1
|
Rešić A, Barčot Z, Habek D, Pogorelić Z, Bašković M. The Evaluation, Diagnosis, and Management of Infantile Hemangiomas-A Comprehensive Review. J Clin Med 2025; 14:425. [PMID: 39860430 PMCID: PMC11765582 DOI: 10.3390/jcm14020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Infantile hemangioma (IH) is the most common pediatric benign vascular tumor. Its pathogenesis is still poorly understood, and it usually appears during the first few weeks of life and follows a characteristic natural course of proliferation and involution. Most IHs are small, benign, resolve spontaneously, and do not require active treatment but only active observation. A minority of IHs are potentially problematic because they can cause life-threatening complications, permanent disfigurement, and functional impairment. Diagnosis is usually clinical, and propranolol is currently the mainstay of treatment. Other therapeutic modalities may be used alone or in combination, depending on the characteristics of the specific IH. New treatment options are being explored every day, and some are showing promising results. It is undeniable that therapeutic modalities for IHs must be selected based on the child's age, the size and location of the lesion, the presence of complications, the implementation conditions, and the possible outcomes of the treatment. The future of IH management will certainly be reflected in improved advanced imaging modalities, research into the genetic and molecular basis, the development of new pharmacological agents or techniques, and the development of standardized protocols, all to optimize outcomes with minimal side effects.
Collapse
Affiliation(s)
- Arnes Rešić
- Department of Pediatrics, Children’s Hospital Zagreb, Ulica Vjekoslava Klaića 16, 10000 Zagreb, Croatia
- University Department of Health Studies, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Zoran Barčot
- Department of Pediatric Surgery, Children’s Hospital Zagreb, Ulica Vjekoslava Klaića 16, 10000 Zagreb, Croatia
| | - Dubravko Habek
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10000 Zagreb, Croatia
- Department of Obstetrics and Gynecology, Clinical Hospital Merkur, Zajčeva ulica 19, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, Spinčićeva ulica 1, 21000 Split, Croatia
- School of Medicine, University of Split, Šoltanska ulica 2a, 21000 Split, Croatia
| | - Marko Bašković
- Department of Pediatric Surgery, Children’s Hospital Zagreb, Ulica Vjekoslava Klaića 16, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Croatian Academy of Medical Sciences, Kaptol 15, 10000 Zagreb, Croatia
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wang Q, Zhao C, Du Q, Cao Z, Pan J. Non-coding RNA in infantile hemangioma. Pediatr Res 2024; 96:1594-1602. [PMID: 38750296 DOI: 10.1038/s41390-024-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 01/29/2025]
Abstract
Infantile hemangioma (IH) is the most common benign vascular tumor of infancy, but its pathogenesis has not been fully discovered. From the cellular perspective, CD133+ stem cells orchestrate the proliferation and development of IH. Regarding molecular mechanisms, hypoxia inducible factor-1α, renin-angiotensin system, and vascular endothelial growth factor are current study hotspots, while non-coding RNAs (ncRNAs) might be essential factors participating in this network. Therefore, this article reviewed published studies concerning the roles of ncRNAs in IH and listed noted miRNAs, lncRNAs, and circRNAs. Other ncRNAs, such as snRNAs, snoRNAs, and tsRNAs, though have not been examined in IH, are mentioned as well to discuss their potential functions. Due to the continuous development of sequencing technologies and computational pipelines for ncRNAs annotation, relevant studies will provide evidence to gradually enhance acknowledgments of ncRNAs' role in IH. The pathogenesis of IH might be revealed and the treatment protocol would be optimized in the future. IMPACT: Non-coding RNAs (ncRNAs) play critical roles in infantile hemangioma. This article thoroughly reviewed all ncRNAs (miRNAs, lncRNAs, and circRNAs) mentioned in previous studies regarding the pathogenesis of infantile hemangioma. Other ncRNAs are promising subjects for further investigation. This review introduced the emerging ncRNAs that need to be explored in IH.
Collapse
Affiliation(s)
- Qizhang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianxin Du
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Mitra R, Fitzsimons HL, Hale T, Tan ST, Gray C, White MPJ. Recent advances in understanding the molecular basis of infantile haemangioma development. Br J Dermatol 2024; 191:661-669. [PMID: 38845569 DOI: 10.1093/bjd/ljae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 10/19/2024]
Abstract
Infantile haemangioma (IH) - the most common vascular tumour of infancy - is comprised of diverse cell types, including endothelial cells, pericytes, fibroblasts and immune cells. IH is characterized by rapid proliferation followed by slow involution over 1-10 years. Most lesions regress spontaneously, but up to 10% can be disfiguring, with complications that require further medical treatment. Recent research has revealed the biological characteristics of IH, highlighting the involvement of angiogenesis and vasculogenesis during tumour formation. Gene expression profiling has provided vital insights into the underlying biological processes, with some of the key IH-related pathways identified, including vascular endothelial growth factor, the renin-angiotensin-aldosterone system, hypoxia-inducible factor 1α, Notch, platelet-derived growth factor, phosphoinositide 3-kinase/Akt/mammalian target of rapamycin, Janus kinase/signal transducers and activators of transcription, fibroblast growth factor, peroxisome proliferator-activated receptor-γ and insulin-like growth factor. Further evidence suggests extracellular matrix factors and hormone receptors regulate IH progression. In this review, we explore the molecular mechanisms involved in the proliferating, plateau and involuting phases of IH, identifying differentially expressed genes, targeted proteins and key signalling pathways. This knowledge will increase the broader understanding of vascular development, tissue remodelling and angiogenesis.
Collapse
Affiliation(s)
- Raka Mitra
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helen L Fitzsimons
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Tracy Hale
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand
| | | |
Collapse
|
4
|
Fujii M, Yokoyama K, Tanaka Y, Kobayashi D, Tateishi U. A Rare Case of Sphenoid Sinus Hemangioma With Intrasellar and Cavernous Sinus Extension. Cureus 2024; 16:e61034. [PMID: 38800783 PMCID: PMC11128068 DOI: 10.7759/cureus.61034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 05/29/2024] Open
Abstract
Sphenoid sinus hemangiomas are uncommon and pose significant diagnostic challenges due to their rarity and the complex symptoms associated with their critical anatomical location. This report discusses a woman in her 40s who presented with worsening headaches, diplopia, and a sensation of pressure behind her eyes. Diagnostic imaging revealed a lobulated mass in the sphenoid sinus extending into the cavernous sinus and sella, initially mimicking an aggressive neoplastic pathology. However, histopathological examination following endovascular embolization and partial surgical resection confirmed the diagnosis of a cavernous hemangioma. This case highlights the importance of considering hemangiomas in the differential diagnosis of sphenoid sinus masses, especially when patients present with atypical symptoms and imaging shows features such as high vascularity and bone remodeling. The findings emphasize the need for careful diagnostic and therapeutic approaches to effectively manage such cases and differentiate them from more aggressive pathologies.
Collapse
Affiliation(s)
- Mikiya Fujii
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo, JPN
| | - Kota Yokoyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo, JPN
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, JPN
| | - Daisuke Kobayashi
- Department of Pathology, Nerima-Hikarigaoka Hospital, Tokyo, JPN
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, JPN
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo, JPN
| |
Collapse
|
5
|
Holm A, Mulliken JB, Bischoff J. Infantile hemangioma: the common and enigmatic vascular tumor. J Clin Invest 2024; 134:e172836. [PMID: 38618963 PMCID: PMC11014660 DOI: 10.1172/jci172836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of newborns. The tumor follows a life cycle of rapid proliferation in infancy, followed by slow involution in childhood. This unique life cycle has attracted the interest of basic and clinical scientists alike as a paradigm for vasculogenesis, angiogenesis, and vascular regression. Unanswered questions persist about the genetic and molecular drivers of the proliferating and involuting phases. The beta blocker propranolol usually accelerates regression of problematic IHs, yet its mechanism of action on vascular proliferation and differentiation is unclear. Some IHs fail to respond to beta blockers and regrow after discontinuation. Side effects occur and long-term sequelae of propranolol treatment are unknown. This poses clinical challenges and raises novel questions about the mechanisms of vascular overgrowth in IH.
