1
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
2
|
Mohtashami M, Li YR, Lee CR, Zúñiga-Pflücker JC. Thymus Reconstitution in Young and Aged Mice Is Facilitated by In Vitro-Generated Progenitor T Cells. Front Immunol 2022; 13:926773. [PMID: 35874726 PMCID: PMC9304753 DOI: 10.3389/fimmu.2022.926773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged lag in T cell recovery seen in older patients undergoing hematopoietic stem cell transplant (HSCT), after chemo-/radiotherapy, can lead to immune dysfunction. As a result, recovering patients may experience a relapse in malignancies and opportunistic infections, leading to high mortality rates. The delay in T cell recovery is partly due to thymic involution, a natural collapse in the size and function of the thymus, as individuals age, and partly due to the damage sustained by the thymic stromal cells through exposure to chemo-/radiotherapy. There is a clear need for new strategies to accelerate intrathymic T cell reconstitution when treating aged patients to counter the effects of involution and cancer therapy regimens. Adoptive transfer of human progenitor T (proT) cells has been shown to accelerate T cell regeneration in radiation-treated young mice and to restore thymic architecture in immunodeficient mice. Here, we demonstrate that the adoptive transfer of in vitro-generated proT cells in aged mice (18-24 months) accelerated thymic reconstitution after treatment with chemotherapy and gamma irradiation compared to HSCT alone. We noted that aged mice appeared to have a more limited expansion of CD4-CD8- thymocytes and slower temporal kinetics in the development of donor proT cells into mature T cells, when compared to younger mice, despite following the same chemo/radiation regimen. This suggests a greater resilience of the young thymus compared to the aged thymus. Nevertheless, newly generated T cells from proT cell engrafted aged and young mice were readily present in the periphery accelerating the reappearance of new naïve T cells. Accelerated T cell recovery was also observed in both aged and young mice receiving both proT cells and HSCT. The strategy of transferring proT cells can potentially be used as an effective cellular therapy in aged patients to improve immune recovery and reduce the risk of opportunistic infections post-HSCT.
Collapse
Affiliation(s)
| | - Yue Ru Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Christina R. Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Sharma H, Moroni L. Recent Advancements in Regenerative Approaches for Thymus Rejuvenation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100543. [PMID: 34306981 PMCID: PMC8292900 DOI: 10.1002/advs.202100543] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/04/2021] [Indexed: 05/29/2023]
Abstract
The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.
Collapse
Affiliation(s)
- Himal Sharma
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment of Complex Tissue RegenerationMaastricht UniversityMaastricht6229 ERNetherlands
| |
Collapse
|
4
|
Velardi E, Clave E, Arruda LCM, Benini F, Locatelli F, Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin Immunopathol 2021; 43:101-117. [PMID: 33416938 DOI: 10.1007/s00281-020-00828-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As the thymus represents the primary site of T-cell development, optimal thymic function is of paramount importance for the successful reconstitution of the adaptive immunity after allogeneic hematopoietic stem cell transplantation. Thymus involutes as part of the aging process and several factors, including previous chemotherapy treatments, conditioning regimen used in preparation to the allograft, occurrence of graft-versus-host disease, and steroid therapy that impair the integrity of the thymus, thus affecting its role in supporting T-cell neogenesis. Although the pathways governing its regeneration are still poorly understood, the thymus has a remarkable capacity to recover its function after damage. Measurement of both recent thymic emigrants and T-cell receptor excision circles is valuable tools to assess thymic output and gain insights on its function. In this review, we will extensively discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering. Although none of them is routinely used in the clinic, these approaches have the potential to enhance thymic function and immune recovery, not only in patients given an allograft but also in other conditions characterized by immune deficiencies related to a defective function of the thymus.
