1
|
Wang X, Zhang Y, Xu C, Li Q, Ji P, Liu H, Zhang Y, Jin J, Yuan Z, Yuan M, Feng P, Wu Y, Liu W, Shen H, Wang P. MGP regulates the adipogenic differentiation of mesenchymal stem cells in osteoporosis via the Ca2+/CaMKII/RIP140/FABP3 axis. Cell Death Discov 2025; 11:166. [PMID: 40216750 PMCID: PMC11992250 DOI: 10.1038/s41420-025-02472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
The dysregulation of bone marrow mesenchymal stem cells (BM-MSCs) is crucial in the pathogenesis of osteoporosis, and adipogenic differentiation of BM-MSCs is considered an essential factor in this process. However, the mechanisms underlying the regulation of MSC adipogenic differentiation require further investigation. MGP (Matrix Gla Protein) was reported to impair the osteogenic differentiation. However, the mechanisms through which MGP regulates osteoporosis and bone-fat imbalance in MSCs are still unclear. In this study, we confirmed that the expression of MGP upregulated in osteoporosis and has a negative correlation with BMD (bone mineral density). Gain- and loss-of-function experiments were performed to ensure the role of MGP in MSC adipogenic differentiation. Mechanistically, MGP increased intracellular free Ca2+ levels and enhanced CaMKII phosphorylation, which in turn activated RIP140 protein degradation. This led to an increase in the transcription of FABP3, ultimately promoting adipogenic differentiation in MSCs. Furthermore, we demonstrated that using recombinant adeno-associated virus 9 (rAAV9) to silence MGP has the effect of alleviating bone loss and reversing the excessive bone marrow adipose tissue in mice with osteoporosis. In summary, our research has unveiled the regulatory role of MGP/Ca2+/CaMKII/RIP140/FABP3 axis in adipogenic differentiation in MSC and it might be a promising approach for osteoporosis treatment.
Collapse
Affiliation(s)
- Xinglang Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yunhui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Chenhao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Quanfeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Pengfei Ji
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Huatao Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yibin Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Jiahao Jin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Zihao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Miao Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Pei Feng
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China.
| |
Collapse
|
2
|
Chandra A, Law SF, Pignolo RJ. Changing landscape of hematopoietic and mesenchymal cells and their interactions during aging and in age-related skeletal pathologies. Mech Ageing Dev 2025; 225:112059. [PMID: 40220914 DOI: 10.1016/j.mad.2025.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Aging profoundly impacts mesenchymal and hematopoietic lineage cells, including their progenitors-the skeletal stem cells (SSCs) and hematopoietic stem cells (HSCs), respectively. SSCs are crucial for skeletal development, homeostasis, and regeneration, maintaining bone integrity by differentiating into osteoblasts, adipocytes, and other lineages that contribute to the bone marrow (BM) microenvironment. Meanwhile, HSCs sustain hematopoiesis and immune function. With aging, SSCs and HSCs undergo significant functional decline, partly driven by cellular senescence-a hallmark of aging characterized by irreversible growth arrest, secretion of pro-inflammatory factors (senescence associated secretory phenotype, SASP), and impaired regenerative potential. In SSCs, senescence skews lineage commitment toward adipogenesis at the expense of osteogenesis, contributing to increased bone marrow adiposity (BMAd), reduced bone quality, and osteoporosis. Similarly, aged HSCs exhibit diminished self-renewal, biased differentiation, and heightened inflammation, compromising hematopoietic output and immune function. In this review, we examine the age-related cellular and molecular changes in SSCs and HSCs, their lineage decisions in the aging microenvironment, and the interplay between skeletal and hematopoietic compartments. We also discuss the role of senescence-driven alterations in BM homeostasis and how targeting cellular aging mechanisms may offer therapeutic strategies for mitigating age-related skeletal and hematopoietic decline.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA.