Collapse
Affiliation(s)
- Annegret Holm
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Freiburg, VASCERN-VASCA European Reference Center, Freiburg, Germany
| | - John B. Mulliken
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Sun RW, Zhang H, Mehdi SJ, Richter GT, Bowman HH, Sifford J, Smith C, Burnett AK, Layman A, Washam CL, Byrum SD, Bennett JT, Jensen DM, Dmyterko V, Perkins JA, Shawber CJ, Wu JK, Strub GM. Upregulated MicroRNA-21 Drives the Proliferation of Lymphatic Malformation Endothelial Cells by Inhibiting PDCD4. J Invest Dermatol 2023; 143:2085-2089.e1. [PMID: 37088278 PMCID: PMC10524134 DOI: 10.1016/j.jid.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Ravi W Sun
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Haihong Zhang
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Syed J Mehdi
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gresham T Richter
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hayden H Bowman
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA
| | - Jessica Sifford
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA
| | - Chelsea Smith
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA
| | | | - Alexander Layman
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA
| | - Charity L Washam
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA
| | - Stephanie D Byrum
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA
| | - James T Bennett
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Dana M Jensen
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Victoria Dmyterko
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jonathan A Perkins
- Division of Pediatric Otolaryngology-Seattle Children's Hospital, Seattle, Washington, USA
| | - Carrie J Shawber
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York, USA; Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - June K Wu
- Department of Surgery, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Graham M Strub
- Arkansas Children's Research Institute (ACRI), Little Rock, Arkansas, USA; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
7
|
Ware AP, Satyamoorthy K, Paul B. Integrated multiomics analysis of chromosome 19 miRNA cluster in bladder cancer. Funct Integr Genomics 2023; 23:266. [PMID: 37542643 PMCID: PMC10404189 DOI: 10.1007/s10142-023-01191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
With 46 microRNAs (miRNAs) embedded tandemly over a distance of ~100 kb, chromosome 19 microRNA cluster (C19MC) is the largest miRNA cluster in the human genome. The C19MC is transcribed from a long noncoding genomic region and is usually expressed simultaneously at a higher level. Hence, we performed an integrative multiomics data analysis to examine C19MC regulation, expression patterns, and their impact on bladder cancer (BCa). We found that 43 members of C19MC were highly expressed in BCa. However, its co-localization with recurrent copy number variation (CNV) gain was not statistically significant to implicate its upregulation. It has been reported that C19MC expression is regulated by a well-established CpG island situated 17.6 kb upstream of the transcription start site, but we found that CpG probes at this island were hypomethylated, which was not statistically significant in the BCa cohort. In addition, the promoter region of C19MC is strongly regulated by a group of seven transcription factors (NR2F6, SREBF1, TBP, GATA3, GABPB1, ETV4, and ZNF444) and five chromatin modifiers (SMC3, KDMA1, EZH2, RAD21, and CHD7). Interestingly, these 12 genes were found to be overexpressed in BCa patients. Further, C19MC targeted 42 tumor suppressor (TS) genes that were downregulated, of which 15 were significantly correlated with patient survival. Our findings suggest that transcription factors and chromatin modifiers at the promoter region may regulate C19MC overexpression. The upregulated C19MC members, transcription regulators, and TS genes can be further exploited as potential diagnostic and prognostic indicators as well as for therapeutic management of BCa.
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
8
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
9
|
Coordinated regulation of microRNA genes in C19MC by SETDB1. Biochem Biophys Res Commun 2022; 637:17-22. [DOI: 10.1016/j.bbrc.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
10
|
Huang B, Zhang P, Zhong YY, Wang K, Chen XM, Yu DJ. Transcriptional data analysis reveals the association between infantile hemangiomas and venous malformations. Front Genet 2022; 13:1045244. [PMID: 36338963 PMCID: PMC9626979 DOI: 10.3389/fgene.2022.1045244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Infantile hemangiomas (IH) and venous malformations (VM) are the most common types of vascular abnormalities that seriously affect the health of children. Although there is evidence that these two diseases share some common genetic changes, the underlying mechanisms need to be further studied. Methods: The microarray datasets of IH (GSE127487) and VM (GSE7190) were downloaded from GEO database. Extensive bioinformatics methods were used to investigate the common differentially expressed genes (DEGs) of IH and VM, and to estimate their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Trough the constructing of protein-protein interaction (PPI) network, gene models and hub genes were obtained by using Cytoscape and STRING. Finally, we analyzed the co-expression and the TF-mRNA-microRNA regulatory network of hub genes. Results: A total of 144 common DEGs were identified between IH and VM. Functional analysis indicated their important role in cell growth, regulation of vasculature development and regulation of angiogenesis. Five hub genes (CTNNB1, IL6, CD34, IGF2, MAPK11) and two microRNA (has-miR-141-3p, has-miR-150-5p) were significantly differentially expressed between IH and normal control (p < 0.05). Conclusion: In conclusion, our study investigated the common DEGs and molecular mechanism in IH and VM. Identified hub genes and signaling pathways can regulate both diseases simultaneously. This study provides insight into the crosstalk of IH and VM and obtains several biomarkers relevant to the diagnosis and pathophysiology of vascular abnormalities.
Collapse
Affiliation(s)
- Biao Huang
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan-Yuan Zhong
- Department of Health Management Center, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Kuan Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiao-Ming Chen
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- *Correspondence: Dao-Jiang Yu, ; Xiao-Ming Chen,
| | - Dao-Jiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Dao-Jiang Yu, ; Xiao-Ming Chen,
| |
Collapse
|
11
|
Fu C, Yang K, Zou Y, Huo R. Identification of Key microRNAs and Genes in Infantile Hemangiomas. Front Genet 2022; 13:766561. [PMID: 35360837 PMCID: PMC8963821 DOI: 10.3389/fgene.2022.766561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Infantile hemangiomas (IHs) are the most frequent vascular tumors that occur during infancy. Microribonucleic acids (miRNAs) have been demonstrated as critical regulators of gene expression in various diseases. However, the function of miRNAs in IH still remains largely unknown. In the present study, we performed a miRNA microarray analysis of IH and identified 68 differentially expressed miRNAs (DEMs). In addition, miRNA-gene networks and protein-protein interactions were constructed, and the hub miRNAs and genes of IH were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used for biological analysis of DEMs and differentially expressed genes (DEGs). The pathway enrichment analysis of DEMs revealed several tumor-related pathways, including proteoglycans in cancer, signaling pathway regulating pluripotency of stem cells and TGF-beta signaling pathway. DEGs were mainly enriched in biological processes, including intracellular signal transduction, cell adhesion, and cell death. KEGG pathway analysis indicated that DEGs were enriched in tumorigenesis- and angiogenesis-related pathways such as proteoglycans in cancer, MAPK signaling pathway and Rap1 signaling pathway. Collectively, this study first established a comprehensive miRNA-gene network in IH, which should provide novel insights into IH pathogenesis and be beneficial to the understanding of neovascularization-related disorders.
Collapse
Affiliation(s)
- Cong Fu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Kun Yang
- Department of Medicine, Shandong University, Jinan, China
| | - Yuqing Zou
- Department of Medicine, Shandong University, Jinan, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
- Department of Medicine, Shandong University, Jinan, China
- *Correspondence: Ran Huo,
| |
Collapse
|
12
|
Propranolol Suppresses Proliferation and Migration of HUVECs through Regulation of the miR-206/VEGFA Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7629176. [PMID: 34697590 PMCID: PMC8541866 DOI: 10.1155/2021/7629176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Propranolol has been used in the first-line therapy of infantile hemangioma (IH) for a number of years; however, the mechanisms through which propranolol regulates IH are not yet fully understood. In the present study, microRNA (miRNA/miR) sequencing analysis was performed to identify differentially expressed miRNAs in human umbilical vascular endothelial cells (HUVECs) treated with propranolol. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell migration was assessed using wound healing, Transwell, and tube formation assays. Methylation-specific PCR was then used to investigate the promoter methylation status. The levels of oxidative stress indicators, including superoxide dismutase, glutathione, and malondialdehyde were also detected. Finally, cell cycle analysis was performed using flow cytometry and western blotting. It was observed that propranolol induced the upregulation of miR-206 in HUVECs, which was caused by demethylation of the miR-206 promoter. Moreover, propranolol significantly inhibited the proliferation of HUVECs by inducing apoptosis, while these phenomena were reversed by miR-206 antagomir. VEGFA was found to be a target gene of miR-206. In addition, propranolol notably inhibited the migration and induced G1 arrest of the HUVECs, whereas these results were eliminated by miR-206 antagomir. Collectively, the findings of the present study demonstrated that propranolol may inhibit the proliferation and migration in HUVECs via modulating the miR-206/VEGFA axis. These findings suggest a novel mechanism through which propranolol suppresses the progression of IH.