Collapse
Affiliation(s)
- Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.
| | - Emmanuel Clave
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Benini
- Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, 00146, Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, F-75010, Paris, France.,Laboratoire d'Immunologie et d'Histocompatibilité, AP-HP, Hopital Saint-Louis, F-75010, Paris, France
| |
Collapse
|
5
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
6
|
Singh J, Mohtashami M, Anderson G, Zúñiga-Pflücker JC. Thymic Engraftment by in vitro-Derived Progenitor T Cells in Young and Aged Mice. Front Immunol 2020; 11:1850. [PMID: 32973763 PMCID: PMC7462002 DOI: 10.3389/fimmu.2020.01850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
T cells play a critical role in mediating antigen-specific and long-term immunity against viral and bacterial pathogens, and their development relies on the highly specialized thymic microenvironment. T cell immunodeficiency can be acquired in the form of inborn errors, or can result from perturbations to the thymus due to aging or irradiation/chemotherapy required for cancer treatment. Hematopoietic stem cell transplant (HSCT) from compatible donors is a cornerstone for the treatment of hematological malignancies and immunodeficiency. Although it can restore a functional immune system, profound impairments exist in recovery of the T cell compartment. T cells remain absent or low in number for many months after HSCT, depending on a variety of factors including the age of the recipient. While younger patients have a shorter refractory period, the prolonged T cell recovery observed in older patients can lead to a higher risk of opportunistic infections and increased predisposition to relapse. Thus, strategies for enhancing T cell recovery in aged individuals are needed to counter thymic damage induced by radiation and chemotherapy toxicities, in addition to naturally occurring age-related thymic involution. Preclinical results have shown that robust and rapid long-term thymic reconstitution can be achieved when progenitor T cells, generated in vitro from HSCs, are co-administered during HSCT. Progenitor T cells appear to rely on lymphostromal crosstalk via receptor activator of NF-κB (RANK) and RANK-ligand (RANKL) interactions, creating chemokine-rich niches within the cortex and medulla that likely favor the recruitment of bone marrow-derived thymus seeding progenitors. Here, we employed preclinical mouse models to demonstrate that in vitro-generated progenitor T cells can effectively engraft involuted aged thymuses, which could potentially improve T cell recovery. The utility of progenitor T cells for aged recipients positions them as a promising cellular therapy for immune recovery and intrathymic repair following irradiation and chemotherapy, even in a post-involution thymus.
Collapse
Affiliation(s)
| | | | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
7
|
Generation and function of progenitor T cells from StemRegenin-1-expanded CD34+ human hematopoietic progenitor cells. Blood Adv 2020; 3:2934-2948. [PMID: 31648315 DOI: 10.1182/bloodadvances.2018026575] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
Broader clinical application of umbilical cord blood (UCB), as a source of hematopoietic stem/progenitor cells (HSPCs), is limited by low CD34+ and T-cell numbers, contributing to slow lymphohematopoietic recovery, infection, and relapse. Studies have evaluated the safety, feasibility, and expedited neutrophil recovery associated with the transplantation of CD34+ HSPCs from ex vivo expansion cultures using the aryl hydrocarbon receptor antagonist StemRegenin-1 (SR1). In a phase 1/2 study of 17 patients who received combined SR1-expanded and unexpanded UCB units, a considerable advantage for enhancing T-cell chimerism was not observed. We previously showed that progenitor T (proT) cells generated in vitro from HSPCs accelerated T-cell reconstitution and restored immunity after hematopoietic stem cell transplantation (HSCT). To expedite immune recovery, we hypothesized that SR1-expanded HSPCs together with proT cells could overcome the known T-cell immune deficiency that occurs post-HSCT. Here, we show that SR1-expanded UCB can induce >250-fold expansion of CD34+ HSPCs, which can generate large numbers of proT cells upon in vitro differentiation. When compared with nonexpanded naive proT cells, SR1 proT cells also showed effective thymus-seeding and peripheral T-cell functional capabilities in vivo despite having an altered phenotype. In a competitive transfer approach, both naive and SR1 proT cells showed comparable thymus-engrafting capacities. Single-cell RNA sequencing of peripheral CD3+ T cells from mice injected with either naive or SR1 proT cells revealed functional subsets of T cells with polyclonal T-cell receptor repertoires. Our findings support the use of SR1-expanded UCB grafts combined with proT-cell generation for decreasing T-cell immunodeficiency post-HSCT.
