1
|
Kim M, Kim H, Lee S, Lim I, Kim E, Oh U, Jang Y. Ultra-Sensitive Biosensor Based on Cell-Derived Nanovesicles for CB1 Receptor-Targeted Drug Development in a Live Cell-Free Platform. Anal Chem 2025; 97:9284-9290. [PMID: 40279503 DOI: 10.1021/acs.analchem.4c06959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The endocannabinoid system, particularly the cannabinoid receptor 1 (CB1), is essential for regulating numerous physiological processes, including pain, mood, appetite, and neurodegeneration. Given its crucial role, CB1 has become a target for therapeutic interventions with significant potential for treating various disorders. However, conventional methods such as calcium imaging and patch-clamp can only detect drug concentrations in the nanomolar to micromolar range, highlighting the need to develop more sensitive drug screening methods. To address this issue, we developed an ultrasensitive biosensor based on cell-derived CB1 nanovesicles (CB1-NV) coupled with carbon nanotube (CNT)-printed electrodes. This ultrasensitive sensor can detect cannabinoid compounds at picomolar concentrations by converting receptor-mediated Ca2+ influx into measurable electrical signals. The sensor exhibits remarkable sensitivity in terms of detecting trace tetrahydrocannabinol amounts (approximately 0.001%) in hemp seed oil, which conventional methods fail to detect. Compared with conventional methods, the developed biosensor exhibited a 1000-fold improvement in sensitivity, offering a promising tool for high-throughput drug screening and therapeutic research. Additionally, the CB1-NV sensor utilizes cell-free vesicles to preserve the cellular environment. However, because live cells were not involved, there was no requirement to maintain cell viability during the measurement process.
Collapse
Affiliation(s)
- Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyungsup Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04312, Republic of Korea
| | - Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Inje Lim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunyoung Kim
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101, United States
| | - Uhtaek Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Cinar R, Basu A, Arif M, Park JK, Zawatsky CN, Zuo BLG, Zuo MXG, O’Brien KJ, Behan M, Introne W, Iyer MR, Gahl WA, Malicdan MCV, Gochuico BR. Anandamide Is a Potential Blood Biomarker of Hermansky-Pudlak Syndrome Pulmonary Fibrosis. Am J Respir Crit Care Med 2025; 211:650-654. [PMID: 39841973 PMCID: PMC12005043 DOI: 10.1164/rccm.202406-1143rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/21/2025] [Indexed: 01/24/2025] Open
Affiliation(s)
| | | | - Muhammad Arif
- Section on Fibrotic Disorders
- Laboratory of Cardiovascular Physiology and Tissue Injury
| | | | | | | | | | - Kevin J. O’Brien
- Section on Human Biochemical Genetics, Medical Genetics Branch, and
| | - Molly Behan
- Section on Human Biochemical Genetics, Medical Genetics Branch, and
| | - Wendy Introne
- Section on Human Biochemical Genetics, Medical Genetics Branch, and
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland; and
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, and
| | - May Christine V. Malicdan
- National Institutes of Health Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
3
|
Ryszkiewicz P, Schlicker E, Malinowska B. Is Inducible Nitric Oxide Synthase (iNOS) Promising as a New Target Against Pulmonary Hypertension? Antioxidants (Basel) 2025; 14:377. [PMID: 40298665 PMCID: PMC12024173 DOI: 10.3390/antiox14040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterized by elevated blood pressure in the pulmonary arteries, associated also with inflammation and oxidative stress. Inducible nitric oxide synthase (iNOS) is one of the key mediators of inflammation and immune system activation. Although preclinical studies mostly suggest a detrimental role of iNOS overactivation in PH, there is a lack of exhaustive analyses and summaries. Therefore, this literature overview aims to fill this gap. The involvement of iNOS in the pathogenesis of the four main clinical groups of PH is discussed to assess whether targeting iNOS could be a promising way to treat PH. iNOS expression patterns in the organs primarily affected by PH are analyzed both in animals and in humans. Consequently, the effectiveness of pharmacological iNOS inhibition and/or iNOS gene deletion is discussed and compared, also with reference to the activity of constitutive NOS isoforms, particularly endothelial NOS (eNOS). Overall, our overview suggests that selective iNOS inhibitors could be considered as a novel treatment strategy for PH, as decreases in right ventricular and pulmonary artery pressure, the alleviation of ventricular hypertrophy, and improvements of pulmonary and cardiac function were observed, among others. Nevertheless, further research efforts in this area are needed.
Collapse
Affiliation(s)
- Piotr Ryszkiewicz
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz Str. 2A, 15-222 Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany;
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz Str. 2A, 15-222 Bialystok, Poland
| |
Collapse
|
4
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025:10.1038/s41401-024-01472-9. [PMID: 39910211 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Kumari P, Dvorácskó S, Enos MD, Ramesh K, Lim D, Hassan SA, Kunos G, Cinar R, Iyer MR, Rosenbaum DM. Structural mechanism of CB 1R binding to peripheral and biased inverse agonists. Nat Commun 2024; 15:10694. [PMID: 39695122 PMCID: PMC11655885 DOI: 10.1038/s41467-024-54206-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/01/2024] [Indexed: 12/20/2024] Open
Abstract
The cannabinoid receptor 1 (CB1R) regulates synaptic transmission in the central nervous system, but also has important roles in the peripheral organs controlling cellular metabolism. While earlier generations of brain penetrant CB1R antagonists advanced to the clinic for their effective treatment of obesity, such molecules were ultimately shown to exhibit negative effects on central reward pathways that thwarted their further therapeutic development. The peripherally restricted CB1R inverse agonists MRI-1867 and MRI-1891 represent a new generation of compounds that retain the metabolic benefits of CB1R inhibitors while sparing the negative psychiatric effects. To understand the mechanism of binding and inhibition of CB1R by peripherally restricted antagonists, we developed a nanobody/fusion protein strategy for high-resolution cryo-EM structure determination of the GPCR inactive state, and used this method to determine structures of CB1R bound to either MRI-1867 or MRI-1891. These structures reveal how these compounds retain high affinity and specificity for CB1R's hydrophobic orthosteric site despite incorporating polar functionalities that lead to peripheral restriction. Further, the structure of the MRI-1891 complex along with accompanying molecular dynamics simulations shows how differential engagement with transmembrane helices and the proximal N-terminus can propagate through the receptor to contribute to biased inhibition of β-arrestin signaling.
Collapse
Affiliation(s)
- Punita Kumari
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, India
| | - Szabolcs Dvorácskó
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
- Laboratory of Biomolecular Structure and Pharmacology, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Michael D Enos
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karthik Ramesh
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darrix Lim
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA.
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Cinar R, Basu A, Arif M, Park JK, Zawatsky CN, Zuo BLG, Zuo MXG, O’Brien KJ, Behan M, Introne W, Iyer MR, Gahl WA, Malicdan MCV, Gochuico BR. Anandamide is an Early Blood Biomarker of Hermansky-Pudlak Syndrome Pulmonary Fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307300. [PMID: 38798603 PMCID: PMC11118631 DOI: 10.1101/2024.05.16.24307300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Abhishek Basu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Muhammad Arif
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | - Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Ben Long G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Mei Xing G. Zuo
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - Kevin J. O’Brien
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Molly Behan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wendy Introne
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, 20852, USA
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - May Christine V. Malicdan
- NIH Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernadette R. Gochuico
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Das S, Ghosh A, Karmakar V, Khawas S, Vatsha P, Roy KK, Behera PC. Cannabis effectiveness on immunologic potency of pulmonary contagion. J Basic Clin Physiol Pharmacol 2024; 35:129-142. [PMID: 38635412 DOI: 10.1515/jbcpp-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/17/2024] [Indexed: 04/20/2024]
Abstract
Respiratory illnesses and its repercussions are becoming more prevalent worldwide. It is necessary to research both innovative treatment and preventative techniques. Millions of confirmed cases and fatalities from the COVID-19 epidemic occurred over the previous two years. According to the review research, cannabinoids are a class of medicines that should be considered for the treatment of respiratory conditions. Cannabinoids and inhibitors of endocannabinoid degradation have illustrated advantageous anti-inflammatory, asthma, pulmonary fibrosis, and pulmonary artery hypotension in numerous studies (in vitro and in vivo). It has been also noted that CB2 receptors on macrophages and T-helper cells may be particularly triggered to lower inflammation in COVID-19 patients. Since the majority of lung tissue contains cannabinoid receptors, cannabis can be an effective medical tool for treating COVID-19 as well as pulmonary infections. Notably, CB2 and CB1 receptors play a major role in immune system modulation and anti-inflammatory activities. In this review, we put forth the idea that cannabis might be helpful in treating pulmonary contagion brought on by viral integration, such as that caused by SARS-CoV-2, haemophilus influenza type b, Streptococcus pneumoniae, influenza virus, and respiratory syncytial virus. Also, a detailed overview of CB receptors, intricate mechanisms, is highlighted connecting link with COVID-19 viral structural modifications along with molecular basis of CB receptors in diminishing viral load in pulmonary disorders supported through evident literature studies. Further, futuristic evaluations on cannabis potency through novel formulation development focusing on in vivo/in vitro systems can produce promising results.