| | - Susan F Law
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Wu Y, Zhu Y, Chen J, Song L, Wang C, Wu Y, Chen Y, Zheng J, Zhai Y, Zhou X, Liu Y, Du Y, Cui W. Boosting mRNA-Engineered Monocytes via Prodrug-Like Microspheres for Bone Microenvironment Multi-Phase Remodeling. Adv Healthc Mater 2025; 14:e2403212. [PMID: 39502012 DOI: 10.1002/adhm.202403212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Indexed: 03/18/2025]
Abstract
Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system. Then, monocyte-targeting IL-4 mRNA-LNPs are then prepared and integrated into injectable microspheres (mRNA-ICA@GM) via electrostatic and hydrogen bond interactions. After bone-defect injection, LNPs are controlled released from mRNA-ICA@GM within 3 days, rapidly transfecting monocytes for monocyte IL-4 mRNA-engineering, which effectively suppressed acute inflammatory responses via polarization programming and paracrine signaling. Afterwards, ICA is sustainably released as well via cleavable boronate esters across multiple stages, cooperatively boosting the mRNA-engineered monocytes to inhibit coenocytic fusion and osteoclastic function. Both in vitro and in vivo data indicated that mRNA-ICA@GM can not only reverse the inflammatory environment but also suppress monocyte-derived osteoclast formation to accelerate bone repair. In summary, mRNA-engineered monocytes and ICA prodrug-like microspheres are combined to achieve long-lasting multi-stage bone microenvironment regulation, offering a promising repair strategy.
Collapse
Affiliation(s)
- Yuansheng Wu
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yingjie Zhu
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
| | - Jie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Lili Song
- Microbiology Laboratory, Huangpu District Center for Disease Control and Prevention, 309 Xietu Road, Shanghai, 200023, P. R. China
| | - Chunping Wang
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jiancheng Zheng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuankun Zhai
- School of Stomatology, Henan University, 85 Minglun Street, Kaifeng, 475000, P. R. China
| | - Xiang Zhou
- Traditional Chinese Medicine Hospital of Dianjiang, 502 Gongnong Road, Dianjiang, Chongqing, 408300, P. R. China
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, 82 Qiming South Road, Luoyang, 471000, P. R. China
- Henan University of Chinese Medicine, 156 Jinshui East Road, Zhengzhou, 450046, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
4
|
Bai X, Wang Y, Ma X, Yang Y, Deng C, Sun M, Lin C, Zhang L. Periodontal ligament cells-derived exosomes promote osteoclast differentiation via modulating macrophage polarization. Sci Rep 2024; 14:1465. [PMID: 38233593 PMCID: PMC10794214 DOI: 10.1038/s41598-024-52073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
Several studies have demonstrated that exosomes (Exos) are involved in the regulation of macrophage polarization and osteoclast differentiation. However, the characteristics as well as roles of exosomes from human periodontal ligament cells (hPDLCs-Exos) in M1/M2 macrophage polarization and osteoclast differentiation remain unclear. Here, periodontal ligament cells were successfully extracted by method of improved Type-I collagen enzyme digestion. hPDLCs-Exos were extracted by ultracentrifugation. hPDLCs-Exos were identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting (WB). Osteoclast differentiation was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), WB and tartrate-resistant acid phosphatase (TRAP) staining. M1/M2 macrophage polarization were evaluated by RT-qPCR and WB. The results showed hPDLCs-Exos promoted osteoclast differentiation and M2 macrophage polarization, but inhibited M1 macrophage polarization. Moreover, M1 macrophages inhibited osteoclast differentiation, whereas M2 macrophages promoted osteoclast differentiation. It has shown that hPDLCs-Exos promoted osteoclast differentiation by inhibiting M1 and promoting M2 macrophage polarization.
Collapse
Affiliation(s)
- Xinyi Bai
- School of Medical, NanKai University, Tianjin, 300071, China
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Yingxue Wang
- Tianjin Kanghui Hospital, Tianjin, Tianjin, 300385, China
| | - Xinyuan Ma
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | | | - Cong Deng
- School of Medical, NanKai University, Tianjin, 300071, China
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
| | - Mengling Sun
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China
- School of Clinical Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Chen Lin
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| | - Linkun Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, China.