Collapse
|
13
|
Kowalska M, Dębek W, Matuszczak E. Infantile Hemangiomas: An Update on Pathogenesis and Treatment. J Clin Med 2021; 10:4631. [PMID: 34682753 PMCID: PMC8539430 DOI: 10.3390/jcm10204631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Infantile hemangiomas are the most common benign vascular tumors in infancy. This review includes an update on the current knowledge on pathogenesis, a discussion on indications for treatment, and a review of the mechanisms underlying the different treatment methods. Although most infantile hemangiomas require only active observation because of their natural course, which results in involution, about 10% present with complications that require immediate treatment. The basic treatment includes systemic and topical options. In cases of insufficient response or rebound growth, other forms of treatment should be considered. In some cases, combined therapy might be initiated.
Collapse
Affiliation(s)
- Małgorzata Kowalska
- Department of Pediatric Surgery and Pediatric Urology, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland; (W.D.); (E.M.)
| | | | | |
Collapse
|
14
|
Munjas J, Sopić M, Stefanović A, Košir R, Ninić A, Joksić I, Antonić T, Spasojević-Kalimanovska V, Prosenc Zmrzljak U. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential. Int J Mol Sci 2021; 22:10652. [PMID: 34638993 PMCID: PMC8508896 DOI: 10.3390/ijms221910652] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality worldwide. Defects in trophoblast invasion, differentiation of extravillous trophoblasts and spiral artery remodeling are key factors in PE development. Currently there are no predictive biomarkers clinically available for PE. Recent technological advancements empowered transcriptome exploration and led to the discovery of numerous non-coding RNA species of which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most investigated. They are implicated in the regulation of numerous cellular functions, and as such are being extensively explored as potential biomarkers for various diseases. Altered expression of numerous lncRNAs and miRNAs in placenta has been related to pathophysiological processes that occur in preeclampsia. In the following text we offer summary of the latest knowledge of the molecular mechanism by which lnRNAs and miRNAs (focusing on the chromosome 19 miRNA cluster (C19MC)) contribute to pathophysiology of PE development and their potential utility as biomarkers of PE, with special focus on sample selection and techniques for the quantification of lncRNAs and miRNAs in maternal circulation.
Collapse
Affiliation(s)
- Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Rok Košir
- BIA Separations CRO, Labena Ltd., Street Verovškova 64, 1000 Ljubljana, Slovenia;
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Ivana Joksić
- Genetic Laboratory Department, Obstetrics and Gynaecology Clinic “Narodni Front”, Street Kraljice Natalije 62, 11000 Belgrade, Serbia;
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Vesna Spasojević-Kalimanovska
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | | |
Collapse
|
15
|
Jinesh GG, Napoli M, Smallin MT, Davis A, Ackerman HD, Raulji P, Montey N, Flores ER, Brohl AS. Mutant p53s and chromosome 19 microRNA cluster overexpression regulate cancer testis antigen expression and cellular transformation in hepatocellular carcinoma. Sci Rep 2021; 11:12673. [PMID: 34135394 PMCID: PMC8209049 DOI: 10.1038/s41598-021-91924-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
A subset of hepatocellular carcinoma (HCC) overexpresses the chromosome 19 miRNA cluster (C19MC) and is associated with an undifferentiated phenotype marked by overexpression of cancer testis antigens (CTAs) including anti-apoptotic melanoma-A antigens (MAGEAs). However, the regulation of C19MC miRNA and MAGEA expression in HCCs are not understood. Here we show that, C19MC overexpression is tightly linked to a sub-set of HCCs with transcription-incompetent p53. Using next-generation and Sanger sequencing we found that, p53 in Hep3B cells is impaired by TP53-FXR2 fusion, and that overexpression of the C19MC miRNA-520G in Hep3B cells promotes the expression of MAGEA-3, 6 and 12 mRNAs. Furthermore, overexpression of p53-R175H and p53-R273H mutants promote miR-520G and MAGEA RNA expression and cellular transformation. Moreover, IFN-γ co-operates with miR-520G to promote MAGEA expression. On the other hand, metals such as nickel and zinc promote miR-526B but not miR-520G, to result in the suppression of MAGEA mRNA expression, and evoke cell death through mitochondrial membrane depolarization. Therefore our study demonstrates that a MAGEA-promoting network involving miR-520G, p53-defects and IFN-γ that govern cellular transformation and cell survival pathways, but MAGEA expression and survival are counteracted by nickel and zinc combination.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA. .,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Marian T Smallin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Andrew Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Hayley D Ackerman
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Payal Raulji
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Nicole Montey
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA. .,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
16
|
Li Z, Chai Y, Zhou Z, Li X, Bi J, Huo R. Circular RNA expression profiles in the plasma of patients with infantile hemangioma determined using microarray analysis. Exp Ther Med 2021; 21:634. [PMID: 33968165 PMCID: PMC8097215 DOI: 10.3892/etm.2021.10066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/03/2021] [Indexed: 11/06/2022] Open
Abstract
Circular RNAs (circRNAs) are noncoding RNAs that have important roles in tumor progression. Previous studies have examined the circRNAs involved in infantile hemangioma (IH) tumors. The present study compared the circRNA levels in plasma samples from patients with IH and control individuals. The circRNA expression profiles were determined using microarray in three pairs of plasma samples from patients with proliferative IH and healthy control subjects. Expression of the identified differentially expressed circRNAs was verified using reverse transcription-quantitative PCR (RT-qPCR) and a bioinformatics analysis was performed to predict the microRNAs targeted by the validated circRNAs. From the circRNA expression profiles in the plasma of patients with IHs, 128 differentially expressed circRNAs were identified, of which 72 were upregulated and 56 were downregulated. The downregulated expression of three circRNAs [Homo sapiens (hsa)_circRNA_101566, hsa_circRNA_103546 and hsa_circRNA_103573] was verified using RT-qPCR. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that all identified networks participated in angiogenesis and tumor formation and progression. It was determined that hsa_circRNA_101566, which is able to regulate the mTOR signaling pathway, may be an important regulatory molecule in IH development and that targeting of hsa_miR_520c is able to indirectly regulate the vascular endothelial growth factor signaling pathway. Further studies are required to clarify these effects and the underlying mechanisms.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yimeng Chai
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zifu Zhou
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xueqing Li
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianhai Bi
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ran Huo
- Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Plastic and Aesthetic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
17
|
Luca AC, Miron IC, Trandafir LM, Cojocaru E, Pădureţ IA, Trandafirescu MF, Iordache AC, Ţarcă E. Morphological, genetic and clinical correlations in infantile hemangiomas and their mimics. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:687-695. [PMID: 33817710 PMCID: PMC8112746 DOI: 10.47162/rjme.61.3.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infantile hemangiomas (IHs) are the most frequent pediatric benign vascular tumors, with a reported incidence of 5% to 10%. They have self-limiting evolution pattern divided into a growth phase in the first 12 months and a regression one, that may take up to 10 years. Occasionally, hemangiomas might lead to local or systemic complications, depending on their morphological characteristics. The first line of treatment is β-blockers, such as Propranolol, Timolol, Nadolol, administered either locally or systemically. Newer therapeutic strategies involving laser therapy and angiotensin-converting enzyme inhibitors are being studied, while older treatment modalities like corticosteroids, Imiquimod, Vincristine, Bleomycin and Interferon-α have become second line therapy options. Before establishing the appropriate treatment, clinical, histological, and imaging investigations are required.