Collapse
Affiliation(s)
- Sumana Das
- Department of Pharmaceutical Science and Technology, 28698 Birla Institute of Technology , Ranchi, India
| | - Arya Ghosh
- Department of Pharmaceutical Science and Technology, 28698 Birla Institute of Technology , Ranchi, India
| | - Varnita Karmakar
- Department of Pharmaceutical Science and Technology, 28698 Birla Institute of Technology , Ranchi, India
| | - Sourav Khawas
- Department of Pharmaceutical Sciences, 521742 Jharkhand Rai University , Ranchi, India
| | - Piyush Vatsha
- Department of Pharmaceutical Sciences, 521742 Jharkhand Rai University , Ranchi, India
| | - Kishor Kumar Roy
- Department of Pharmaceutical Sciences, 521742 Jharkhand Rai University , Ranchi, India
| | - Padma Charan Behera
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Technology, MAKAUT university, Dubrajpur, Birbhum 731123, India
| |
Collapse
|
8
|
Pattaroni C, Begka C, Cardwell B, Jaffar J, Macowan M, Harris NL, Westall GP, Marsland BJ. Multi-omics integration reveals a nonlinear signature that precedes progression of lung fibrosis. Clin Transl Immunology 2024; 13:e1485. [PMID: 38269243 PMCID: PMC10807351 DOI: 10.1002/cti2.1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Objectives Idiopathic pulmonary fibrosis (IPF) is a devastating progressive interstitial lung disease with poor outcomes. While decades of research have shed light on pathophysiological mechanisms associated with the disease, our understanding of the early molecular events driving IPF and its progression is limited. With this study, we aimed to model the leading edge of fibrosis using a data-driven approach. Methods Multiple omics modalities (transcriptomics, metabolomics and lipidomics) of healthy and IPF lung explants representing different stages of fibrosis were combined using an unbiased approach. Multi-Omics Factor Analysis of datasets revealed latent factors specifically linked with established fibrotic disease (Factor1) and disease progression (Factor2). Results Features characterising Factor1 comprised well-established hallmarks of fibrotic disease such as defects in surfactant, epithelial-mesenchymal transition, extracellular matrix deposition, mitochondrial dysfunction and purine metabolism. Comparatively, Factor2 identified a signature revealing a nonlinear trajectory towards disease progression. Molecular features characterising Factor2 included genes related to transcriptional regulation of cell differentiation, ciliogenesis and a subset of lipids from the endocannabinoid class. Machine learning models, trained upon the top transcriptomics features of each factor, accurately predicted disease status and progression when tested on two independent datasets. Conclusion This multi-omics integrative approach has revealed a unique signature which may represent the inflection point in disease progression, representing a promising avenue for the identification of therapeutic targets aimed at addressing the progressive nature of the disease.
Collapse
Affiliation(s)
- Céline Pattaroni
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Christina Begka
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Bailey Cardwell
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Jade Jaffar
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Matthew Macowan
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Nicola L Harris
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Glen P Westall
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
- Department of Respiratory MedicineAlfred HospitalMelbourneVICAustralia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| |
Collapse
|
9
|
Padilha EC, Yang M, Shah P, Wang AQ, Duan J, Park JK, Zawatsky CN, Malicdan MCV, Kunos G, Iyer MR, Gaucher G, Ravenelle F, Cinar R, Xu X. In vitro and in vivo pharmacokinetic characterization, chiral conversion and PBPK scaling towards human PK simulation of S-MRI-1867, a drug candidate for Hermansky-Pudlak syndrome pulmonary fibrosis. Biomed Pharmacother 2023; 168:115178. [PMID: 37890204 DOI: 10.1016/j.biopha.2023.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 10/29/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder that affects lysosome-related organelles, often leading to fatal pulmonary fibrosis (PF). The search for a treatment for HPS pulmonary fibrosis (HPSPF) is ongoing. S-MRI-1867, a dual cannabinoid receptor 1 (CB1R)/inducible nitric oxide synthase (iNOS) inhibitor, has shown great promise for the treatment of several fibrotic diseases, including HPSPF. In this study, we investigated the in vitro ADME characteristics of S-MRI-1867, as well as its pharmacokinetic (PK) properties in mice, rats, dogs, and monkeys. S-MRI-1867 showed low aqueous solubility (< 1 µg/mL), high plasma protein binding (>99%), and moderate to high metabolic stability. In its preclinical PK studies, S-MRI-1867 exhibited moderate to low plasma clearance (CLp) and high steady-state volume of distribution (Vdss) across all species. Despite the low solubility and P-gp efflux, S-MRI-1867 showed great permeability and metabolic stability leading to a moderate bioavailability (21-60%) across mouse, rat, dog, and monkey. Since the R form of MRI-1867 is CB1R-inactive, we investigated the potential conversion of S-MRI-1867 to R-MRI-1867 in mice and found that the chiral conversion was negligible. Furthermore, we developed and validated a PBPK model that adequately fits the PK profiles of S-MRI-1867 in mice, rats, dogs, and monkeys using various dosing regimens. We employed this PBPK model to simulate the human PK profiles of S-MRI-1867, enabling us to inform human dose selection and support the advancement of this promising drug candidate in the treatment of HPSPF.
Collapse
Affiliation(s)
- Elias C Padilha
- Drug Metabolism and Pharmacokinetics Core, National Center for Advancing Translational Sciences, Rockville, MD, USA.
| | - Mengbi Yang
- Drug Metabolism and Pharmacokinetics Core, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Pranav Shah
- Drug Metabolism and Pharmacokinetics Core, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | - Amy Q Wang
- Drug Metabolism and Pharmacokinetics Core, National Center for Advancing Translational Sciences, Rockville, MD, USA
| | | | - Joshua K Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Rockville, MD, USA
| | - Charles N Zawatsky
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Rockville, MD, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, UDP Translational Laboratory, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Rockville, MD, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | | | | | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Rockville, MD, USA
| | - Xin Xu
- Drug Metabolism and Pharmacokinetics Core, National Center for Advancing Translational Sciences, Rockville, MD, USA.
| |
Collapse
|
10
|
Dvorácskó S, Herrerias A, Oliverio A, Bhattacharjee P, Pommerolle L, Liu Z, Feng D, Lee YS, Hassan SA, Godlewski G, Cinar R, Iyer MR. Cannabinoformins: Designing Biguanide-Embedded, Orally Available, Peripherally Selective Cannabinoid-1 Receptor Antagonists for Metabolic Syndrome Disorders. J Med Chem 2023; 66:11985-12004. [PMID: 37611316 DOI: 10.1021/acs.jmedchem.3c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We have designed orally bioavailable, non-brain-penetrant antagonists of the cannabinoid-1 receptor (CB1R) with a built-in biguanide sensor to mimic 5'-adenosine monophosphate kinase (AMPK) activation for treating obesity-associated co-morbidities. A series of 3,4-diarylpyrazolines bearing rational pharmacophoric pendants designed to limit brain penetration were synthesized and evaluated in CB1R ligand binding assays and recombinant AMPK assays. The compounds displayed high CB1R binding affinity and potent CB1R antagonist activities and acted as AMPK activators. Select compounds showed good oral exposure, with compounds 36, 38-S, and 39-S showing <5% brain penetrance, attesting to peripheral restriction. In vivo studies of 38-S revealed decreased food intake and body weight reduction in diet-induced obese mice as well as oral in vivo efficacy of 38-S in ameliorating glucose tolerance and insulin resistance. The designed "cannabinoformin" four-arm CB1R antagonists could serve as potential leads for treatment of metabolic syndrome disorders with negligible neuropsychiatric side effects.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Alexa Herrerias
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Anna Oliverio
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Pinaki Bhattacharjee
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Lenny Pommerolle
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Ziyi Liu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Dechun Feng
- Laboratory of Liver Diseases, NIAAA, NIH, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Yong-Sok Lee
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 5625 Fishers Lane, Rockville, Maryland 20852, United States
| |
Collapse
|
11
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
12
|
Kolousek A, Pak-Harvey E, Liu-Lam O, White M, Smith P, Henning F, Koval M, Levy JM. The Effects of Endogenous Cannabinoids on the Mammalian Respiratory System: A Scoping Review of Cyclooxygenase-Dependent Pathways. Cannabis Cannabinoid Res 2023; 8:434-444. [PMID: 37074668 PMCID: PMC10249741 DOI: 10.1089/can.2022.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.
