition and Health, Valencian International University (VIU), Valencia, Spain
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, Rome, Italy.,Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - Sylvain Perruche
- Université de Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang (EFS) Bourgogne-Franche Comté (BFC), Unité Mixte de Recherche (UMR)1098 Research on Interaction between Graft, Host and Tumor (RIGHT), Interactions Hôte Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire Integrated Center for REsearch in inflammatory diseASes (InCREASe), Besançon, France.,MED'INN'Pharma, Besançon, France
| | - Sylvaine You
- Université de Paris, Institut Cochin, CNRS, Institut National de la Santé et de le Recherche Médicale (INSERM), Paris, France
| |
Collapse
|
7
|
Thornton JM, Yin K. Role of Specialized Pro-Resolving Mediators in Modifying Host Defense and Decreasing Bacterial Virulence. Molecules 2021; 26:molecules26226970. [PMID: 34834062 PMCID: PMC8618792 DOI: 10.3390/molecules26226970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial infection activates the innate immune system as part of the host’s defense against invading pathogens. Host response to bacterial pathogens includes leukocyte activation, inflammatory mediator release, phagocytosis, and killing of bacteria. An appropriate host response requires resolution. The resolution phase involves attenuation of neutrophil migration, neutrophil apoptosis, macrophage recruitment, increased phagocytosis, efferocytosis of apoptotic neutrophils, and tissue repair. Specialized Pro-resolving Mediators (SPMs) are bioactive fatty acids that were shown to be highly effective in promoting resolution of infectious inflammation and survival in several models of infection. In this review, we provide insight into the role of SPMs in active host defense mechanisms for bacterial clearance including a new mechanism of action in which an SPM acts directly to reduce bacterial virulence.
Collapse
|
8
|
Li WJ, Zhao Y, Gao Y, Dong LL, Wu YF, Chen ZH, Shen HH. Lipid metabolism in asthma: Immune regulation and potential therapeutic target. Cell Immunol 2021; 364:104341. [PMID: 33798909 DOI: 10.1016/j.cellimm.2021.104341] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Asthma is a chronic inflammatory disease of the lungs that poses a considerable health and socioeconomic burden. Several risk factors work synergistically to affect the progression of asthma. Lipid metabolism, especially in distinct cells such as T cells, macrophages, granulocytes, and non-immune cells, plays an essential role in the pathogenesis of asthma, as lipids are potent signaling molecules that regulate a multitude of cellular response. In this review, we focused on the metabolic pathways of lipid molecules, especially fatty acids and their derivatives, and summarized their roles in various cells during the pathogenesis of asthma along with the current pharmacological agents targeting lipid metabolism.
Collapse
Affiliation(s)
- Wei-Jie Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Gao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ling-Ling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Fang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Hao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
9
|
Choi DW, Jung SY, Shon DH, Shin HS. Piperine Ameliorates Trimellitic Anhydride-Induced Atopic Dermatitis-Like Symptoms by Suppressing Th2-Mediated Immune Responses via Inhibition of STAT6 Phosphorylation. Molecules 2020; 25:molecules25092186. [PMID: 32392825 PMCID: PMC7248773 DOI: 10.3390/molecules25092186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease predominately related to Type 2 helper T (Th2) immune responses. In this study, we investigated whether piperine is able to improve AD symptoms using a trimellitic anhydride (TMA)-induced AD-like mouse model. Topical treatment with piperine reduced ear swelling (ear thickness and epidermal thickness) induced by TMA exposure. Furthermore, piperine inhibited pro-inflammatory cytokines such as TNF-α and IL-1β in mouse ears, compared with the TMA-induced AD group. In measuring allergic immune responses in draining lymph nodes (dLNs), we found that IL-4 secretion, GATA3 mRNA level, and STAT6 phosphorylation were suppressed by piperine treatment. In an ex vivo study, piperine also inhibited the phosphorylation of STAT6 on the CD4+ T cells isolated from splenocytes of BALB/c mice, and piperine suppressed IL-4-induced CCL26 mRNA expression and STAT6 phosphorylation in human keratinocytes resulting in the inhibition of infiltration of CCR3+ cells into inflammatory lesions. These results demonstrate that piperine could ameliorate AD symptoms through suppression of Th2-mediated immune responses, including the STAT6/GATA3/IL-4 signaling pathway. Therefore, we suggest that piperine is an excellent candidate as an inhibitor of STAT6 and may help to improve AD symptoms.