Collapse
Affiliation(s)
- Alina Costina Luca
- Department of Morphofunctional Sciences I - Pathology, Department of Mother and Child Medicine - Pediatrics, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania; ,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hu X, Bai S, Li L, Tian P, Wang S, Zhang N, Shen B, Du J, Liu S. MiR-200c-3p increased HDMEC proliferation through the notch signaling pathway. Exp Biol Med (Maywood) 2021; 246:897-905. [PMID: 33472424 DOI: 10.1177/1535370220981859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive proliferation of vascular endothelial cells can cause hemangioma. Although typically benign, hemangiomas can become life-threatening. The microRNA miR-200c-3p is abnormally expressed in some types of tumors, but its expression, biological role, and mechanism of action in infantile hemangioma remain to be fully elucidated. The expression levels of miR-200c-3p in hemangioma tissue were compared with those in adjacent healthy tissue by using bioinformatics analyses and TargetScan. Western blot, enzyme-linked immunosorbent assay, and Cell Counting Kit 8 analyses were used to determine the biological function and site of action of miR-200c-3p in human dermal microvascular endothelial cells (HDMECs). MiR-200c-3p was one of the top 10 differentially expressed genes between healthy tissue, and hemangiomas tissues, having markedly decreased expression in hemangioma tissue. Reduction of miR-200c-3p expression in HDMECs through the transfection of a miR-200c-3p inhibitor significantly increased HDMEC proliferation. The addition of the Notch signaling pathway inhibitor DAPT to HDMECs transfected with the miR-200c-3p inhibitor eliminated the inhibitor-induced enhancement of proliferation in HDMECs. These findings indicate that miR-200c-3p targets the Notch signaling pathway to promote the proliferation of vascular endothelial cells, suggesting that miR-200c-3p plays an important role in the pathogenesis of hemangioma.
Collapse
Affiliation(s)
- Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University Hefei, Anhui 230022, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lingyi Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Sun Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
19
|
Gottlieb A, Flor I, Nimzyk R, Burchardt L, Helmke B, Langenbuch M, Spiekermann M, Feidicker S, Bullerdiek J. The expression of miRNA encoded by C19MC and miR-371-3 strongly varies among individual placentas but does not differ between spontaneous and induced abortions. PROTOPLASMA 2021; 258:209-218. [PMID: 33034783 PMCID: PMC7782366 DOI: 10.1007/s00709-020-01548-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
miRNAs of the largest human miRNA gene cluster at all, i.e., C19MC, are almost exclusively expressed in the placenta. Nevertheless, only little is known about the interindividual variation of their expression and even about possible influence of gestational age, conflicting data is reported as well as for miRNAs of the much smaller miR-371-3 cluster. Our present study aims at the analyses of the expression of miRNAs from both clusters at different times of pregnancy, possible differences between placenta samples obtained from spontaneous or induced abortions in the first trimester, and the possible variation of miRNA expression at different sites within same placentas. miR-371a-3p, miR-372-3p, miR-373-3p, miR-517a-3p, and miR-520c-3p were quantified in 85 samples and miR-371a-3p was quantified in maternal serum samples taken immediately before delivery. While for miRNA-517a-3p and miR-520c-3p the expression increased with increasing gestational age, the present study revealed strong interindividual differences in the expression of miR-371-3 in full-term placental tissue as well as for miRNAs of the C19MC cluster, where the levels differed to a much lesser extent than for the former microRNAs. Also, strong interindividual differences were noted between the serum samples but differences related to the site of the placenta where the sample has been taken from were excluded. For neither of the data from placental tissue, the study revealed differences between the spontaneous and induced abortion group. Thus, the differences do not in general seem to be related to first trimester abortion. It remains to be elucidated whether or not they affect other prenatal processes.
Collapse
Affiliation(s)
- Andrea Gottlieb
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Inga Flor
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Rolf Nimzyk
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Lars Burchardt
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Burkhard Helmke
- Institute for Pathology, Elbe Clinic Stade-Buxtehude, Bremervörder Strasse 111, 21682, Stade, Germany
| | - Marc Langenbuch
- Clinic of Gynecology and Obstetrics, Helios Clinic, Altenwalder Chaussee 10, 27474, Cuxhaven, Germany
| | - Meike Spiekermann
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Susanne Feidicker
- Department of Gynecology and Obstetrics, Evang. Diakonie-Hospital, Gröpelinger Heerstrasse 406-408, 28239, Bremen, Germany
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Jörn Bullerdiek
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany.
- Institute for Medical Genetics, University of Rostock, University Medicine, Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany.
| |
Collapse
|
20
|
Zhang H, Wei T, Johnson A, Sun R, Richter G, Strub GM. NOTCH pathway activation in infantile hemangiomas. J Vasc Surg Venous Lymphat Disord 2020; 9:489-496. [PMID: 32763337 DOI: 10.1016/j.jvsv.2020.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The objective of this study was to characterize the role of NOTCH signaling cascade activation in the angiogenic drive of infantile hemangioma (IH) tissue. METHODS Both IH tissue and normal skin were collected from 55 surgical patients. Of these, 14 were proliferating hemangiomas, 14 were stationary, 14 were involuted, and 13 had been treated with propranolol. Protein and RNA were extracted from all tissues and subjected to Western blotting and reverse transcription-polymerase chain reaction, respectively, for components of the NOTCH signaling pathway. RESULTS Compared with normal skin from the same patients, proliferating IHs contained higher levels of messenger RNA and protein for the majority of NOTCH receptors and ligands as well as the downstream coactivator MAML1. Expression of NOTCH receptor ligand messenger RNA and protein was significantly lower in involuting and propranolol-treated IHs. CONCLUSIONS Perturbations in NOTCH signaling follow the natural course and treatment outcome of IHs, suggesting a critical role in their pathogenesis.
Collapse
Affiliation(s)
- Haihong Zhang
- Department of Otolaryngology and Head and Neck Surgery, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Ting Wei
- Department of Otolaryngology and Head and Neck Surgery, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Adam Johnson
- Department of Otolaryngology and Head and Neck Surgery, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Ravi Sun
- Department of Otolaryngology and Head and Neck Surgery, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Gresham Richter
- Department of Otolaryngology and Head and Neck Surgery, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Graham M Strub
- Department of Otolaryngology and Head and Neck Surgery, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark.
| |
Collapse
|
21
|
Regulation of MYO18B mRNA by a network of C19MC miRNA-520G, IFN-γ, CEBPB, p53 and bFGF in hepatocellular carcinoma. Sci Rep 2020; 10:12371. [PMID: 32704163 PMCID: PMC7378193 DOI: 10.1038/s41598-020-69179-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MYO18B has been proposed to contribute to the progression of hepatocellular carcinoma (HCC). However, the signals that govern MYO18B transcription are not known. Here we show that, a network of C19MC miRNA-520G, IFN-γ, CEBPB and p53 transcriptional-defects promote MYO18B mRNA expression in HCCs. IFN-γ by itself suppresses MYO18B transcription, but promotes it when miRNA-520G is stably overexpressed. Similarly, CEBPB-liver-enriched activator protein (LAP) isoform overexpression suppresses MYO18B transcription but promotes transcription when the cells are treated with IFN-γ. Furthermore, miR-520G together with mutant-p53 promotes MYO18B transcription. Conversely, bFGF suppresses MYO18B mRNA irrespective of CEBPB, miR-520G overexpression or IFN-γ treatment. Finally high MYO18B expression reflects poor prognosis while high MYL5 or MYO1B expression reflects better survival of HCC patients. Thus, we identified a network of positive and negative regulators of MYO18B mRNA expression which reflects the survival of HCC patients.
Collapse
|
22
|
Lanfranconi S, Scola E, Bertani GA, Zarino B, Pallini R, d'Alessandris G, Mazzon E, Marino S, Carriero MR, Scelzo E, Faragò G, Castori M, Fusco C, Petracca A, d'Agruma L, Tassi L, d'Orio P, Lampugnani MG, Nicolis EB, Vasamì A, Novelli D, Torri V, Meessen JMTA, Al-Shahi Salman R, Dejana E, Latini R. Propranolol for familial cerebral cavernous malformation (Treat_CCM): study protocol for a randomized controlled pilot trial. Trials 2020; 21:401. [PMID: 32398113 PMCID: PMC7218540 DOI: 10.1186/s13063-020-4202-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cerebral cavernous malformations (CCMs) are vascular malformations characterized by clusters of enlarged leaky capillaries in the central nervous system. They may result in intracranial haemorrhage, epileptic seizure(s), or focal neurological deficits, and potentially lead to severe disability. Globally, CCMs represent the second most common intracranial vascular malformation in humans, and their familial form (FCCMs) accounts for one-fifth of cases. Neurosurgical excision, and perhaps stereotactic radiosurgery, is the only available therapeutic option. Case reports suggest that propranolol might modify disease progression. Methods Treat_CCM is a prospective, randomized, open-label, blinded endpoint (PROBE), parallel-group trial involving six Italian clinical centres with central reading of brain magnetic resonance imaging (MRI) and adverse events. Patients with symptomatic FCCMs are randomized (2:1 ratio) either to propranolol (40–80 mg twice daily) in addition to standard care or to standard care alone (i.e. anti-epileptic drugs or headache treatments). The primary outcome is intracranial haemorrhage or focal neurological deficit attributable to CCMs. The secondary outcomes are MRI changes over time (i.e. de novo CCM lesions, CCM size and signal characteristics, iron deposition, and vascular leakage as assessed by quantitative susceptibility mapping and dynamic contrast enhanced permeability), disability, health-related quality of life, depression severity, and anxiety (SF-36, BDI-II, State-Trait Anxiety Inventory). Discussion Treat_CCM will evaluate the safety and efficacy of propranolol for CCMs following promising case reports in a randomized controlled trial. The direction of effect on the primary outcome and the consistency of effects on the secondary outcomes (even if none of them yield statistically significant differences) of this external pilot study may lead to a larger sample size in a definitive phase 2 trial. Trial registration ClinicalTrails.gov, NCT03589014. Retrospectively registered on 17 July 2018.