| |
Collapse
|
5
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
6
|
Beaver LM, Prati M, Gilman KE, Luo T, Shay NF, Branscum AJ, Turner RT, Iwaniec UT. Diet composition influences the effect of high fat diets on bone in growing male mice. Bone 2023; 176:116888. [PMID: 37652285 DOI: 10.1016/j.bone.2023.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
The effect of diet-induced obesity on bone in rodents is variable, with bone mass increases, decreases, and no impact reported. The goal of this study was to evaluate whether the composition of obesogenic diet may influence bone independent of its effect on body weight. As proof-of-principle, we used a mouse model to compare the skeletal effects of a commonly used high fat 'Western' diet and a modified high fat diet. The modified high fat diet included ground English walnut and was isocaloric for macronutrients, but differed in fatty acid composition and contained nutrients (e.g. polyphenols) not present in the standard 'Western' diet. Eight-week-old mice were randomized into 1 of 3 dietary treatments (n = 8/group): (1) low fat control diet (LF; 10 % kcal fat); (2) high fat 'Western' diet (HF; 46 % kcal fat as soybean oil and lard); or (3) modified high fat diet supplemented with ground walnuts (HF + walnut; 46 % kcal fat as soybean oil, lard, and walnut) and maintained on their respective diets for 9 weeks. Bone response in femur was then evaluated using dual energy x-ray absorptiometry, microcomputed tomography, and histomorphometry. Consumption of both obesogenic diets resulted in increased weight gain but differed in impact on bone and bone marrow adiposity in distal femur metaphysis. Mice consuming the high fat 'Western' diet exhibited a tendency for lower cancellous bone volume fraction and connectivity density, and had lower osteoblast-lined bone perimeter (an index of bone formation) and higher bone marrow adiposity than low fat controls. Mice fed the modified high fat diet did not differ from mice fed control (low fat) diet in cancellous bone microarchitecture, or osteoblast-lined bone perimeter, and exhibited lower bone marrow adiposity compared to mice fed the 'Western' diet. This proof-of-principal study demonstrates that two obesogenic diets, similar in macronutrient distribution and induction of weight gain, can have different effects on cancellous bone in distal femur metaphysis. Because the composition of the diets used to induce obesity in rodents does not recapitulate a common human diet, our finding challenges the translatability of rodent studies evaluating the impact of diet-induced obesity on bone.
Collapse
Affiliation(s)
- Laura M Beaver
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Maud Prati
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Kristy E Gilman
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Ting Luo
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Neil F Shay
- Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA; Center for Healthy Aging Research, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
7
|
Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater 2023; 23:156-169. [PMID: 36406248 PMCID: PMC9661677 DOI: 10.1016/j.bioactmat.2022.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The skeletal system is responsible for weight-bearing, organ protection, and movement. Bone diseases caused by trauma, infection, and aging can seriously affect a patient's quality of life. Bone targeted biomaterials are suitable for the treatment of bone diseases. Biomaterials with bone-targeted properties can improve drug utilization and reduce side effects. A large number of bone-targeted micro-nano materials have been developed. However, only a few studies addressed bone-targeted hydrogel. The large size of hydrogel makes it difficult to achieve systematic targeting. However, local targeted hydrogel still has significant prospects. Molecules in bone/cartilage extracellular matrix and bone cells provide binding sites for bone-targeted hydrogel. Drug delivery systems featuring microgels with targeting properties is a key construction strategy for bone-targeted hydrogel. Besides, injectable hydrogel drug depot carrying bone-targeted drugs is another strategy. In this review, we summarize the bone-targeted hydrogel through application environment, construction strategies and disease applications. We hope this article will provide a reference for the development of bone-targeted hydrogels. We also hope this article could increase awareness of bone-targeted materials. Introducing the microenvironment and target molecules in different parts of long bones. Summarizing the construction strategy of micro/nanoparticle hydrogel with bone targeting properties. Summarizing the construction strategy of hydrogel based depot carrying bone-targeted drugs. Reporting the application and effect of bone targeting hydrogel in common bone diseases.