Collapse
Affiliation(s)
| | | | - Oliver Liu-Lam
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mia White
- Emory Libraries, Emory University, Atlanta, Georgia, USA
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua M. Levy
- Department of Otolaryngology—Head & Neck Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Arif M, Basu A, Wolf KM, Park JK, Pommerolle L, Behee M, Gochuico BR, Cinar R. An Integrative Multiomics Framework for Identification of Therapeutic Targets in Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207454. [PMID: 37038090 PMCID: PMC10238219 DOI: 10.1002/advs.202207454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/26/2023] [Indexed: 06/04/2023]
Abstract
Pulmonary fibrosis (PF) is a heterogeneous disease with a poor prognosis. Therefore, identifying additional therapeutic modalities is required to improve outcome. However, the lack of biomarkers of disease progression hampers the preclinical to clinical translational process. Here, this work assesses and identifies progressive alterations in pulmonary function, transcriptomics, and metabolomics in the mouse lung at 7, 14, 21, and 28 days after a single dose of oropharyngeal bleomycin. By integrating multi-omics data, this work identifies two central gene subnetworks associated with multiple critical pathological changes in transcriptomics and metabolomics as well as pulmonary function. This work presents a multi-omics-based framework to establish a translational link between the bleomycin-induced PF model in mice and human idiopathic pulmonary fibrosis to identify druggable targets and test therapeutic candidates. This work also indicates peripheral cannabinoid receptor 1 (CB1 R) antagonism as a rational therapeutic target for clinical translation in PF. Mouse Lung Fibrosis Atlas can be accessed freely at https://niaaa.nih.gov/mouselungfibrosisatlas.
Collapse
Affiliation(s)
- Muhammad Arif
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
- Laboratory of Cardiovascular Physiology and Tissue InjuryNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Abhishek Basu
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Kaelin M. Wolf
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Lenny Pommerolle
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Madeline Behee
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| | - Bernadette R. Gochuico
- Medical Genetics BranchNational Human Genome Research InstituteNational Institutes of Health (NIH)BethesdaMD20892USA
| | - Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMD20852USA
| |
Collapse
|
14
|
Krzyżewska A, Baranowska-Kuczko M, Kasacka I, Kozłowska H. Cannabidiol alleviates right ventricular fibrosis by inhibiting the transforming growth factor β pathway in monocrotaline-induced pulmonary hypertension in rats. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166753. [PMID: 37187449 DOI: 10.1016/j.bbadis.2023.166753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cannabidiol (CBD) is a non-intoxicating compound of Cannabis with anti-fibrotic properties. Pulmonary hypertension (PH) is a disease that can lead to right ventricular (RV) failure and premature death. There is evidence that CBD reduces monocrotaline (MCT)-induced PH, including reducing right ventricular systolic pressure (RVSP), vasorelaxant effect on pulmonary arteries, and decreasing expression of profibrotic markers in the lungs. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on profibrotic parameters in the RVs of MCT-induced PH rats. In MCT-induced PH, we found an increase in profibrotic parameters and parameters related to RV dysfunction, i.e. plasma pro-B-type natriuretic peptide (NT-proBNP), cardiomyocyte width, interstitial and perivascular fibrosis area, amount of fibroblasts and fibronectin, as well as overexpression of the transforming growth of factor β1 (TGF-β1), galectin-3 (Gal-3), suppressor of mothers against decapentaplegic 2 (SMAD2), phosphorylated SMAD2 (pSMAD2) and alpha-smooth muscle actin (α-SMA). In contrast, vascular endothelial cadherin (VE-cadherin) levels were decreased in the RVs of MCT-induced PH rats. Administration of CBD reduced the amount of plasma NT-proBNP, the width of cardiomyocytes, the amount of fibrosis area, fibronectin and fibroblast expression, as well as decreased the expression of TGF-β1, Gal-3, SMAD2, pSMAD2, and increased the level of VE-cadherin. Overall, CBD has been found to have the anti-fibrotic potential in MCT-induced PH. As such, CBD may act as an adjuvant therapy for PH, however, further detailed investigations are recommended to confirm our promising results.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland.
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland; Department of Clinical Pharmacy, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
15
|
Jacquot L, Pointeau O, Roger-Villeboeuf C, Passilly-Degrace P, Belkaid R, Regazzoni I, Leemput J, Buch C, Demizieux L, Vergès B, Degrace P, Crater G, Jourdan T. Therapeutic potential of a novel peripherally restricted CB1R inverse agonist on the progression of diabetic nephropathy. FRONTIERS IN NEPHROLOGY 2023; 3:1138416. [PMID: 37675364 PMCID: PMC10479578 DOI: 10.3389/fneph.2023.1138416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 09/08/2023]
Abstract
Objective This study assessed the efficacy of INV-202, a novel peripherally restricted cannabinoid type-1 receptor (CB1R) inverse agonist, in a streptozotocin-induced type-1 diabetes nephropathy mouse model. Methods Diabetes was induced in 8-week-old C57BL6/J male mice via intraperitoneal injection of streptozotocin (45 mg/kg/day for 5 days); nondiabetic controls received citrate buffer. Diabetic mice were randomized to 3 groups based on blood glucose, polyuria, and albuminuria, and administered daily oral doses for 28-days of INV-202 at 0.3 or 3 mg/kg or vehicle. Results INV-202 did not affect body weight but decreased kidney weight compared with the vehicle group. While polyuria was unaffected by INV-202 treatment, urinary urea (control 30.77 ± 14.93; vehicle 189.81 ± 31.49; INV-202 (0.3 mg/kg) 127.76 ± 20; INV-202 (3 mg/kg) 93.70 ± 24.97 mg/24h) and albumin (control 3.06 ± 0.38; vehicle 850.08 ± 170.50; INV-202 (0.3 mg/kg) 290.65 ± 88.70; INV-202 (3 mg/kg) 111.29 ± 33.47 µg/24h) excretion both decreased compared with vehicle-treated diabetic mice. Compared with the vehicle group, there was a significant improvement in the urinary albumin to creatinine ratio across INV-202 groups. Regardless of the dose, INV-202 significantly reduced angiotensin II excretion in diabetic mice. The treatment also decreased Agtr1a renal expression in a dose-dependent manner. Compared with nondiabetic controls, the glomerular filtration rate was increased in the vehicle group and significantly decreased by INV-202 at 3 mg/kg. While the vehicle group showed a significant loss in the mean number of podocytes per glomerulus, INV-202 treatment limited podocyte loss in a dose-dependent manner. Moreover, in both INV-202 groups, expression of genes coding for podocyte structural proteins nephrin (Nphs1), podocin (Nphs2), and podocalyxin (Pdxl) were restored to levels similar to nondiabetic controls. INV-202 partially limited the proximal tubular epithelial cell (PTEC) hyperplasia and normalized genetic markers for PTEC lesions. INV-202 also reduced expression of genes contributing to oxidative stress (Nox2, Nox4, and P47phox) and inflammation (Tnf). In addition, diabetes-induced renal fibrosis was significantly reduced by INV-202. Conclusions INV-202 reduced glomerular injury, preserved podocyte structure and function, reduced injury to PTECs, and ultimately reduced renal fibrosis in a streptozotocin-induced diabetic nephropathy mouse model. These results suggest that INV-202 may represent a new therapeutic option in the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Laetitia Jacquot
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Océane Pointeau
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Célia Roger-Villeboeuf
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Patricia Passilly-Degrace
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Rim Belkaid
- ImaFlow core facility, UMR1231 INSERM, University of Burgundy, Dijon, France
| | - Isaline Regazzoni
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julia Leemput
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Chloé Buch
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Laurent Demizieux
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Bruno Vergès
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pascal Degrace
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Tony Jourdan
- Pathophysiology of Dyslipidemia research group, National Institute of Health and Medical Research (INSERM) Unité Mixte de Recherche (UMR1231) Lipids, Nutrition, Cancer, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
16
|
Ramer R, Hinz B. Cannabinoid Compounds as a Pharmacotherapeutic Option for the Treatment of Non-Cancer Skin Diseases. Cells 2022; 11:4102. [PMID: 36552866 PMCID: PMC9777118 DOI: 10.3390/cells11244102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
The endocannabinoid system has been shown to be involved in various skin functions, such as melanogenesis and the maintenance of redox balance in skin cells exposed to UV radiation, as well as barrier functions, sebaceous gland activity, wound healing and the skin's immune response. In addition to the potential use of cannabinoids in the treatment and prevention of skin cancer, cannabinoid compounds and derivatives are of interest as potential systemic and topical applications for the treatment of various inflammatory, fibrotic and pruritic skin conditions. In this context, cannabinoid compounds have been successfully tested as a therapeutic option for the treatment of androgenetic alopecia, atopic and seborrhoeic dermatitis, dermatomyositis, asteatotic and atopic eczema, uraemic pruritis, scalp psoriasis, systemic sclerosis and venous leg ulcers. This review provides an insight into the current literature on cannabinoid compounds as potential medicines for the treatment of skin diseases.