Collapse
Affiliation(s)
- Dae Woon Choi
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea; (D.W.C.); (S.Y.J.)
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Sun Young Jung
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea; (D.W.C.); (S.Y.J.)
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
| | - Dong-Hwa Shon
- Department of Food Processing and Distribution, Gangneung-Wonju National University, Gangneung, Gangwon-do 25457, Korea;
| | - Hee Soon Shin
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 34113, Korea; (D.W.C.); (S.Y.J.)
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea
- Correspondence:
| |
Collapse
|
10
|
Dong JJ, Shen JJ, Lee YJ. Dose-Dependent Effect of Cotinine-Verified Tobacco Smoking on Serum Immunoglobulin E Levels in Korean Adult Males. Nicotine Tob Res 2020; 21:813-817. [PMID: 29126169 DOI: 10.1093/ntr/ntx247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/02/2017] [Indexed: 11/14/2022]
Abstract
BACKGROUND Smoking is one of the risk factors to exacerbate allergic diseases, and it may affect serum immunoglobulin E (IgE) levels. However, few studies have relied on an objective biomarker to examine the effect of tobacco smoking on serum IgE levels. METHOD A nationwide cross-sectional study was conducted to examine the relationship between urinary cotinine (Ucot) concentrations and IgE levels in 973 males using data from the 2010 Korean National Health and Nutrition Examination Survey (KNHANES). Ucot was classified into four groups based on concentration (ng/mL) as follows: nonsmoker group (Ucot <50 ng/mL) and three tertile groups in smokers (T1 [Ucot: 50.00-921.28 ng/mL]; T2 [Ucot: 921.29-1869.36 ng/mL]; and T3 [Ucot ≥1869.37 ng/mL]). The dose-response relationships between Ucot concentrations and total serum IgE level were estimated using analysis of covariance (ANCOVA) and multiple linear regression analysis after adjusting for confounding variables. RESULTS We found a significant and positive dose-related effect of cigarette smoking as measured by Ucot concentrations on the total serum IgE level. The multivariate adjusted means of total serum IgE levels (SE) were 321.0 (36.3), 404.4 (102.7), 499.2 (79.2), and 534.7 (82.7) IU/mL, after adjusting for age, body mass index, alcohol ingestion, physical exercise, job, and household income. The regression coefficient β for total serum IgE was β = 68.6 with increasing level of Ucot group after adjusting for the same covariables (p = .009). CONCLUSION These findings suggest that the amount of smoking may have a dose-dependent effect on total serum IgE levels. IMPLICATION Smoking is one of the risk factors to exacerbate allergic diseases, and it may affect serum immunoglobulin E (IgE) levels, which is closely related to type 1 mediated allergic diseases. However, few studies have relied on an objective biomarker to examine the effect of tobacco smoking on serum IgE levels. We found that tobacco exposure, as measured by Ucot concentrations, increased the serum IgE levels in a dose-response manner in a representative sample of Korean adult males.
Collapse
Affiliation(s)
- Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Jay J Shen
- Department of Healthcare Administration and Policy, School of Community Health Sciences, University of Nevada, Las Vegas, NV
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
- Department of Healthcare Administration and Policy, School of Community Health Sciences, University of Nevada, Las Vegas, NV
| |
Collapse
|
11
|
Zwarts I, van Zutphen T, Kruit JK, Liu W, Oosterveer MH, Verkade HJ, Uhlenhaut NH, Jonker JW. Identification of the fructose transporter GLUT5 (SLC2A5) as a novel target of nuclear receptor LXR. Sci Rep 2019; 9:9299. [PMID: 31243309 PMCID: PMC6594926 DOI: 10.1038/s41598-019-45803-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
Fructose has become a major constituent of our modern diet and is implicated as an underlying cause in the development of metabolic diseases. The fructose transporter GLUT5 (SLC2A5) is required for intestinal fructose absorption. GLUT5 expression is induced in the intestine and skeletal muscle of type 2 diabetes (T2D) patients and in certain cancers that are dependent on fructose metabolism, indicating that modulation of GLUT5 levels could have potential in the treatment of these diseases. Using an unbiased screen for transcriptional control of the human GLUT5 promoter we identified a strong and specific regulation by liver X receptor α (LXRα, NR1H3). Using promoter truncations and site-directed mutagenesis we identified a functional LXR response element (LXRE) in the human GLUT5 promoter, located at −385 bp relative to the transcriptional start site (TSS). Finally, mice treated with LXR agonist T0901317 showed an increase in Glut5 mRNA and protein levels in duodenum and adipose tissue, underscoring the in vivo relevance of its regulation by LXR. Together, our findings show that LXRα regulates GLUT5 in mice and humans. As a ligand-activated transcription factor, LXRα might provide novel pharmacologic strategies for the selective modulation of GLUT5 activity in the treatment of metabolic disease as well as cancer.