Collapse
|
8
|
Orvalho JM, Fernandes JCH, Moraes Castilho R, Fernandes GVO. The Macrophage’s Role on Bone Remodeling and Osteogenesis: a Systematic Review. Clin Rev Bone Miner Metab 2023. [DOI: 10.1007/s12018-023-09286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
9
|
Yang CH, Jeyaprakash N, Tseng YJ. Numerical Simulation and Non-Destructive Characterization of Material Property and Defect Analysis of Cortical Bone Using Laser Ultrasound Techniques. ACS Biomater Sci Eng 2021; 7:3917-3932. [PMID: 34325509 DOI: 10.1021/acsbiomaterials.1c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of bone quality assessment has received extensive attention, and a large number of researchers continue to invest in related research activities. To get closer to the real situation, this study intends to investigate the long bones of cattle. A quantitative laser ultrasound visualization (QLUV) system was used to measure the images transmitted by the guided waves on the long bones, and the internal defects of the long bones were detected using wave propagation behavior. Then, linear scanning was performed through a laser ultrasound technique (LUT) to measure the dispersion curve of the cortical bone, and the results were compared with finite element simulations. Further, LUT was used to measure the material properties of the cortical bone in all directions. Finally, the long bones were scanned by computerized tomography to analyze the pore direction and distribution. Further, the relationship between pore direction and material properties was studied. The results showed that the obtained wave propagation image was consistent with the time-domain waveform signal and the finite element analysis results. The experimental and simulation results of wave velocity showed an error of 0.26 to 1.56% compared with the literature. The plate-shaped cortical bone showed that the phase velocity of the guided wave is higher than the circumferential direction. The defect location was identified through wave propagation behavior using the QLUV system. The elastic constant of the cortical bone was measured, and it showed the same trend as the results obtained from the tensile test in the literature. Also, the pore distribution indicated that the cortical bone porosity has the same trend as elastic constants. The elastic constants along the longitudinal direction were greater than the transversal direction. This laser ultrasound technique has been developed with an aim of having a better resolution and also as a potential application in osteoporosis conditions.
Collapse
Affiliation(s)
- Che-Hua Yang
- Additive Manufacturing Center for Mass Customization Production, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.,Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - N Jeyaprakash
- Additive Manufacturing Center for Mass Customization Production, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.,Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Yu-Jing Tseng
- Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| |
Collapse
|
10
|
Melnik BC, Stremmel W, Weiskirchen R, John SM, Schmitz G. Exosome-Derived MicroRNAs of Human Milk and Their Effects on Infant Health and Development. Biomolecules 2021; 11:biom11060851. [PMID: 34200323 PMCID: PMC8228670 DOI: 10.3390/biom11060851] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple biologically active components of human milk support infant growth, health and development. Milk provides a wide spectrum of mammary epithelial cell-derived extracellular vesicles (MEVs) for the infant. Although the whole spectrum of MEVs appears to be of functional importance for the growing infant, the majority of recent studies report on the MEV subfraction of milk exosomes (MEX) and their miRNA cargo, which are in the focus of this review. MEX and the dominant miRNA-148a play a key role in intestinal maturation, barrier function and suppression of nuclear factor-κB (NF-κB) signaling and may thus be helpful for the prevention and treatment of necrotizing enterocolitis. MEX and their miRNAs reach the systemic circulation and may impact epigenetic programming of various organs including the liver, thymus, brain, pancreatic islets, beige, brown and white adipose tissue as well as bones. Translational evidence indicates that MEX and their miRNAs control the expression of global cellular regulators such as DNA methyltransferase 1-which is important for the up-regulation of developmental genes including insulin, insulin-like growth factor-1, α-synuclein and forkhead box P3-and receptor-interacting protein 140, which is important for the regulation of multiple nuclear receptors. MEX-derived miRNA-148a and miRNA-30b may stimulate the expression of uncoupling protein 1, the key inducer of thermogenesis converting white into beige/brown adipose tissue. MEX have to be considered as signalosomes derived from the maternal lactation genome emitted to promote growth, maturation, immunological and metabolic programming of the offspring. Deeper insights into milk's molecular biology allow the conclusion that infants are both "breast-fed" and "breast-programmed". In this regard, MEX miRNA-deficient artificial formula is not an adequate substitute for breastfeeding, the birthright of all mammals.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Correspondence: ; Tel.: +49-5241-988060
| | - Wolfgang Stremmel
- Private Praxis for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Swen Malte John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
- Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), University of Osnabrück, D-49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany;
| |
Collapse
|
11
|
Yao D, Huang L, Ke J, Zhang M, Xiao Q, Zhu X. Bone metabolism regulation: Implications for the treatment of bone diseases. Biomed Pharmacother 2020; 129:110494. [PMID: 32887023 DOI: 10.1016/j.biopha.2020.110494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bone cells in the human body are continuously engaged in cellular metabolism, including the interaction between bone cells, the interaction between the erythropoietic cells of the bone marrow and stromal cells, for the remodeling and reconstruction of bone. Osteoclasts and osteoblasts play an important role in bone metabolism. Diseases occur when bone metabolism is abnormal, but little is known about the signaling pathways that affect bone metabolism. The study of these signaling pathways will help us to use the relevant techniques to intervene, so as to improve the condition. The study of these signaling pathways will help us to use the relevant techniques to intervene, so as to improve the condition. I believe they will shine in the diagnosis and treatment of future clinical bone diseases.