Collapse
Affiliation(s)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
17
|
Liu T, Gu J, Yuan Y, Yang Q, Zheng PF, Shan C, Wang F, Li H, Xie XQ, Chen XH, Ouyang Q. Discovery of a pyrano[2,3-b]pyridine derivative YX-2102 as a cannabinoid receptor 2 agonist for alleviating lung fibrosis. J Transl Med 2022; 20:565. [PMID: 36474298 PMCID: PMC9724349 DOI: 10.1186/s12967-022-03773-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pharmacological modulation of cannabinoid 2 receptor (CB2R) is a promising therapeutic strategy for pulmonary fibrosis (PF). Thus, to develop CB2R selective ligands with new chemical space has attracted much research interests. This work aims to discover a novel CB2R agonist from an in-house library, and to evaluate its therapeutic effects on PF model, as well as to disclose the pharmacological mechanism. METHODS Virtual screening was used to identify the candidate ligand for CB2R from a newly established in-house library. Both in vivo experiments on PF rat model and in vitro experiments on cells were performed to investigate the therapeutic effects of the lead compound and underlying mechanism. RESULTS A "natural product-like" pyrano[2,3-b]pyridine derivative, YX-2102 was identified that bound to CB2R with high affinity. Intraperitoneal YX-2102 injections significantly ameliorated lung injury, inflammation and fibrosis in a rat model of PF induced by bleomycin (BLM). On one hand, YX-2102 inhibited inflammatory response at least partially through modulating macrophages polarization thereby exerting protective effects. Whereas, on the other hand, YX-2102 significantly upregulated CB2R expression in alveolar epithelial cells in vivo. Its pretreatment inhibited lung alveolar epithelial-to-mesenchymal transition (EMT) in vitro and PF model induced by transforming growth factor beta-1 (TGF-β1) via a CB2 receptor-dependent pathway. Further studies suggested that the Nrf2-Smad7 pathway might be involved in. CONCLUSION These findings suggest that CB2R is a potential target for PF treatment and YX-2102 is a promising CB2R agonist with new chemical space.
Collapse
Affiliation(s)
- Tao Liu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jing Gu
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yi Yuan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Qunfang Yang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Peng-Fei Zheng
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Changyu Shan
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Fangqin Wang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Hongwei Li
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Xiao-Hong Chen
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
18
|
Young AP, Denovan-Wright EM. Synthetic cannabinoids reduce the inflammatory activity of microglia and subsequently improve neuronal survival in vitro. Brain Behav Immun 2022; 105:29-43. [PMID: 35764268 DOI: 10.1016/j.bbi.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
19
|
Remiszewski P, Pędzińska-Betiuk A, Mińczuk K, Schlicker E, Klimek J, Dzięcioł J, Malinowska B. Effects of the peripheral CB1 receptor antagonist JD5037 in mono— and polytherapy with the AMPK activator metformin in a monocrotaline-induced rat model of pulmonary hypertension. Front Pharmacol 2022; 13:965613. [PMID: 36120288 PMCID: PMC9479636 DOI: 10.3389/fphar.2022.965613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease leading to increased pressure in the pulmonary artery and right heart failure. The adenosine monophosphate-activated protein kinase (AMPK) activator, metformin, has a protective effect against PH. CB1 receptor blockade reduces the number of pathological alterations in experimental lung fibrosis. The current study evaluates the effect of the peripheral cannabinoid CB1 receptor antagonist JD5037 in mono- and polytherapy with metformin in rat monocrotaline-induced mild PH. Animals received metformin (100 mg/kg), JD5037 (3 mg/kg), or a combination of both once daily for 21 days. Monocrotaline (60 mg/kg) increased right ventricular (RV) systolic pressure (RVSP), led to RV and lung hypertrophy and remodeling, and decreased oxygen saturation. Metformin partially restored the monocrotaline-induced effects, i.e., decreased RVSP, increased oxygen saturation, and counteracted cardiac fibrotic, hypertrophic, and inflammatory changes. JD5037 modified parameters related to inflammation and/or fibrosis. Only polytherapy with metformin and JD5037 improved Fulton’s index and coronary artery hypertrophy and tended to be more effective than monotherapy against alterations in RVSP, oxygen saturation and coronary artery tunica media vacuolization. In conclusion, monotherapy with JD5037 does not markedly influence the PH-related changes. However, polytherapy with metformin tends to be more efficient than any of these compounds alone.
Collapse
Affiliation(s)
- Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Justyna Klimek
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Barbara Malinowska,
| |
Collapse
|
20
|
Du W, Zhang T, Yang F, Gul A, Tang Z, Zhang H, Jiang S, Wang S, Dong J. Endocannabinoid signalling/cannabinoid receptor 2 is involved in icariin-mediated protective effects against bleomycin-induced pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154187. [PMID: 35667261 DOI: 10.1016/j.phymed.2022.154187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease of unknown aetiology with limited effective treatment options. It is important to explore novel therapeutic targets and develop potential drugs for IPF. PURPOSE The aim of the present study was to analyse nontargeted plasma metabolites in patients with IPF and investigate whether cannabinoid receptor (CB2) activation mediates the antifibrotic effect of icariin (ICA). METHODS We used an untargeted metabolomics method to detect the global metabolic profiles in the plasma of stable IPF patients and patients with stable chronic obstructive pulmonary disease (COPD), as well as healthy subjects. The untargeted liquid chromatography-mass spectrometry (LC-MS) analysis revealed that IPF showed differential metabolites and perturbed signalling pathways. ICA is pharmacologically bioactive and possesses extensive therapeutic capacities such as osteoprotective, neuroprotective, cardiovascular protective, anti-cancer, anti-inflammation and reproductive function. Therefore, ICA was administered to a pulmonary fibrosis rat model for 4 weeks and then the effect of ICA on pulmonary fibrosis was examined by dissection and histology. RESULTS The metabolites in the plasma were determined by untargeted LC-MS. An unsupervised principal component analysis (PCA) was used to observe the distribution of each sample, and a supervised partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) results showed that there was significant separation between any two groups. ROC curve analyses revealed that 8 metabolites with high AUCs above 0.7 between the three groups of plasma samples. Pathway enrichment analysis revealed that 3 metabolites are involved in retrograde endocannabinoid signalling. Meanwhile, Retrograde endocannabinoid signalling was identified significantly different in IPF group from other groups by Kyoto encyclopedia of Genes and Genomes (KEGG) pathway analysis, and then we further confirmed the endocannabinoid signalling by detecting the expression of the main receptors in bleomycin-induced pulmonary fibrosis, COPD rat model and normal rats. Consistent with previous studies, we found that the elevation of CB1 and CB2 in the lung tissues could be a signature of the pulmonary fibrosis rat model. Importantly, ICA may alleviate bleomycin-induced lung injury by decreasing CB1 and CB2 expression in the bleomycin-induced rat model. CONCLUSION Taken together, we measured the global metabolic profile of IPF patients and identified CB2 as a novel potential target. ICA treatment demonstrated outstanding therapeutic effects on bleomycin-induced pulmonary fibrosis and targeting on CB2 may be the main underlying mechanism. ICA is a promising drug candidate to cure pulmonary fibrosis and mediate antagonists of the CB2 receptor.