Collapse
Affiliation(s)
- Silvia Lanfranconi
- Department of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Padiglione Monteggia-piano 3, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giulio Andrea Bertani
- Department of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Barbara Zarino
- Department of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Roberto Pallini
- Department of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Giorgio d'Alessandris
- Department of Neurosurgery, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", Contrada Casazza, 98124, Messina, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", Contrada Casazza, 98124, Messina, Italy
| | - Maria Rita Carriero
- Cerebrovascular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Emma Scelzo
- Cerebrovascular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Giuseppe Faragò
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 2, 71013, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 2, 71013, San Giovanni Rotondo, Italy
| | - Antonio Petracca
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 2, 71013, San Giovanni Rotondo, Italy
| | - Leonardo d'Agruma
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 2, 71013, San Giovanni Rotondo, Italy
| | - Laura Tassi
- "Claudio Munari" Epilepsy Surgery Centre, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - Piergiorgio d'Orio
- "Claudio Munari" Epilepsy Surgery Centre, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - Maria Grazia Lampugnani
- Laboratory of Vascular Biology, IFOM, Firc Institute for Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Enrico Bjorn Nicolis
- Laboratory of Cardiovascular Clinical Pharmacology, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Antonella Vasamì
- Laboratory of Cardiovascular Clinical Pharmacology, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Deborah Novelli
- Laboratory of Cardiovascular Clinical Pharmacology, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Valter Torri
- Laboratory of Research Methodology, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Jennifer Marie Theresia Anna Meessen
- Laboratory of Cardiovascular Clinical Pharmacology, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | - Rustam Al-Shahi Salman
- Centre for Clinical Brain Sciences, University of Edinburgh, Little France Crescent 49, Edinburgh, EH16 4SB, UK
| | - Elisabetta Dejana
- Laboratory of Vascular Biology, IFOM, Firc Institute for Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Roberto Latini
- Laboratory of Cardiovascular Clinical Pharmacology, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri, 2, 20156, Milan, Italy
| | | |
Collapse
|
23
|
Setty BA, Jinesh GG, Arnold M, Pettersson F, Cheng CH, Cen L, Yoder SJ, Teer JK, Flores ER, Reed DR, Brohl AS. The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PLoS Genet 2020; 16:e1008642. [PMID: 32310940 PMCID: PMC7192511 DOI: 10.1371/journal.pgen.1008642] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/30/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022] Open
Abstract
Undifferentiated embryonal sarcoma of the liver (UESL) is a rare and aggressive malignancy. Though the molecular underpinnings of this cancer have been largely unexplored, recurrent chromosomal breakpoints affecting a noncoding region on chr19q13, which includes the chromosome 19 microRNA cluster (C19MC), have been reported in several cases. We performed comprehensive molecular profiling on samples from 14 patients diagnosed with UESL. Congruent with prior reports, we identified structural variants in chr19q13 in 10 of 13 evaluable tumors. From whole transcriptome sequencing, we observed striking expressional activity of the entire C19MC region. Concordantly, in 7 of 7 samples undergoing miRNAseq, we observed hyperexpression of the miRNAs within this cluster to levels >100 fold compared to matched normal tissue or a non-C19MC amplified cancer cell line. Concurrent TP53 mutation or copy number loss was identified in all evaluable tumors with evidence of C19MC overexpression. We find that C19MC miRNAs exhibit significant negative correlation to TP53 regulatory miRNAs and K-Ras regulatory miRNAs. Using RNA-seq we identified that pathways relevant to cellular differentiation as well as mRNA translation machinery are transcriptionally enriched in UESL. In summary, utilizing a combination of next-generation sequencing and high-density arrays we identify the combination of C19MC hyperexpression via chromosomal structural event with TP53 mutation or loss as highly recurrent genomic features of UESL.
Collapse
Affiliation(s)
- Bhuvana A. Setty
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University Wexner Medical Center Columbus, Ohio, United States of America
| | - Goodwin G. Jinesh
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Florida, United States of America
| | - Michael Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Fredrik Pettersson
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Sean J. Yoder
- Molecular Genomics Core Facility, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jamie K. Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Elsa R. Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Damon R. Reed
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Florida, United States of America
- Adolescent and Young Adult Program, Moffitt Cancer Center, Tampa, Florida, United States of America
- Sarcoma Department, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Andrew S. Brohl
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Florida, United States of America
- Sarcoma Department, Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
24
|
Gomez-Acevedo H, Dai Y, Strub G, Shawber C, Wu JK, Richter GT. Identification of putative biomarkers for Infantile Hemangiomas and Propranolol treatment via data integration. Sci Rep 2020; 10:3261. [PMID: 32094357 PMCID: PMC7039967 DOI: 10.1038/s41598-020-60025-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/20/2019] [Indexed: 12/29/2022] Open
Abstract
Infantile hemangiomas (IHs) are the most common benign tumors in early childhood. They show a distinctive mechanism of tumor growth in which a rapid proliferative phase is followed by a regression phase (involution). Propranolol is an approved treatment for IHs, but its mechanism of action remains unclear. We integrated and harmonized microRNA and mRNA transcriptome data from newly generated microarray data on IHs with publicly available data on toxicological transcriptomics from propranolol exposure, and with microRNA data from IHs and propranolol exposure. We identified subsets of putative biomarkers for proliferation and involution as well as a small set of putative biomarkers for propranolol's mechanism of action for IHs, namely EPAS1, LASP1, SLC25A23, MYO1B, and ALDH1A1. Based on our integrative data approach and confirmatory experiments, we concluded that hypoxia in IHs is regulated by EPAS1 (HIF-2α) instead of HIF-1α, and also that propranolol-induced apoptosis in endothelial cells may occur via mitochondrial stress.
Collapse
Affiliation(s)
- Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | - Yuemeng Dai
- Mesquite Rehabilitation Institute, Mesquite, Texas, USA
| | - Graham Strub
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Carrie Shawber
- Department of Surgery, New York-Presbyterian/Morgan Stanley Children's Hospital, Columbia University, New York, New York, USA
| | - June K Wu
- Department of Reproductive Sciences in Obstetrics & Gynecology and Surgery, Columbia University, New York, New York, USA
| | - Gresham T Richter
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children's Hospital, Little Rock, Arkansas, USA
| |
Collapse
|
25
|
Adidharma L, Bly RA, Theeuwen HA, Holdefer RN, Slimp J, Kinney GA, Martinez V, Whitlock KB, Perkins JA. Facial Nerve Branching Patterns Vary With Vascular Anomalies. Laryngoscope 2020; 130:2708-2713. [PMID: 31925962 DOI: 10.1002/lary.28500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES At our institution, in vivo facial nerve mapping (FNM) is used during vascular anomaly (VAN) surgeries involving the facial nerve (FN) to create an FN map and prevent injury. During mapping, FN anatomy seemed to vary with VAN type. This study aimed to characterize FN branching patterns compared to published FN anatomy and VAN type. STUDY DESIGN Retrospective study of surgically relevant facial nerve anatomy. METHODS VAN patients (n = 67) with FN mapping between 2005 and 2018 were identified. Results included VAN type, FN relationship to VAN, FNM image with branch pattern, and surgical approach. A Fisher exact test compared FN relationships and surgical approach between VAN pathology, and FN branching types to published anatomical studies. MATLAB quantified FN branching with Euclidean distances and angles. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) analyzed quantitative FN patterns amongst VAN types. RESULTS VANs included were hemangioma, venous malformation, lymphatic malformation, and arteriovenous malformation (n = 17, 13, 25, and 3, respectively). VAN FN patterns differed from described FN anatomy (P < .001). PCA and HCA in MATLAB-quantified FN branching demonstrated no patterns associated with VAN pathology (P = .80 and P = .91, one-way analysis of variance for principle component 1 (PC1) and priniciple component 2 (PC2), respectively). FN branches were usually adherent to hemangioma or venous malformation as compared to coursing through lymphatic malformation (both P = .01, Fisher exact). CONCLUSIONS FN branching patterns identified through electrical stimulation differ from cadaveric dissection determined FN anatomy. This reflects the high sensitivity of neurophysiologic testing in detecting small distal FN branches. Elongated FN branches traveling through lymphatic malformation may be related to abnormal nerve patterning in these malformations. LEVEL OF EVIDENCE NA Laryngoscope, 130:2708-2713, 2020.