Collapse
Affiliation(s)
- Danqi Yao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Lianfang Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Jianhao Ke
- College of Agriculture, South China Agricultural University, Guangzhou 510046, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Shandong University, Zibo 255000, China.
| | - Qin Xiao
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
12
|
Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, Wang W, Zhu Q, Lu Z, Cao X. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis 2020; 11:330. [PMID: 32382069 PMCID: PMC7205892 DOI: 10.1038/s41419-020-2548-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/20/2022]
Abstract
Quaking (QKI), an RNA-binding protein, has been reported to exhibit numerous biological functions, such as mRNA regulation, cancer suppression, and anti-inflammation. However, little known about the effects of QKI on bone metabolism. In this study, we used a monocyte/macrophage-specific QKI knockout transgenic mouse model to investigate the effects of QKI deficiency on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. The loss of QKI promoted the formation of multinucleated tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts (OCs) from bone marrow macrophages, and upregulated the expression of OC-specific markers, including TRAP (Acp5) and cathepsin K (Ctsk). The pro-osteoclastogenesis effect of QKI deficiency was achieved by amplifying the signaling cascades of the NF-κB and mitogen-activated protein kinase (MAPK) pathways; then, signaling upregulated the activation of nuclear factor of activated T cells c1 (NFATc1), which is considered to be the core transcription factor that regulates OC differentiation. In addition, QKI deficiency could inhibit osteoblast (OB) formation through the inflammatory microenvironment. Taken together, our data suggest that QKI deficiency promoted OC differentiation and disrupted bone metabolic balance, and eventually led to osteopenia under physiological conditions and aggravated the degree of osteoporosis under pathological conditions.
Collapse
Affiliation(s)
- Tianshu Du
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zhao Yan
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Shu Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Guo Chen
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zichen Ye
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Wenwen Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Qingsheng Zhu
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Zifan Lu
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Xiaorui Cao
- PLA Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, No.17, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
13
|
Gingery A, Subramaniam M, Pitel KS, Li X, Ke HZ, Turner RT, Iwaniec UT, Hawse JR. Sclerostin antibody treatment rescues the osteopenic bone phenotype of TGFβ inducible early gene-1 knockout female mice. J Cell Physiol 2020; 235:5679-5688. [PMID: 31975377 DOI: 10.1002/jcp.29500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022]
Abstract
Deletion of TGFβ inducible early gene-1 (TIEG) in mice results in an osteopenic phenotype that exists only in female animals. Molecular analyses on female TIEG knockout (KO) mouse bones identified increased expression of sclerostin, an effect that was confirmed at the protein level in serum. Sclerostin antibody (Scl-Ab) therapy has been shown to elicit bone beneficial effects in multiple animal model systems and human clinical trials. For these reasons, we hypothesized that Scl-Ab therapy would reverse the low bone mass phenotype of female TIEG KO mice. In this study, wildtype (WT) and TIEG KO female mice were randomized to either vehicle control (Veh, n = 12/group) or Scl-Ab therapy (10 mg/kg, 1×/wk, s.c.; n = 12/group) and treated for 6 weeks. Following treatment, bone imaging analyses revealed that Scl-Ab therapy significantly increased cancellous and cortical bone in the femur of both WT and TIEG KO mice. Similar effects also occurred in the vertebra of both WT and TIEG KO animals. Additionally, histomorphometric analyses revealed that Scl-Ab therapy resulted in increased osteoblast perimeter/bone perimeter in both WT and TIEG KO animals, with a concomitant increase in P1NP, a serum marker of bone formation. In contrast, osteoclast perimeter/bone perimeter and CTX-1 serum levels were unaffected by Scl-Ab therapy, irrespective of mouse genotype. Overall, our findings demonstrate that Scl-Ab therapy elicits potent bone-forming effects in both WT and TIEG KO mice and effectively increases bone mass in female TIEG KO mice.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Orthopedics, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | - Kevin S Pitel