Collapse
Affiliation(s)
- Wenjing Du
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ting Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyong Yang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhao Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hu Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shan Jiang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shiqiang Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Abohalaka R, Karaman Y, Recber T, Onder SC, Nemutlu E, Bozkurt TE. Endocannabinoid metabolism inhibition ameliorates ovalbumin-induced allergic airway inflammation and hyperreactivity in Guinea pigs. Life Sci 2022; 306:120808. [PMID: 35843343 DOI: 10.1016/j.lfs.2022.120808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
AIMS Endocannabinoids are biologically active cannabinoid-related substances endogenously synthesized in many mammalian tissues. Mainly two enzymes carry out their degradation; Fatty Acid Amide Hydrolase (FAAH) and Monoacylglycerol Lipase (MAGL). Endocannabinoids are shown to affect the modulation of inflammatory processes and airway responsiveness. In the present study, we investigated the effects of FAAH and MAGL inhibitor treatments in experimental allergic airway inflammation in guinea pigs. MATERIALS AND METHODS Guinea pigs were sensitized and challenged by ovalbumin to induce an allergic asthma model. Then, the effects of FAAH inhibitor URB597, MAGL inhibitor JZL184, and dual (FAAH/MAGL) inhibitor JZL195 on airway inflammation and hyperreactivity were evaluated. KEY FINDINGS Ovalbumin challenge increased airway reactivity, IgE in serum, IL-4, and IL-13, and the percentage of eosinophils in bronchoalveolar lavage (BAL). In addition, inhibition of FAAH or MAGL enzymes leads to an increase in endocannabinoid levels. The selective inhibition of the FAAH enzyme prevented inflammation indicators such as cytokine production and inflammatory cell infiltration but had a negligible effect on airway hyperreactivity. However, the inhibition of the MAGL enzyme or dual inhibition of both FAAH and MAGL enzymes tent to moderate both pulmonary inflammation and airway hyperreactivity. SIGNIFICANCE We have previously demonstrated that modulation of endocannabinoid levels in the airways by FAAH or MAGL inhibition can be useful in preventing acute lung inflammation. The results of the present study further suggest that FAAH and MAGL inhibitor treatment can also be a promising strategy for bronchial hyperreactivity and airway inflammation in allergic asthma.
Collapse
Affiliation(s)
- Reshed Abohalaka
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Yasemin Karaman
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey
| | - Tuba Recber
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Sevgen Celik Onder
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Turgut Emrah Bozkurt
- Hacettepe University, Faculty of Pharmacy, Department of Pharmacology, Ankara, Turkey.
| |
Collapse
|
22
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
23
|
Abudi-Sinreich S, Bodine SP, Yokoyama T, Tolman NJ, Tyrlik M, Testa LC, Han CG, Dorward HM, Wincovitch SM, Anikster Y, Gahl WA, Cinar R, Gochuico BR, Malicdan MCV. Progressive pulmonary fibrosis in a murine model of Hermansky-Pudlak syndrome. Respir Res 2022; 23:112. [PMID: 35509004 PMCID: PMC9066931 DOI: 10.1186/s12931-022-02002-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HPS-1 is a genetic type of Hermansky-Pudlak syndrome (HPS) with highly penetrant pulmonary fibrosis (HPSPF), a restrictive lung disease that is similar to idiopathic pulmonary fibrosis (IPF). Hps1ep/ep (pale ear) is a naturally occurring HPS-1 mouse model that exhibits high sensitivity to bleomycin-induced pulmonary fibrosis (PF). Traditional methods of administering bleomycin as an intratracheal (IT) route to induce PF in this model often lead to severe acute lung injury and high mortality rates, complicating studies focusing on pathobiological mechanisms or exploration of therapeutic options for HPSPF. METHODS To develop a murine model of HPSPF that closely mimics the progression of human pulmonary fibrosis, we investigated the pulmonary effects of systemic delivery of bleomycin in Hps1ep/ep mice using a subcutaneous minipump and compared results to oropharyngeal delivery of bleomycin. RESULTS Our study revealed that systemic delivery of bleomycin induced limited, acute inflammation that resolved. The distinct inflammatory phase preceded a slow, gradually progressive fibrogenesis that was shown to be both time-dependent and dose-dependent. The fibrosis phase exhibited characteristics that better resembles human disease with focal regions of fibrosis that were predominantly found in peribronchovascular areas and in subpleural regions; central lung areas contained relatively less fibrosis. CONCLUSION This model provides a preclinical tool that will allow researchers to study the mechanism of pulmonary fibrosis in HPS and provide a platform for the development of therapeutics to treat HPSPF. This method can be applied on studies of IPF or other monogenic disorders that lead to pulmonary fibrosis.
Collapse
Affiliation(s)
- Shachar Abudi-Sinreich
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Steven P Bodine
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Tadafumi Yokoyama
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Nathanial J Tolman
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Michal Tyrlik
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Lauren C Testa
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chen G Han
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Heidi M Dorward
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Stephen M Wincovitch
- National Human Genome Research Institute (NHGRI) Cytogenetics and Microscopy Core, National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - Yair Anikster
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - William A Gahl
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institute of Health (NIH), Rockville, MD, 20852, USA
| | - Bernadette R Gochuico
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA
| | - May Christine V Malicdan
- Human Biochemical Genetics Section, National Human Genome Research Institute (NHGRI), National Institute of Health (NIH), Bethesda, MD, 20892, USA.
- UDP Translational Laboratory, NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
24
|
Janecki M, Graczyk M, Lewandowska AA, Pawlak Ł. Anti-Inflammatory and Antiviral Effects of Cannabinoids in Inhibiting and Preventing SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms23084170. [PMID: 35456990 PMCID: PMC9025270 DOI: 10.3390/ijms23084170] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus made it necessary to search for new options for both causal treatment and mitigation of its symptoms. Scientists and researchers around the world are constantly looking for the best therapeutic options. These difficult circumstances have also spurred the re-examination of the potential of natural substances contained in Cannabis sativa L. Cannabinoids, apart from CB1 and CB2 receptors, may act multifacetedly through a number of other receptors, such as the GPR55, TRPV1, PPARs, 5-HT1A, adenosine and glycine receptors. The complex anti-inflammatory and antiviral effects of cannabinoids have been confirmed by interactions with various signaling pathways. Considering the fact that the SARS-CoV-2 virus causes excessive immune response and triggers an inflammatory cascade, and that cannabinoids have the ability to regulate these processes, it can be assumed that they have potential to be used in the treatment of COVID-19. During the pandemic, there were many publications on the subject of COVID-19, which indicate the potential impact of cannabinoids not only on the course of the disease, but also their role in prevention. It is worth noting that the anti-inflammatory and antiviral potential are shown not only by well-known cannabinoids, such as cannabidiol (CBD), but also secondary cannabinoids, such as cannabigerolic acid (CBGA) and terpenes, emphasizing the role of all of the plant’s compounds and the entourage effect. This article presents a narrative review of the current knowledge in this area available in the PubMed, Scopus and Web of Science medical databases.