Collapse
Affiliation(s)
- Irene Zwarts
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Tim van Zutphen
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Janine K Kruit
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Weilin Liu
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Maaike H Oosterveer
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - N Henriette Uhlenhaut
- Molecular Endocrinology, Institute for Diabetes and Cancer IDC, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg, 85764, Germany.,Gene Center, Ludwig-Maximilians-Universität München (LMU), Feodor-Lynen-Straße 25, Munich, 81377, Germany
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
12
|
Krishnamoorthy N, Abdulnour REE, Walker KH, Engstrom BD, Levy BD. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases. Physiol Rev 2018; 98:1335-1370. [PMID: 29717929 DOI: 10.1152/physrev.00026.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Nandini Krishnamoorthy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Raja-Elie E Abdulnour
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Katherine H Walker
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Braden D Engstrom
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts ; and Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
13
|
Wei J, Gronert K. Eicosanoid and Specialized Proresolving Mediator Regulation of Lymphoid Cells. Trends Biochem Sci 2018; 44:214-225. [PMID: 30477730 DOI: 10.1016/j.tibs.2018.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/12/2022]
Abstract
Eicosanoids and specialized proresolving mediators (SPMs) regulate leukocyte function and inflammation. They are ideally positioned at the interface of the innate and adaptive immune responses when lymphocytes interact with leukocytes. Receptors for leukotriene B4 (LTB4), prostaglandin E2 (PGE2), and SPMs are expressed on lymphocytes. Evidence points toward an essential role of these lipid mediators (LMs) in direct regulation of lymphocyte functions. SPMs, which include lipoxins, demonstrate comprehensive protective actions with lymphocytes. LTB4 and PGE2 regulation of lymphocytes is diverse and depends on the interaction of lymphocytes with other cells. Importantly, both LTB4 and PGE2 are essential regulators of T cell antitumor activity. These LMs are attractive therapeutic targets to control dysregulated innate and adaptive immune responses, promote lymphocyte antitumor activity, and prevent tumor immune evasion.
Collapse
Affiliation(s)
- Jessica Wei
- Vision Science Program, School of Optometry, Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA 94720, USA
| | - Karsten Gronert
- Vision Science Program, School of Optometry, Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Duffney PF, Falsetta ML, Rackow AR, Thatcher TH, Phipps RP, Sime PJ. Key roles for lipid mediators in the adaptive immune response. J Clin Invest 2018; 128:2724-2731. [PMID: 30108196 DOI: 10.1172/jci97951] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is an underlying feature of many diseases, including chronic obstructive pulmonary disease, rheumatoid arthritis, asthma, and multiple sclerosis. There is an increasing appreciation of the dysregulation of adaptive immunity in chronic inflammatory and allergic diseases. The discovery of specialized pro-resolving lipid mediators (SPMs) that actively promote the resolution of inflammation has opened new avenues for the treatment of chronic inflammatory diseases. Much work has been done focusing on the impact of SPMs on innate immune cells. However, much less is known about the influence of SPMs on the development of antigen-specific adaptive immune responses. This Review highlights the important breakthroughs concerning the effects of SPMs on the key cell types involved in the development of adaptive immunity, namely dendritic cells, T cells, and B cells.
Collapse
Affiliation(s)
- Parker F Duffney
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Megan L Falsetta
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Ashley R Rackow
- Department of Environmental Medicine.,Lung Biology and Disease Program, and
| | - Thomas H Thatcher
- Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Richard P Phipps
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Patricia J Sime
- Department of Environmental Medicine.,Lung Biology and Disease Program, and.,Division of Pulmonary and Critical Care Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|