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Xiaodong Li
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, California
| | | | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Regulation of Hedgehog signaling Offers A Novel Perspective for Bone Homeostasis Disorder Treatment. Int J Mol Sci 2019; 20:ijms20163981. [PMID: 31426273 PMCID: PMC6719140 DOI: 10.3390/ijms20163981] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/10/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The hedgehog (HH) signaling pathway is central to the regulation of bone development and homeostasis. HH signaling is not only involved in osteoblast differentiation from bone marrow mesenchymal stem cells (BM-MSCs), but also acts upstream within osteoblasts via the OPG/RANK/RANKL axis to control the expression of RANKL. HH signaling has been found to up-regulate parathyroid hormone related protein (PTHrP) expression in osteoblasts, which in turn activates its downstream targets nuclear factor of activated T cells (NFAT) and cAMP responsive element binding protein (CREB), and as a result CREB and NFAT cooperatively increase RANKL expression and osteoclastogenesis. Osteoblasts must remain in balance with osteoclasts in order to avoid excessive bone formation or resorption, thereby maintaining bone homeostasis. This review systemically summarizes the mechanisms whereby HH signaling induces osteoblast development and controls RANKL expression through PTHrP in osteoblasts. Proper targeting of HH signaling may offer a therapeutic option for treating bone homeostasis disorders.
Collapse
|
15
|
Park SW, Nhieu J, Persaud SD, Miller MC, Xia Y, Lin YW, Lin YL, Kagechika H, Mayo KH, Wei LN. A new regulatory mechanism for Raf kinase activation, retinoic acid-bound Crabp1. Sci Rep 2019; 9:10929. [PMID: 31358819 PMCID: PMC6662813 DOI: 10.1038/s41598-019-47354-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/30/2019] [Indexed: 12/31/2022] Open
Abstract
The rapidly accelerated fibrosarcoma (Raf) kinase is canonically activated by growth factors that regulate multiple cellular processes. In this kinase cascade Raf activation ultimately results in extracellular regulated kinase 1/2 (Erk1/2) activation, which requires Ras binding to the Ras binding domain (RBD) of Raf. We recently reported that all-trans retinoic acid (atRA) rapidly (within minutes) activates Erk1/2 to modulate cell cycle progression in stem cells, which is mediated by cellular retinoic acid binding protein 1 (Crabp1). But how atRA-bound Crabp1 regulated Erk1/2 activity remained unclear. We now report Raf kinase as the direct target of atRA-Crabp1. Molecularly, Crabp1 acts as a novel atRA-inducible scaffold protein for Raf/Mek/Erk in cells without growth factor stimulation. However, Crabp1 can also compete with Ras for direct interaction with the RBD of Raf, thereby negatively modulating growth factor-stimulated Raf activation, which can be enhanced by atRA binding to Crabp1. NMR heteronuclear single quantum coherence (HSQC) analyses reveal the 6-strand β-sheet face of Crabp1 as its Raf-interaction surface. We identify a new atRA-mimicking and Crabp1-selective compound, C3, that can also elicit such an activity. This study uncovers a new signal crosstalk between endocrine (atRA-Crabp1) and growth factor (Ras-Raf) pathways, providing evidence for atRA-Crabp1 as a novel modulator of cell growth. The study also suggests a new therapeutic strategy by employing Crabp1-selective compounds to dampen growth factor stimulation while circumventing RAR-mediated retinoid toxicity.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jennifer Nhieu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shawna D Persaud
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Youlin Xia
- Minnesota NMR Center, University of Minnesota, Twin Cities, Minneapolis, Minnesota, 55455, USA
| | - Yi-Wei Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hiroyuki Kagechika
- Tokyo Medical and Dental University, Institute of Biomaterials and Bioengineering, Tokyo, Japan