Collapse
Affiliation(s)
- Marcin Janecki
- Department of Palliative Care and Palliative Medicine, Silesian Medical University in Katowice, 40-752 Katowice, Poland;
| | - Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Correspondence: (M.G.); (A.A.L.)
| | - Agata Anna Lewandowska
- 10th Military Research Hospital and Polyclinic in Bydgoszcz, 85-681 Bydgoszcz, Poland
- Correspondence: (M.G.); (A.A.L.)
| | - Łukasz Pawlak
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland;
| |
Collapse
|
25
|
Chen D, Tang H, Jiang H, Sun L, Zhao W, Qian F. ACPA Alleviates Bleomycin-Induced Pulmonary Fibrosis by Inhibiting TGF-β-Smad2/3 Signaling-Mediated Lung Fibroblast Activation. Front Pharmacol 2022; 13:835979. [PMID: 35355726 PMCID: PMC8959577 DOI: 10.3389/fphar.2022.835979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 01/06/2023] Open
Abstract
Pulmonary fibrosis is a group of life-threatening diseases with limited therapeutic options. The involvement of cannabinoid type 1 receptors (CB1R) has been indicated in fibrotic diseases, but whether or not the activation of CB1R can be a benefit for fibrosis treatment is controversial. In this study, we investigated the effects of arachidonoylcyclopropylamide (ACPA), as a selective CB1R agonist, on bleomycin (BLM)-induced pulmonary fibrosis. We showed that ACPA treatment significantly improved the survival rate of BLM-treated mice, alleviated BLM-induced pulmonary fibrosis, and inhibited the expressions of extracellular matrix (ECM) markers, such as collagen, fibronectin, and α-SMA. The enhanced expressions of ECM markers in transforming growth factor-beta (TGF-β)-challenged primary lung fibroblasts isolated from mouse lung tissues were inhibited by ACPA treatment in a dose-dependent manner, and the fibroblast migration triggered by TGF-β was dose-dependently diminished after ACPA administration. Moreover, the increased mRNA levels of CB1R were observed in both lung fibroblasts of BLM-induced fibrotic mice in vivo and TGF-β-challenged primary lung fibroblasts in vitro. CB1R-specific agonist ACPA significantly diminished the activation of TGF-β–Smad2/3 signaling, i.e., the levels of p-Smad2 and p-Smad3, and decreased the expressions of downstream effector proteins including slug and snail, which regulate ECM production, in TGF-β-challenged primary lung fibroblasts. Collectively, these findings demonstrated that CB1R-specific agonist ACPA exhibited antifibrotic efficacy in both in vitro and in vivo models of pulmonary fibrosis, revealing a novel anti-fibrosis approach to fibroblast-selective inhibition of TGF-β-Smad2/3 signaling by targeting CB1R.
Collapse
Affiliation(s)
- Dongxin Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huirong Tang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hongchao Jiang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjuan Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
26
|
Iyer MR, Cinar R, Wood CM, Zawatsky CN, Coffey NJ, Kim KA, Liu Z, Katz A, Abdalla J, Hassan SA, Lee YS. Synthesis, Biological Evaluation, and Molecular Modeling Studies of 3,4-Diarylpyrazoline Series of Compounds as Potent, Nonbrain Penetrant Antagonists of Cannabinoid-1 (CB 1R) Receptor with Reduced Lipophilicity. J Med Chem 2022; 65:2374-2387. [PMID: 35084860 DOI: 10.1021/acs.jmedchem.1c01836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present report, we describe the synthesis and structure-activity relationships of novel "four-arm" dihydropyrazoline compounds designed as peripherally restricted antagonists of cannabinoid-1 receptor (CB1R). A series of racemic 3,4-diarylpyrazolines were synthesized and evaluated initially in CB1 receptor binding assays. The novel compounds, designed to limit brain penetrance and decreased lipophilicity, showed high affinity for CB1R and potent in vitro CB1R antagonist activities. Promising compounds with potent CB1R activity were evaluated in tissue distribution studies. Compounds 6a, 6f, and 7c showed limited brain penetrance attesting to its peripheral restriction. The 4S-enantiomer of these compounds further showed a stereoselective affinity for the CB1 receptor and behaved as inverse agonists. In vivo studies on food intake and body weight reduction in diet-induced obese (DIO) mice showed that these compounds could serve as potential leads for the development of selective CB1R antagonists with improved potency and peripheral restriction.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Casey M Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Charles N Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Nathan J Coffey
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Kyu Ah Kim
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Ziyi Liu
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Alexis Katz
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Jasmina Abdalla
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, Maryland 20852, United States
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, United States
| | - Yong-Sok Lee
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, United States
| |
Collapse
|
27
|
Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci 2022; 291:120283. [PMID: 34998839 DOI: 10.1016/j.lfs.2021.120283] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with unknown etiological factors that can progress to other dangerous diseases like lung cancer. Environmental and genetic predisposition are the two major etiological or risk factors involved in the pathology of the IPF. Among the environmental risk factors, smoking is one of the major causes for the development of IPF. Epigenetic pathways like nucleosomes remodeling, DNA methylation, histone modifications and miRNA mediated genes play a crucial role in development of IPF. Mutations in the genes make the epigenetic factors as important drug targets in IPF. Transcriptional changes due to environmental factors are also involved in the progression of IPF. The mutations in human telomerase reverse transcriptase (hTERT) have shown decreased life expectancy in IPF patients. The TERT-gene is highly expressed in chronic smokers and makes the role of epigenetics evident. Drug like nintedanib acts through vascular endothelial growth factor receptors (VEGFR), while drug pirfenidone acts through transforming growth factor (TGF), which is useful in IPF. Gefitinib, a tyrosine kinase inhibitor of EGFR, is useful as an anti-fibrosis agent in preclinical models. Newer drugs such as Celgene-CC90001 and FibroGen-FG-3019 are currently under investigations acts through the modulating epigenetic mechanisms. Thus, the study on epigenetics opens a wide window for the discovery of newer drugs. This study provides an elementary analysis of multiple regulators of epigenetics and their roles associated with the pathology of IPF. Further, this review also includes epigenetic drugs under development in preclinical and clinical stages.
Collapse
|
28
|
Martínez-Aguirre C, Cinar R, Rocha L. Targeting Endocannabinoid System in Epilepsy: For Good or for Bad. Neuroscience 2021; 482:172-185. [PMID: 34923038 DOI: 10.1016/j.neuroscience.2021.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a neurological disorder with a high prevalence worldwide. Several studies carried out during the last decades indicate that the administration of cannabinoids as well as the activation of the endocannabinoid system (ECS) represent a therapeutic strategy to control epilepsy. However, there are controversial studies indicating that activation of ECS results in cell damage, inflammation and neurotoxicity, conditions that facilitate the seizure activity. The present review is focused to present findings supporting this issue. According to the current discrepancies, it is relevant to elucidate the different effects induced by the activation of ECS and determine the conditions under which it facilitates the seizure activity.
Collapse
Affiliation(s)
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, USA
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
29
|
Kicman A, Pędzińska-Betiuk A, Kozłowska H. The potential of cannabinoids and inhibitors of endocannabinoid degradation in respiratory diseases. Eur J Pharmacol 2021; 911:174560. [PMID: 34648805 DOI: 10.1016/j.ejphar.2021.174560] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/21/2022]
Abstract
The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.
Collapse
Affiliation(s)
- Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222, Białystok, Poland.
| |
Collapse
|
30
|
Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics. Cell Biol Toxicol 2021; 38:699-723. [PMID: 34741237 DOI: 10.1007/s10565-021-09676-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by progressive loss of pulmonary function. Drug-induced interstitial lung disease has been reported as a severe adverse effect of some drugs, such as bleomycin, amiodarone, and methotrexate. Based on good characteristics, drug-induced pulmonary fibrosis (PF) animal model has played a key role in our understanding of the molecular mechanisms of PF pathogenesis and recapitulates the specific pathology in patients and helps develop therapeutic strategies. Here, we summarize the mechanisms and characteristics of given fibrotic drug-induced animal models for PFs. Together with the key publications describing these models, this brief but detailed overview would be helpful for the pharmacological research with animal models of PFs. Potential mechanisms underlying drug induced lung toxicity.