Collapse
|
8
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Scadden DT. Metcalf Lecture Award: Applying niche biology to engineer T-cell regenerative therapies. Exp Hematol 2019; 80:1-10. [PMID: 31765673 DOI: 10.1016/j.exphem.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022]
Abstract
The processes generating cells of adaptive immunity render them less amenable to the single cytokine signals used so effectively to regenerate myeloid cells. T-cell neogenesis begins in the bone marrow, where specific sets of late osteolineage cells govern the specification of hematopoietic cells capable of migrating to the thymus where differentiation is completed. Osteocalcin-expressing bone marrow stromal cells producing Dll4 serve as a progenitor niche enabling this T-competent cell production. Biocompatible alginate-based cryogels containing bone morphogenetic proteins (BMP-2) and the Notch ligand Dll4 were engineered to recapitulate the endogenous niche. These cryogels are highly pliable and can be injected under the skin of animals undergoing bone marrow transplantation. The result in mice is an ectopic niche fostering T-competent progenitor generation that results in improved T-cell numbers and receptor diversity. The recipients can generate neoantigen vaccine responses while having improved tolerance manifest by reduced graft-versus-host disease upon allogeneic transplant. Through emerging details of niches in the bone marrow, therapeutics more complex than those necessary for myeloid reconstitution are possible. Niche biology-guided bioengineered design offers the possibility of regenerative therapies for T lymphoid cells.
Collapse
Affiliation(s)
- David T Scadden
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
10
|
Pouzolles M, Machado A, Guilbaud M, Irla M, Gailhac S, Barennes P, Cesana D, Calabria A, Benedicenti F, Sergé A, Raman I, Li QZ, Montini E, Klatzmann D, Adjali O, Taylor N, Zimmermann VS. Intrathymic adeno-associated virus gene transfer rapidly restores thymic function and long-term persistence of gene-corrected T cells. J Allergy Clin Immunol 2019; 145:679-697.e5. [PMID: 31513879 DOI: 10.1016/j.jaci.2019.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Patients with T-cell immunodeficiencies are generally treated with allogeneic hematopoietic stem cell transplantation, but alternatives are needed for patients without matched donors. An innovative intrathymic gene therapy approach that directly targets the thymus might improve outcomes. OBJECTIVE We sought to determine the efficacy of intrathymic adeno-associated virus (AAV) serotypes to transduce thymocyte subsets and correct the T-cell immunodeficiency in a zeta-associated protein of 70 kDa (ZAP-70)-deficient murine model. METHODS AAV serotypes were injected intrathymically into wild-type mice, and gene transfer efficiency was monitored. ZAP-70-/- mice were intrathymically injected with an AAV8 vector harboring the ZAP70 gene. Thymus structure, immunophenotyping, T-cell receptor clonotypes, T-cell function, immune responses to transgenes and autoantibodies, vector copy number, and integration were evaluated. RESULTS AAV8, AAV9, and AAV10 serotypes all transduced thymocyte subsets after in situ gene transfer, with transduction of up to 5% of cells. Intrathymic injection of an AAV8-ZAP-70 vector into ZAP-70-/- mice resulted in a rapid thymocyte differentiation associated with the development of a thymic medulla. Strikingly, medullary thymic epithelial cells expressing the autoimmune regulator were detected within 10 days of gene transfer, correlating with the presence of functional effector and regulatory T-cell subsets with diverse T-cell receptor clonotypes in the periphery. Although thymocyte reconstitution was transient, gene-corrected peripheral T cells harboring approximately 1 AAV genome per cell persisted for more than 40 weeks, and AAV vector integration was detected. CONCLUSIONS Intrathymic AAV-transduced progenitors promote a rapid restoration of the thymic architecture, with a single wave of thymopoiesis generating long-term peripheral T-cell function.
Collapse
Affiliation(s)
- Marie Pouzolles
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alice Machado
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mickaël Guilbaud
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Magali Irla
- Center of Immunology Marseille-Luminy (CIML), INSERM U1104, CNRS UMR7280, Aix-Marseille Université UM2, Marseille, France
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Barennes
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Daniela Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Arnauld Sergé
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Indu Raman
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Quan-Zhen Li
- Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - David Klatzmann
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France
| | - Oumeya Adjali
- INSERM UMR1089, Université de Nantes, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md.