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Danvin A, Quillard T, Espitia O, Charrier C, Guyomarch B, Gouëffic Y, Maurel B. Impact of Femoral Ossification on Local and Systemic Cardiovascular Patients' Condition. Ann Vasc Surg 2019; 60:335-345. [PMID: 31200045 DOI: 10.1016/j.avsg.2019.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vascular calcifications are associated with a high cardiovascular morbi-mortality in the coronary territory. In parallel, femoral arteries are more calcified and develop osteoid metaplasia (OM). This study was conducted to assess the predictive value of OM and local inflammation on the occurrence of mid- and long-term adverse cardiovascular events. METHOD Between 2008 and 2015, 86 atheromatous samples were harvested during femoral endarterectomy on 81 patients and processed for histomorphological analyses of calcifications and inflammation (monocytes and B cells). Histological findings were compared with the long-term follow-up of patients, including major adverse cardiac event (MACE), major adverse limb event (MALE), and mortality. Frequencies were presented as percentage, and continuous data, as mean and standard deviation. A P-value < 0.05 was considered statistically significant. RESULTS Median follow-up was 42.4 months (26.9-58.8). Twenty-eight percent of patients underwent a MACE; a MALE occurred in 18 (21%) limbs. Survival rate was 87.2% at 36 months. OM was found in 41 samples (51%), without any significant impact on the occurrence of MACE, MALE, or mortality. Preoperative white blood cell formulae revealed a higher rate of neutrophils associated with MACE (P = 0.04) and MALE (P = 0.0008), correlated with higher B cells counts in plaque samples. CONCLUSIONS OM is part of femoral calcifications in almost 50% of the cases but does not seem to be an independent predictive variable for MACE or MALE. However, a higher rate of B cell infiltration of the plaque and preoperative neutrophil blood count may be predictive of adverse events during follow-up.
Collapse
Affiliation(s)
- Aurore Danvin
- CHU Nantes, l'institut du thorax, service de chirurgie vasculaire, Nantes, France
| | - Thibaut Quillard
- Laboratoire de Physiopathologie de la Résorption Osseuse, Inserm UMR S 1238, Nantes, France
| | - Olivier Espitia
- Laboratoire de Physiopathologie de la Résorption Osseuse, Inserm UMR S 1238, Nantes, France; CHU Nantes, unité de médicine vasculaire, Nantes, France; Université de Nantes, Nantes, France
| | - Céline Charrier
- Laboratoire de Physiopathologie de la Résorption Osseuse, Inserm UMR S 1238, Nantes, France
| | - Béatrice Guyomarch
- CHU Nantes, institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Yann Gouëffic
- CHU Nantes, l'institut du thorax, service de chirurgie vasculaire, Nantes, France; Laboratoire de Physiopathologie de la Résorption Osseuse, Inserm UMR S 1238, Nantes, France; Université de Nantes, Nantes, France
| | - Blandine Maurel
- CHU Nantes, l'institut du thorax, service de chirurgie vasculaire, Nantes, France; Laboratoire de Physiopathologie de la Résorption Osseuse, Inserm UMR S 1238, Nantes, France.
| |
Collapse
|
17
|
Xie Z, Yan D, Zhou Q, Wu Z, Weng S, Boodhun V, Bai B, Shen Z, Tang J, Chen L, Wang B, Yang L. The fast degradation of β-TCP ceramics facilitates healing of bone defects by the combination of BMP-2 and Teriparatide. Biomed Pharmacother 2019; 112:108578. [PMID: 30784943 DOI: 10.1016/j.biopha.2019.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that the degradation and resorption of calcium phosphate ceramics is always relatively slow, which may inhibit calcium phosphate ceramics' replacement by new bone tissues and the ultimate bone defect repair. Bone morphogenetic proteins (BMPs) and Teriparatide (PTH) are extensively applied in the treatment of bone pathologies, while their effects on the degradation of calcium phosphate ceramics is limited. In this study, we tested the effects of BMP and PTH on degradation of β-tricalcium phosphate (β-TCP) ceramics and bone formation on β-TCP in ovariectomized (OVX) rat models. After establishment of femur defect model on OVX rats, the BMP + PTH group's rats were injected Teriparatide (30 μg/kg) subcutaneous every other day, while rats of control group and group BMP were injected equal-to-group volume sterilized saline water. Twelve weeks after femur surgery, all rats were sacrificed for Micro-CT scanning and histology tests. The results showed that BMP facilitated degradation of β-TCP and new bone formation on β-TCP ceramics. And PTH showed an additional effect on degradation of β-TCP when combined with BMP. In addition, the results explained that PTH promoted the remodeling of the bone callus occurred during repair.