Collapse
|
31
|
Leal EC, Moura LIF, Pirzgalska RM, Marques-da-Silva D, Ledent C, Köfalvi A, Carvalho E. Diabetes and Cannabinoid CB1 receptor deficiency promote similar early onset aging-like changes in the skin. Exp Gerontol 2021; 154:111528. [PMID: 34437952 DOI: 10.1016/j.exger.2021.111528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The cannabinoid receptor type-1 (CB1R) is a major regulator of metabolism, growth and inflammation. Yet, its potential role in the skin is not well understood. Our aim was to evaluate the role of CB1R in aging-like diabetic skin changes by using a CB1R knockout mouse model. METHODS We evaluated several signals of skin aging in wild-type control (WT), WT streptozotocin-induced type 1 diabetic mice (WT DM), CB1R knockout (CB1RKO) and CB1RKO DM mice. We quantified markers of inflammation, angiogenesis, antioxidant enzymes and collagen content. Moreover, we evaluate reactive oxygen species (ROS) levels and macrophage phenotype, M1 and M2. RESULTS CB1R expression is decreased in the skin of WT DM mice and collagen levels are decreased in the skin of WT DM, CB1RKO and CB1RKO DM mice. Additionally, the absence of CB1R correlated with higher expression of pro-inflammatory markers, also evident in WT DM or CB1RKO DM mice. Moreover, the M1/M2 macrophage ratio and ROS levels were significantly elevated but in the diabetic WT and the CB1RKO mice, consistent with a significant decrease in the antioxidant capacity of the skin. CONCLUSIONS Our results indicate that CB1R deficiency in the skin may lead to accelerated skin aging due to the increased production of ROS, a decrease in the antioxidant defenses and a higher pro-inflammatory environment. A significant decrease in the CB1R expression may be a significant contributing factor to the early aging-like changes in diabetes.
Collapse
Affiliation(s)
- Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Liane I F Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Roksana M Pirzgalska
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal; The Portuguese Diabetes Association (APDP), Lisbon, Portugal.
| |
Collapse
|
32
|
The Peripheral Cannabinoid Receptor Type 1 (CB 1) as a Molecular Target for Modulating Body Weight in Man. Molecules 2021; 26:molecules26206178. [PMID: 34684760 PMCID: PMC8538448 DOI: 10.3390/molecules26206178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/14/2023] Open
Abstract
The cannabinoid 1 (CB1) receptor regulates appetite and body weight; however, unwanted central side effects of both agonists (in wasting disorders) or antagonists (in obesity and diabetes) have limited their therapeutic utility. At the peripheral level, CB1 receptor activation impacts the energy balance of mammals in a number of different ways: inhibiting satiety and emesis, increasing food intake, altering adipokine and satiety hormone levels, altering taste sensation, decreasing lipolysis (fat break down), and increasing lipogenesis (fat generation). The CB1 receptor also plays an important role in the gut–brain axis control of appetite and satiety. The combined effect of peripheral CB1 activation is to promote appetite, energy storage, and energy preservation (and the opposite is true for CB1 antagonists). Therefore, the next generation of CB1 receptor medicines (agonists and antagonists, and indirect modulators of the endocannabinoid system) have been peripherally restricted to mitigate these issues, and some of these are already in clinical stage development. These compounds also have demonstrated potential in other conditions such as alcoholic steatohepatitis and diabetic nephropathy (peripherally restricted CB1 antagonists) and pain conditions (peripherally restricted CB1 agonists and FAAH inhibitors). This review will discuss the mechanisms by which peripheral CB1 receptors regulate body weight, and the therapeutic utility of peripherally restricted drugs in the management of body weight and beyond.
Collapse
|
33
|
Wolff D, Radojcic V, Lafyatis R, Cinar R, Rosenstein RK, Cowen EW, Cheng GS, Sheshadri A, Bergeron A, Williams KM, Todd JL, Teshima T, Cuvelier GDE, Holler E, McCurdy SR, Jenq RR, Hanash AM, Jacobsohn D, Santomasso BD, Jain S, Ogawa Y, Steven P, Luo ZK, Dietrich-Ntoukas T, Saban D, Bilic E, Penack O, Griffith LM, Cowden M, Martin PJ, Greinix HT, Sarantopoulos S, Socie G, Blazar BR, Pidala J, Kitko CL, Couriel DR, Cutler C, Schultz KR, Pavletic SZ, Lee SJ, Paczesny S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021; 27:817-835. [PMID: 34217703 PMCID: PMC8478861 DOI: 10.1016/j.jtct.2021.06.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Chronic graft-versus-host disease (GVHD) can be associated with significant morbidity, in part because of nonreversible fibrosis, which impacts physical functioning (eye, skin, lung manifestations) and mortality (lung, gastrointestinal manifestations). Progress in preventing severe morbidity and mortality associated with chronic GVHD is limited by a complex and incompletely understood disease biology and a lack of prognostic biomarkers. Likewise, treatment advances for highly morbid manifestations remain hindered by the absence of effective organ-specific approaches targeting "irreversible" fibrotic sequelae and difficulties in conducting clinical trials in a heterogeneous disease with small patient numbers. The purpose of this document is to identify current gaps, to outline a roadmap of research goals for highly morbid forms of chronic GVHD including advanced skin sclerosis, fasciitis, lung, ocular and gastrointestinal involvement, and to propose strategies for effective trial design. The working group made the following recommendations: (1) Phenotype chronic GVHD clinically and biologically in future cohorts, to describe the incidence, prognostic factors, mechanisms of organ damage, and clinical evolution of highly morbid conditions including long-term effects in children; (2) Conduct longitudinal multicenter studies with common definitions and research sample collections; (3) Develop new approaches for early identification and treatment of highly morbid forms of chronic GVHD, especially biologically targeted treatments, with a special focus on fibrotic changes; and (4) Establish primary endpoints for clinical trials addressing each highly morbid manifestation in relationship to the time point of intervention (early versus late). Alternative endpoints, such as lack of progression and improvement in physical functioning or quality of life, may be suitable for clinical trials in patients with highly morbid manifestations. Finally, new approaches for objective response assessment and exploration of novel trial designs for small populations are required.
Collapse
Affiliation(s)
- Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Rachel K Rosenstein
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Bergeron
- Department of Pulmonary Medicine, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Jamie L Todd
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey D E Cuvelier
- Pediatric Blood and Marrow Transplant, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Shannon R McCurdy
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alan M Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - David Jacobsohn
- Children's National Hospital, George Washington University, Washington, District of Columbia
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York New York
| | - Sandeep Jain
- Department of Ophthalmology, University of Illinois Eye & Ear Infirmary, Chicago, Illinois
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Philipp Steven
- Division for Dry-Eye and ocular GvHD, Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
| | - Zhonghui Katie Luo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Tina Dietrich-Ntoukas
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität Berlin, Department of Ophthalmology, Berlin, Germany
| | - Daniel Saban
- Department of Ophthalmology and Department of Immunology, Duke University School of Medicine, Durham, North Carolina
| | - Ervina Bilic
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Olaf Penack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | | | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine, Duke Cancer Institute, Durham, North Carolina
| | - Gerard Socie
- Hematology Transplantation, AP-HP Saint Louis Hospital & University of Paris, Paris, France
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy. H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Carrie L Kitko
- Pediatric Stem Cell Transplant Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel R Couriel
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
34
|
Zawatsky CN, Park JK, Abdalla J, Kunos G, Iyer MR, Cinar R. Peripheral Hybrid CB 1R and iNOS Antagonist MRI-1867 Displays Anti-Fibrotic Efficacy in Bleomycin-Induced Skin Fibrosis. Front Endocrinol (Lausanne) 2021; 12:744857. [PMID: 34650521 PMCID: PMC8505776 DOI: 10.3389/fendo.2021.744857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 12/16/2022] Open
Abstract
Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.
Collapse
Affiliation(s)
- Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Joshua K. Park
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Jasmina Abdalla
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Malliga R. Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
35
|
Santos-Molina L, Herrerias A, Zawatsky CN, Gunduz-Cinar O, Cinar R, Iyer MR, Wood CM, Lin Y, Gao B, Kunos G, Godlewski G. Effects of a Peripherally Restricted Hybrid Inhibitor of CB1 Receptors and iNOS on Alcohol Drinking Behavior and Alcohol-Induced Endotoxemia. Molecules 2021; 26:5089. [PMID: 34443679 PMCID: PMC8399901 DOI: 10.3390/molecules26165089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Alcohol consumption is associated with gut dysbiosis, increased intestinal permeability, endotoxemia, and a cascade that leads to persistent systemic inflammation, alcoholic liver disease, and other ailments. Craving for alcohol and its consequences depends, among other things, on the endocannabinoid system. We have analyzed the relative role of central vs. peripheral cannabinoid CB1 receptors (CB1R) using a "two-bottle" as well as a "drinking in the dark" paradigm in mice. The globally acting CB1R antagonist rimonabant and the non-brain penetrant CB1R antagonist JD5037 inhibited voluntary alcohol intake upon systemic but not upon intracerebroventricular administration in doses that elicited anxiogenic-like behavior and blocked CB1R-induced hypothermia and catalepsy. The peripherally restricted hybrid CB1R antagonist/iNOS inhibitor S-MRI-1867 was also effective in reducing alcohol consumption after oral gavage, while its R enantiomer (CB1R inactive/iNOS inhibitor) was not. The two MRI-1867 enantiomers were equally effective in inhibiting an alcohol-induced increase in portal blood endotoxin concentration that was caused by increased gut permeability. We conclude that (i) activation of peripheral CB1R plays a dominant role in promoting alcohol intake and (ii) the iNOS inhibitory function of MRI-1867 helps in mitigating the alcohol-induced increase in endotoxemia.