Collapse
Affiliation(s)
- Lingga Adidharma
- University of Washington School of Medicine, Seattle Children's Hospital, Seattle, Washington, U.S.A
| | - Randall A Bly
- Division of Pediatric Otolaryngology, Seattle Children's Hospital, Seattle, Washington, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, U.S.A
| | - Hailey A Theeuwen
- University of Washington School of Medicine, Seattle Children's Hospital, Seattle, Washington, U.S.A
| | - Robert N Holdefer
- Neuromonitoring Program, Department of Rehabilitation, University of Washington, Seattle, Washington, U.S.A
| | - Jefferson Slimp
- Neuromonitoring Program, Department of Rehabilitation, University of Washington, Seattle, Washington, U.S.A
| | - Greg A Kinney
- Neuromonitoring Program, Department of Rehabilitation, University of Washington, Seattle, Washington, U.S.A
| | - Vicente Martinez
- Neuromonitoring Program, Department of Rehabilitation, University of Washington, Seattle, Washington, U.S.A
| | - Kathryn B Whitlock
- Division of Pediatric Otolaryngology, Seattle Children's Hospital, Seattle, Washington, U.S.A
| | - Jonathan A Perkins
- Division of Pediatric Otolaryngology, Seattle Children's Hospital, Seattle, Washington, U.S.A.,Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, U.S.A
| |
Collapse
|
26
|
Valbuena GN, Apostolidou S, Roberts R, Barnes J, Alderton W, Harper L, Jacobs I, Menon U, Keun HC. The 14q32 maternally imprinted locus is a major source of longitudinally stable circulating microRNAs as measured by small RNA sequencing. Sci Rep 2019; 9:15787. [PMID: 31673048 PMCID: PMC6823392 DOI: 10.1038/s41598-019-51948-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Understanding the normal temporal variation of serum molecules is a critical factor for identifying useful candidate biomarkers for the diagnosis and prognosis of chronic disease. Using small RNA sequencing in a longitudinal study of 66 women with no history of cancer, we determined the distribution and dynamics (via intraclass correlation coefficients, ICCs) of the miRNA profile over 3 time points sampled across 2-5 years in the course of the screening trial, UKCTOCS. We were able to define a subset of longitudinally stable miRNAs (ICC >0.75) that were individually discriminating of women who had no cancer over the study period. These miRNAs were dominated by those originating from the C14MC cluster that is subject to maternal imprinting. This assessment was not significantly affected by common confounders such as age, BMI or time to centrifugation nor alternative methods to data normalisation. Our analysis provides important benchmark data supporting the development of miRNA biomarkers for the impact of life-course exposure as well as diagnosis and prognostication of chronic disease.
Collapse
Affiliation(s)
- Gabriel N Valbuena
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, W12 0NN, United Kingdom
| | - Sophia Apostolidou
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Rhiannon Roberts
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Julie Barnes
- Abcodia Ltd, PO Box 268, Royston, SG8 1EL, Hertfordshire, UK
| | - Wendy Alderton
- Abcodia Ltd, PO Box 268, Royston, SG8 1EL, Hertfordshire, UK
- Early Detection Programme, Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Lauren Harper
- Cancer Research UK, Angel Building, 407 St John Street, London, UK
| | - Ian Jacobs
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
- University of New South Wales, Sydney, New South Wales, Australia
| | - Usha Menon
- MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, University College London, Gower Street, London, UK
| | - Hector C Keun
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, W12 0NN, United Kingdom.
| |
Collapse
|
27
|
Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS One 2018; 13:e0206008. [PMID: 30335837 PMCID: PMC6193703 DOI: 10.1371/journal.pone.0206008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are known to express low PGR, ESR1, and ERBB2, and high KRT5, KRT14, and KRT17. However, the reasons behind the increased expressions of KRT5, KRT14, KRT17 and decreased expressions of PGR, ESR1, and ERBB2 in TNBCs are not fully understood. Here we show that, expression of chromosome 19 miRNA cluster (C19MC) specifically marks human TNBCs. Low REST and high CEBPB correlate with expression of C19MC, KRT5, KRT14, and KRT17 and enhancers of these genes/cluster are regulated by CEBPB and REST binding sites. The C19MC miRNAs in turn can potentially target REST to offer a positive feedback loop, and might target PGR, ESR1, ERBB2, GATA3, SCUBE2, TFF3 mRNAs to contribute towards TNBC phenotype. Thus our study demonstrates that C19MC miRNA expression marks TNBCs and that C19MC miRNAs and CEBPB might together determine the TNBC marker expression pattern.
Collapse
|
28
|
Strub GM, Perkins JA. MicroRNAs for the pediatric otolaryngologist. Int J Pediatr Otorhinolaryngol 2018; 112:195-207. [PMID: 30055733 DOI: 10.1016/j.ijporl.2018.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
The scope of pediatric otolaryngology is broad and encompasses a wide variety of diseases in which the fundamental phenotype-causing abnormality exists at the level of gene regulation and expression. Development of novel molecular biology instruments to diagnose disease, monitor treatment response, and prevent recurrence will facilitate the delivery of appropriate surgical and adjuvant medical treatments with lower morbidity. MicroRNAs (miRNAs) have emerged as a relatively new class of molecules that directly modulate gene expression and are abnormally expressed in a multitude of disease processes including those within the scope of pediatric otolaryngology. Functionally, miRNAs control multiple cellular functions including angiogenesis, cell proliferation, cell survival, genome stability, and inflammation. These short, non-protein coding RNA molecules are present and stable in tissue, blood, saliva, and urine, making them ideal disease biomarkers. The simple structure of miRNAs and their ability to directly modulate the expression of specific genes lends exciting therapeutic potential to miRNA-based therapies. Here we review the current literature of miRNAs as it relates to diseases within the scope of pediatric otolaryngology, and discuss their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Graham M Strub
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jonathan A Perkins
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, 98101, United States; Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital, Seattle, WA, 98105, United States.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Infantile hemangiomas are the most common vascular tumor of infancy. Treatment of infantile hemangiomas was revolutionized when propranolol, a nonselective β-blocker, was reported to be effective therapy. In this review, we highlight the lessons learned using propranolol to treat infantile hemangiomas. We also describe the ongoing effort to understand the mechanism of action of propranolol. RECENT FINDINGS Although the pathogenesis of infantile hemangiomas is not fully understood, maternal hypoxic stress and embolization of placental tissue are suggested to be critical components in their development. The mechanism of action of propranolol remains unclear, however various molecular mechanisms are detailed in this review. Propranolol treatment remains a well tolerated therapy, with low risk of adverse events or long-term neurocognitive effects. Dosing recommendations and optimal treatment duration vary among studies, and should be altered in patients with certain medical conditions such as Posterior fossa anomalies, Hemangioma, Arterial lesions, Cardiac abnormalities/coarctation of the aorta, Eye anomalies (PHACE) syndrome. SUMMARY Propranolol is a well tolerated and effective treatment for infantile hemangiomas. The efficacy of propranolol for infantile hemangiomas is clear, however questions pertaining to mechanism of action, pretreatment risk stratification, and optimal dosing remain unanswered. The guidelines for managing infantile hemangiomas with propranolol will continue to adapt as research catches up to clinical experience.
Collapse
|
30
|
Perkins JA. New Frontiers in Our Understanding of Lymphatic Malformations of the Head and Neck: Natural History and Basic Research. Otolaryngol Clin North Am 2018; 51:147-158. [PMID: 29217059 DOI: 10.1016/j.otc.2017.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The future of head and neck lymphatic malformation (HNLM) evaluation and treatment is changing because of 2 decades of clinical research and recent basic science investigation. Basic science investigation using cellular biology and molecular genetics has revealed the genetic cause of some HNLMs, which has created the possibility of medical treatment specific to HNLM. This article summarizes the clinical and basic science research that will likely influence the future of HNLM assessment and treatment.