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
11
|
El-Kadiry AEH, Rafei M. Restoring thymic function: Then and now. Cytokine 2019; 120:202-209. [PMID: 31108430 DOI: 10.1016/j.cyto.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/21/2023]
Abstract
Thymic vulnerability, a leading cause of defective immunity, was discovered decades ago. To date, several strategies have been investigated to unveil any immunorestorative capacities they might confer. Studies exploiting castration, transplantation, adoptive cell therapies, hormones/growth factors, and cytokines have demonstrated enhanced in vitro and in vivo thymopoiesis, albeit with clinical restrictions. In this review, we will dissect the thymus on a physiological and pathological level and discuss the pros and cons of several strategies esteemed thymotrophic from a pre-clinical perspective. Finally, we will shed light on interleukin (IL)-21, a pharmacologically-promising cytokine with a significant thymotrophic nature, and elaborate on its potential clinical efficacy and safety in immune-deficient subjects.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada; Montreal Heart Institute, Montréal, Qc, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Qc, Canada.
| |
Collapse
|
12
|
Moutuou MM, Pagé G, Zaid I, Lesage S, Guimond M. Restoring T Cell Homeostasis After Allogeneic Stem Cell Transplantation; Principal Limitations and Future Challenges. Front Immunol 2018; 9:1237. [PMID: 29967605 PMCID: PMC6015883 DOI: 10.3389/fimmu.2018.01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022] Open
Abstract
For several leukemia patients, allogeneic stem cell transplantation (allogeneic-SCT) is the unique therapeutic modality that could potentially cure their disease. Despite significant progress made in clinical management of allogeneic-SCT, acute graft-versus-host disease (aGVHD) and infectious complications remain the second and third cause of death after disease recurrence. Clinical options to restore immunocompetence after allogeneic-SCT are very limited as studies have raised awareness about the safety with regards to graft-versus-host disease (GVHD). Preclinical works are now focusing on strategies to improve thymic functions and to restore the peripheral niche that have been damaged by alloreactive T cells. In this mini review, we will provide a brief overview about the adverse effects of GVHD on the thymus and the peripheral niche and the resulting negative outcome on peripheral T cell homeostasis. Finally, we will discuss the potential relevance of coordinating our studies on thymic rejuvenation and improvement of the peripheral lymphoid niche to achieve optimal T cell regeneration in GVHD patients.
Collapse
Affiliation(s)
- Moutuaata M Moutuou
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Gabriel Pagé
- Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Intesar Zaid
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Sylvie Lesage
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| | - Martin Guimond
- Division d'Hématologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université of Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Dumont-Lagacé M, Gerbe H, Daouda T, Laverdure JP, Brochu S, Lemieux S, Gagnon É, Perreault C. Detection of Quiescent Radioresistant Epithelial Progenitors in the Adult Thymus. Front Immunol 2017; 8:1717. [PMID: 29259606 PMCID: PMC5723310 DOI: 10.3389/fimmu.2017.01717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/21/2017] [Indexed: 11/13/2022] Open
Abstract
Thymic aging precedes that of other organs and is initiated by the gradual loss of thymic epithelial cells (TECs). Based on in vitro culture and transplantation assays, recent studies have reported on the presence of thymic epithelial progenitor cells (TEPCs) in young adult mice. However, the physiological role and properties of TEPC populations reported to date remain unclear. Using an in vivo label-retention assay, we previously identified a population of quiescent but non-senescent TECs. The goals of this study were therefore (i) to evaluate the contribution of these quiescent TECs to thymic regeneration following irradiation-induced acute thymic injury and (ii) to characterize their phenotypic and molecular profiles using flow cytometry, immunohistology, and transcriptome sequencing. We report that while UEA1+ cells cycle the most in steady state, they are greatly affected by irradiation, leading to cell loss and proliferative arrest following acute thymic involution. On the opposite, the UEA1– subset of quiescent TECs is radioresistant and proliferate in situ following acute thymic involution, thereby contributing to thymic regeneration in 28- to 30-week-old mice. UEA1– quiescent TECs display an undifferentiated phenotype (co-expression of K8 and K5 cytokeratins) and express high levels of genes that regulate stem cell activity in different tissues (e.g., Podxl and Ptprz1). In addition, two features suggest that UEA1– quiescent TECs occupy discrete stromal niches: (i) their preferential location in clusters adjacent to the cortico-medullary junction and (ii) their high expression of genes involved in cross talk with mesenchymal cells. The ability of UEA1– quiescent TECs to participate to TEC regeneration qualifies them as in vivo progenitor cells particularly relevant in the context of regeneration following acute thymic injury.
Collapse
Affiliation(s)
- Maude Dumont-Lagacé
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hervé Gerbe
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Tariq Daouda
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | | | - Sylvie Brochu
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Informatics and Operational Research, Université de Montréal, Montréal, QC, Canada
| | - Étienne Gagnon
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|