Collapse
Affiliation(s)
- Zhongjie Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Deyi Yan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Qiang Zhou
- Department of Orthopaedics Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, Jingxiu Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Zongyi Wu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Sheji Weng
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Viraj Boodhun
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Bingli Bai
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Zijian Shen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Liang Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Bingzhang Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
18
|
Espitia O, Chatelais M, Steenman M, Charrier C, Maurel B, Georges S, Houlgatte R, Verrecchia F, Ory B, Lamoureux F, Heymann D, Gouëffic Y, Quillard T. Implication of molecular vascular smooth muscle cell heterogeneity among arterial beds in arterial calcification. PLoS One 2018; 13:e0191976. [PMID: 29373585 PMCID: PMC5786328 DOI: 10.1371/journal.pone.0191976] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/15/2018] [Indexed: 11/29/2022] Open
Abstract
Vascular calcification is a strong and independent predictive factor for cardiovascular complications and mortality. Our previous work identified important discrepancies in plaque composition and calcification types between carotid and femoral arteries. The objective of this study is to further characterize and understand the heterogeneity in vascular calcification among vascular beds, and to identify molecular mechanisms underlying this process. We established ECLAGEN biocollection that encompasses human atherosclerotic lesions and healthy arteries from different locations (abdominal, thoracic aorta, carotid, femoral, and infrapopliteal arteries) for histological, cell isolation, and transcriptomic analysis. Our results show that lesion composition differs between these locations. Femoral arteries are the most calcified arteries overall. They develop denser calcifications (sheet-like, nodule), and are highly susceptible to osteoid metaplasia. These discrepancies may derive from intrinsic differences between SMCs originating from these locations, as microarray analysis showed specific transcriptomic profiles between primary SMCs isolated from each arterial bed. These molecular differences translated into functional disparities. SMC from femoral arteries showed the highest propensity to mineralize due to an increase in basal TGFβ signaling. Our results suggest that biological heterogeneity of resident vascular cells between arterial beds, reflected by our transcriptomic analysis, is critical in understanding plaque biology and calcification, and may have strong implications in vascular therapeutic approaches.
Collapse
Affiliation(s)
- Olivier Espitia
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
| | - Mathias Chatelais
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Marja Steenman
- Institut du Thorax, Inserm UMR1087, Faculté de Médecine, Université de Nantes, Nantes Atlantique Universités, Nantes, France
| | - Céline Charrier
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Blandine Maurel
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
| | - Steven Georges
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Rémi Houlgatte
- Inserm U954, Faculty of Medicine, Nancy, France, DRCI, University Hospital of Nancy, Nancy, France
| | - Franck Verrecchia
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Benjamin Ory
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - François Lamoureux
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, site René Gauducheau, Boulevard Professeur Jacques Monod, Saint-Herblain, France
- University of Sheffield, Department of Oncology and Metabolism, INSERM, European Associated Laboratory “Sarcoma Research Unit”, Medical School, Sheffield, United Kingdom
- University of Nantes, Faculty of Medicine, Nantes, France
| | - Yann Gouëffic
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
| | - Thibaut Quillard
- INSERM, UMR 1238, Nantes, France; Université de Nantes, Nantes Atlantique Universités, Laboratoire « Sarcome osseux et remodelage des tissus osseux calcifiés », Faculté de Médecine, Nantes, France
- CHU Hôtel Dieu, Nantes, France
- * E-mail:
| |
Collapse
|