Collapse
Affiliation(s)
- Jonathan A Perkins
- Otolaryngology/Head and Neck Surgery, University of Washington School of Medicine, 1959 Pacific Avenue NE, Box 366515, Seattle, WA 98195, USA; Vascular Anomalies Program, Seattle Children's Hospital, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA.
| |
Collapse
|
31
|
Padia R, Bly R, Bull C, Geddis AE, Perkins J. Medical Management of Vascular Anomalies. CURRENT TREATMENT OPTIONS IN PEDIATRICS 2018; 4:221-236. [PMID: 30505648 PMCID: PMC6261360 DOI: 10.1007/s40746-018-0130-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This chapter will summarize the most recent literature regarding the current state of medical treatment for vascular anomalies. RECENT FINDINGS Research into the biology of these anomalies has strengthened our understanding of each anomaly and has helped to pave the way for more tailored treatment options involving molecular and/or genetic targets. SUMMARY While there is still a role for surgical intervention, medical therapies that target the etiology of vascular anomalies may represent an alternative or adjunctive approach in the management of these lesions.
Collapse
Affiliation(s)
- Reema Padia
- Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital and Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, United States
| | - Randall Bly
- Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital and Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, United States
| | - Catherine Bull
- Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital and Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, United States
| | - Amy E. Geddis
- Cancer and Blood Disorders Clinic, Seattle Children's Hospital, Seattle, Washington, United States
| | - Jonathan Perkins
- Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital and Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
32
|
Mong EF, Akat KM, Canfield J, Lockhart J, VanWye J, Matar A, Tsibris JCM, Wu JK, Tuschl T, Totary-Jain H. Modulation of LIN28B/Let-7 Signaling by Propranolol Contributes to Infantile Hemangioma Involution. Arterioscler Thromb Vasc Biol 2018; 38:1321-1332. [PMID: 29724816 DOI: 10.1161/atvbaha.118.310908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Infantile hemangiomas (IHs) are the most common benign vascular neoplasms of infancy, characterized by a rapid growth phase followed by a spontaneous involution, or triggered by propranolol treatment by poorly understood mechanisms. LIN28/let-7 axis plays a central role in the regulation of stem cell self-renewal and tumorigenesis. However, the role of LIN28B/let-7 signaling in IH pathogenesis has not yet been elucidated. APPROACH AND RESULTS LIN28B is highly expressed in proliferative IH and is less expressed in involuted and in propranolol-treated IH samples as measured by immunofluorescence staining and quantitative RT-PCR. Small RNA sequencing analysis of IH samples revealed a decrease in microRNAs that target LIN28B, including let-7, and an increase in microRNAs in the mir-498(46) cistron. Overexpression of LIN28B in HEK293 cells induced the expression of miR-516b in the mir-498(46) cistron. Propranolol treatment of induced pluripotent stem cells, which express mir-498(46) endogenously, reduced the expression of both LIN28B and mir-498(46) and increased the expression of let-7. Furthermore, propranolol treatment reduced the proliferation of induced pluripotent stem cells and induced epithelial-mesenchymal transition. CONCLUSIONS This work uncovers the role of the LIN28B/let-7 switch in IH pathogenesis and provides a novel mechanism by which propranolol induces IH involution. Furthermore, it provides therapeutic implications for cancers in which the LIN28/let-7 pathway is imbalanced.
Collapse
Affiliation(s)
- Ezinne Francess Mong
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Kemal Marc Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - John Canfield
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John Lockhart
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Jeffrey VanWye
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Andrew Matar
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John C M Tsibris
- Department of Obstetrics and Gynecology (J.C.M.T.), Morsani College of Medicine, University of South Florida, Tampa
| | - June K Wu
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York (J.K.W.)
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - Hana Totary-Jain
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| |
Collapse
|
33
|
Li J, Li Q, Chen L, Gao Y, Zhou B, Li J. Competitive endogenous RNA networks: integrated analysis of non-coding RNA and mRNA expression profiles in infantile hemangioma. Oncotarget 2018; 9:11948-11963. [PMID: 29552284 PMCID: PMC5844720 DOI: 10.18632/oncotarget.23946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/30/2017] [Indexed: 01/04/2023] Open
Abstract
Infantile hemangioma (IH) is the most common vascular tumour in infants. The pathogenesis of IH is complex and poorly understood. Therefore, achieving a deeper understanding of IH pathogenesis is of great importance. Here, we used the Ribo-Zero RNA-Seq and HiSeq methods to examine the global expression profiles of protein-coding transcripts and non-coding RNAs, including miRNAs and lncRNAs, in IH and matched normal skin controls. Bioinformatics assessments including gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed. Of the 16370 identified coding transcripts, only 144 were differentially expressed (fold change ≥ 2, P ≤ 0.05), including 84 up-regulated and 60 down-regulated transcripts in the IH samples compared with the matched normal skin controls. Gene ontology analysis of these differentially expressed transcripts revealed 60 genes involved in immune system processes, 62 genes involved in extracellular region regulation, and 35 genes involved in carbohydrate derivative binding. In addition, 256 lncRNAs and 142 miRNAs were found to be differentially expressed. Of these, 177 lncRNAs and 42 miRNAs were up-regulated in IH, whereas 79 lncRNAs and 100 miRNAs were down-regulated. By analysing the Ribo-Zero RNA-Seq data in combination with the matched miRNA profiles, we identified 1256 sponge modulators that participate in 87 miRNA-mediated, 70 lncRNA-mediated and 58 mRNA-mediated interactions. In conclusion, our study uncovered a competitive endogenous RNA (ceRNA) network that could further the understanding of the mechanisms underlying IH development and supply new targets for investigation.
Collapse
Affiliation(s)
- Jun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Qian Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Ling Chen
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yanli Gao
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Bei Zhou
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Jingyun Li
- Department of Plastic and Cosmetic Surgery, Maternal and Child Health Medical Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| |
Collapse
|
34
|
Infantile hemangioma: factors causing recurrence after propranolol treatment. Pediatr Res 2018; 83:175-182. [PMID: 29019471 DOI: 10.1038/pr.2017.220] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
BackgroundPropranolol is the first-choice treatment for severe infantile hemangioma (IH). However, 10- 30% of lesions relapse after propranolol treatment. The mechanisms underlying IH recurrence after propranolol treatment have not been completely elucidated.MethodsThis study combined an examination of hemodynamic changes with research regarding hemangioma stem cells (hscs) with differentially expressed microRNAs (miRNAs) to identify the factors affecting IH recurrence after propranolol treatment. Hemodynamic changes were monitored in 21 recurrent cases using high-frequency color Doppler ultrasound, and hscs were treated with different concentrations of propranolol. The levels of differentially expressed miRNAs and the activity of related pathways were then compared between 18 recurrent and 20 non-recurrent IH cases.ResultsDuring treatment, lesion depth and vessel density decreased, and the lesion resistance index increased. Obvious lesions and vessel signals were observed in recurrent cases compared with non-recurrent cases. Propranolol effectively inhibited hscs proliferation. Twenty-two differentially expressed miRNAs were found in the recurrent group compared with the non-recurrent group.ConclusionRecurrence may be attributed to a combination of events. Serum biomarkers and drug treatments for IH recurrence must be studied further.
Collapse
|
35
|
Wang Y, Dai YX, Wang SQ, Qiu MK, Quan ZW, Liu YB, Ou JM. miR-199a-5p inhibits proliferation and induces apoptosis in hemangioma cells through targeting HIF1A. Int J Immunopathol Pharmacol 2017; 31:394632017749357. [PMID: 29268640 PMCID: PMC5849215 DOI: 10.1177/0394632017749357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) exhibit a crucial role in the regulation of angiogenesis and
tumor progression, of which miR-199a-5p (miR-199a) has been reported to function
as a tumor suppressor in multiple malignancies. However, the precise mechanisms
underlying miR-199a in hemangiomas (HAs) remain elusive. In this study, we found
that miR-199a had low expression level, while proliferating cell nuclear antigen
(PCNA) had high expression level in proliferating-phase HAs compared with the
involuting-phase HAs and normal tissues. Spearman correlation analysis revealed
the negative correlation of miR-199a with PCNA expression in proliferating-phase
HAs. In vitro experiments showed that restoration of miR-199a suppressed cell
proliferation capability and induced cell apoptosis in HA-derived endothelial
cells (HDEC) and CRL-2586 EOMA cells, followed with decreased PCNA expression
and increased cleaved caspase-3 expression, but miR-199a inhibitor reversed
these effects. Furthermore, HIF1A was identified as a target of miR-199a and had
negative correlation with miR-199a expression in proliferating-phase HAs.
Overexpression of HIF1A attenuated the anti-proliferation effect of miR-199a
mimic in HAs cells. Taken together, our findings demonstrate that miR-199a may
inhibit proliferation and induce apoptosis in HAs cells via targeting HIF1A and
provide a potential therapeutic target for HAs.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Xin Dai
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-Qing Wang
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming-Ke Qiu
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi-Wei Quan
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying-Bin Liu
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing-Min Ou
- Department of General Surgery, Xin Hua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Fu C, Lv R, Xu G, Zhang L, Bi J, Lin L, Liu X, Huo R. Circular RNA profile of infantile hemangioma by microarray analysis. PLoS One 2017; 12:e0187581. [PMID: 29095957 PMCID: PMC5667857 DOI: 10.1371/journal.pone.0187581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a recently identified class of noncoding RNAs that participate in several physiological processes. However, the expression of circRNAs in infantile hemangioma (IH) remains unknown. Methods The profile of circRNAs was assessed by microarray in four pairs of IH and adjacent skin tissues. The expression of circRNAs was validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, circRNA-microRNAs (miRNA)-mRNA networks were constructed using bioinformatics tools. Results 234 up- and 374 down- regulated circRNAs were identified in IH by microarray. Among them, the expression of two up-regulated circRNAs (hsa_circRNA_100933 and hsa_circRNA_100709) and one down-regulated circRNA (hsa_circRNA_104310) was confirmed by qRT-PCR. In addition, 3,019 miRNA response elements (MREs) of circRNAs were predicted, and two circRNA-miRNA-mRNA networks were constructed, including 100 and 94 target genes of hsa_circRNA_100933 and hsa_circRNA_104310, respectively. GO and pathway analysis showed that both networks participated in angiogenesis and vascular development-related biological processes. Conclusions This is the first study to reveal the profiling of circRNAs in IH and pave the way for further characterization of the role of circRNAs in the pathogenesis of IH.
Collapse
Affiliation(s)
- Cong Fu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Renrong Lv
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Guangqi Xu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Linfeng Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Jianhai Bi
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Li Lin
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xiaowen Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
- * E-mail:
| |
Collapse
|
37
|
Chen J, Li C, Li Y, Wang Y. Mechanisms of Action of MicroRNAs in Infantile Hemangioma Tissue and Vascular Endothelial Cells in Different Periods. Med Sci Monit 2017; 23:4214-4224. [PMID: 28862249 PMCID: PMC5592803 DOI: 10.12659/msm.902374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The aim of this study was to investigate the developmental mechanisms of infantile hemangioma (IH) from the microRNA level. Material/Methods A total of 63 biological specimens of IH were obtained from the First Affiliated Hospital of Jinzhou Medical University and we assessed related miRNAs. Magnetic bead sorting, endocytosis test, canalization assay, and immunofluorescence detection were performed. The IH-derived cells were transfected with related factors and then we assessed the apoptosis and invasion. Results The contents of MiR-455, miR-206, and miR-29a in the proliferative period group (PP) were lower than in the complete regression period group (CR) (P<0.05), and the content of miR-29a in the regression period group (RP) was lower than in the group CR (P<0.05). The post-sorting proliferation capacity was faster than in human umbilical vein endothelial cells, and IH-derived vascular endothelial cells (VECs) exhibited faster canalization ability. The cells transfected with miR-29a exhibited obvious apoptosis 48 h later, the cells transfected with miR-206 exhibited significantly reduced proliferation capacity as well as apoptosis 48 h later, and the invasion capacity was decreased 24 h after transfection. Conclusions miR-29a, miR-206, and miR-455 are differently expressed in different periods of IH, and may participate in regulating multiple functions during the progression of IH.
Collapse
Affiliation(s)
- Junjiang Chen
- Medical Cosmetology Ward, 1st Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Chen Li
- Biobank, 1st Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Yuqiang Li
- Biobank, 1st Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| | - Yu Wang
- Biobank, 1st Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China (mainland)
| |
Collapse
|
38
|
The utility of GLUT1 as a diagnostic marker in cutaneous vascular anomalies: A review of literature and recommendations for daily practice. Pathol Res Pract 2017; 213:591-597. [DOI: 10.1016/j.prp.2017.04.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/08/2017] [Accepted: 04/09/2017] [Indexed: 11/20/2022]
|
39
|
Harbi S, Park H, Gregory M, Lopez P, Chiriboga L, Mignatti P. Arrested Development: Infantile Hemangioma and the Stem Cell Teratogenic Hypothesis. Lymphat Res Biol 2017; 15:153-165. [PMID: 28520518 DOI: 10.1089/lrb.2016.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early-life programming is defined by the adaptive changes made by the fetus in response to an adverse in utero environment. Infantile hemangioma (IH), a vascular anomaly, is the most common tumor of infancy. Here we take IH as the tumor model to propose the stem cell teratogenic hypothesis of tumorigenesis and the potential involvement of the immune system. OBJECTIVES Teratogenic agents include chemicals, heavy metals, pathogens, and ionizing radiation. To investigate the etiology and pathogenesis of IH, we hypothesized that they result from a teratogenic mechanism. Immature, incompletely differentiated, dysregulated progenitor cells (multipotential stem cells) are arrested in development with vasculogenic, angiogenic, and tumorigenic potential due to exposure to teratogenic agents such as extrinsic factors that disrupt intrinsic factors via molecular mimicry. During the critical period of immunological tolerance, environmental exposure to immunotoxic agents may harness the teratogenic potential in the developing embryo or fetus and modify the early-life programming algorithm by altering normal fetal development, causing malformations, and inducing tumorigenesis. Specifically, exposure to environmental agents may interfere with physiological signaling pathways and contribute to the generation of IH, by several mechanisms. DISCUSSION An adverse in utero environment no longer serves as a sustainable environment for proper embryogenesis and normal development. Targeted disruption of stem cells by extrinsic factors can alter the genetic program. CONCLUSIONS This article offers new perspectives to stimulate discussion, explore novel experimental approaches (such as immunotoxicity/vasculotoxicity assays and novel isogenic models), and to address the questions raised to convert the hypotheses into nontoxic, noninvasive treatments.
Collapse
Affiliation(s)
| | - Hannah Park
- 2 Department of Epidemiology, University of California , Irvine, School of Medicine, Irvine, California
| | - Michael Gregory
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Peter Lopez
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Luis Chiriboga
- 3 Department of Pathology, New York University School of Medicine , New York, New York
| | - Paolo Mignatti
- 4 Department of Medicine, New York University School of Medicine , New York, New York.,5 Department of Cell Biology, New York University School of Medicine , New York, New York
| |
Collapse
|
40
|
Epigenetic Alterations in Parathyroid Cancers. Int J Mol Sci 2017; 18:ijms18020310. [PMID: 28157158 PMCID: PMC5343846 DOI: 10.3390/ijms18020310] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Parathyroid cancers (PCas) are rare malignancies representing approximately 0.005% of all cancers. PCas are a rare cause of primary hyperparathyroidism, which is the third most common endocrine disease, mainly related to parathyroid benign tumors. About 90% of PCas are hormonally active hypersecreting parathormone (PTH); consequently patients present with complications of severe hypercalcemia. Pre-operative diagnosis is often difficult due to clinical features shared with benign parathyroid lesions. Surgery provides the current best chance of cure, though persistent or recurrent disease occurs in about 50% of patients with PCas. Somatic inactivating mutations of CDC73/HRPT2 gene, encoding parafibromin, are the most frequent genetic anomalies occurring in PCas. Recently, the aberrant DNA methylation signature and microRNA expression profile have been identified in PCas, providing evidence that parathyroid malignancies are distinct entities from parathyroid benign lesions, showing an epigenetic signature resembling some embryonic aspects. The present paper reviews data about epigenetic alterations in PCas, up to now limited to DNA methylation, chromatin regulators and microRNA profile.
Collapse
|