Collapse
Affiliation(s)
- Luis Santos-Molina
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Alexa Herrerias
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Charles N. Zawatsky
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (C.N.Z.); (R.C.)
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (C.N.Z.); (R.C.)
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.I.); (C.M.W.)
| | - Casey M. Wood
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.I.); (C.M.W.)
| | - Yuhong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.L.); (B.G.)
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (Y.L.); (B.G.)
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (L.S.-M.); (A.H.); (G.K.)
| |
Collapse
|
36
|
Graczyk M, Lewandowska AA, Dzierżanowski T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26154551. [PMID: 34361704 PMCID: PMC8347461 DOI: 10.3390/molecules26154551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Significant growth of interest in cannabis (Cannabis sativa L.), especially its natural anti-inflammatory and antioxidative properties, has been observed recently. This narrative review aimed to present the state of the art of research concerning the anti-inflammatory activity of all classes of cannabinoids published in the last five years. Multimodal properties of cannabinoids include their involvement in immunological processes, anti-inflammatory, and antioxidative effects. Cannabinoids and non-cannabinoid compounds of cannabis proved their anti-inflammatory effects in numerous animal models. The research in humans is missing, and the results are unconvincing. Although preclinical evidence suggests cannabinoids are of value in treating chronic inflammatory diseases, the clinical evidence is scarce, and further well-designed clinical trials are essential to determine the prospects for using cannabinoids in inflammatory conditions.
Collapse
Affiliation(s)
- Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | | - Tomasz Dzierżanowski
- Laboratory of Palliative Medicine, Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warsaw, Poland
- Correspondence:
| |
Collapse
|
37
|
Han JH, Kim W. Peripheral CB1R as a modulator of metabolic inflammation. FASEB J 2021; 35:e21232. [PMID: 33715173 DOI: 10.1096/fj.202001960r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Obesity is associated with chronic inflammation in insulin-sensitive tissues, including liver and adipose tissue, and causes hormonal/metabolic complications, such as insulin resistance. There is growing evidence that peripheral cannabinoid-type 1 receptor (CB1R) is a crucial participant in obesity-induced pro-inflammatory responses in insulin-target tissues, and its selective targeting could be a novel therapeutic strategy to break the link between insulin resistance and metabolic inflammation. In this review, we introduce the role of peripheral CB1R in metabolic inflammation and as a mediator of hormonal/metabolic complications that underlie metabolic syndrome, including fatty liver, insulin resistance, and dyslipidemia. We also discuss the therapeutic potential of second- and third-generation peripherally restricted CB1R antagonists for treating obesity-induced metabolic inflammation without eliciting central CB1R-mediated neurobehavioral effects, predictive of neuropsychiatric side effects, in humans.
Collapse
Affiliation(s)
- Ji Hye Han
- Department of Molecular Science & Technology, Ajou University, Suwon, South Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
38
|
Cinar R, Park JK, Zawatsky CN, Coffey NJ, Bodine SP, Abdalla J, Yokoyama T, Jourdan T, Jay L, Zuo MXG, O'Brien KJ, Huang J, Mackie K, Alimardanov A, Iyer MR, Gahl WA, Kunos G, Gochuico BR, Malicdan MCV. CB 1 R and iNOS are distinct players promoting pulmonary fibrosis in Hermansky-Pudlak syndrome. Clin Transl Med 2021; 11:e471. [PMID: 34323400 PMCID: PMC8255071 DOI: 10.1002/ctm2.471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic DisordersNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthMarylandUSA
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Joshua K. Park
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Charles N. Zawatsky
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Nathan J. Coffey
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Steven P. Bodine
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jasmina Abdalla
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Tadafumi Yokoyama
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- Present address:
Department of PediatricsKanazawa UniversityKanazawaJapan
| | - Tony Jourdan
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
- Present address:
INSERM Lipids, Nutrition, Cancer UMR1231University of Burgundy and Franche‐ComtéDijonFrance
| | - Lindsey Jay
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Mei Xing G. Zuo
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Kevin J. O'Brien
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Huang
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Ken Mackie
- Department of Psychological and Brain SciencesIndiana UniversityBloomingtonIndianaUSA
| | - Asaf Alimardanov
- Therapeutics Development BranchDivision of Preclinical InnovationNational Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | - Malliga R. Iyer
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - William A. Gahl
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - George Kunos
- Laboratory of Physiologic StudiesNational Institute on Alcohol Abuse and AlcoholismNational Institutes of HealthRockvilleMarylandUSA
| | - Bernadette R. Gochuico
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - May Christine V. Malicdan
- Section of Human Biochemical GeneticsMedical Genetics BranchNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
- NIH Undiagnosed Diseases Program and Office of the Clinical DirectorNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
39
|
Wiley MB, Bobardt SD, Nordgren TM, Nair MG, DiPatrizio NV. Cannabinoid Receptor Subtype-1 Regulates Allergic Airway Eosinophilia During Lung Helminth Infection. Cannabis Cannabinoid Res 2021; 6:242-252. [PMID: 33998896 PMCID: PMC8217601 DOI: 10.1089/can.2020.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Introduction: Over 1 billion humans carry infectious helminth parasites that can lead to chronic comorbidities such as anemia and growth retardation in children. Helminths induce a T-helper type 2 (Th2) immune response in the host and can cause severe tissue damage and fibrosis if chronic. We recently reported that mice infected with the soil-transmitted helminth, Nippostrongylus brasiliensis, displayed elevated levels of endocannabinoids (eCBs) in the lung and intestine. eCBs are lipid-signaling molecules that control inflammation; however, their function in infection is not well defined. Materials and Methods: A combination of pharmacological approaches and genetic mouse models was used to investigate roles for the eCB system in inflammatory responses and lung injury in mice during parasitic infection with N. brasiliensis. Results: Hemorrhaging of lung tissue in mice infected with N. brasiliensis was exacerbated by inhibiting peripheral cannabinoid receptor subtype-1 (CB1Rs) with the peripherally restricted CB1R antagonist, AM6545. In addition, these mice exhibited an increase in nonfunctional alveolar space and prolonged airway eosinophilia compared to vehicle-treated infected mice. In contrast to mice treated with AM6545, infected cannabinoid receptor subtype-2-null mice (Cnr2-/-) did not display any changes in these parameters compared to wild-type mice. Conclusions: Roles for the eCB system in Th2 immune responses are not well understood; however, increases in its activity in response to infection suggest an immunomodulatory role. Moreover, these findings suggest a role for eCB signaling at CB1Rs but not cannabinoid receptor subtypes-2 in the resolution of Th2 inflammatory responses, which become host destructive over time.
Collapse
Affiliation(s)
- Mark B. Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Tara M. Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
40
|
Functional Fine-Tuning of Metabolic Pathways by the Endocannabinoid System-Implications for Health and Disease. Int J Mol Sci 2021; 22:ijms22073661. [PMID: 33915889 PMCID: PMC8036872 DOI: 10.3390/ijms22073661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) employs a huge network of molecules (receptors, ligands, and enzymatic machinery molecules) whose interactions with other cellular networks have still not been fully elucidated. Endogenous cannabinoids are molecules with the primary function of control of multiple metabolic pathways. Maintenance of tissue and cellular homeostasis by functional fine-tuning of essential metabolic pathways is one of the key characteristics of the ECS. It is implicated in a variety of physiological and pathological states and an attractive pharmacological target yet to reach its full potential. This review will focus on the involvement of ECS in glucose and lipid metabolism, food intake regulation, immune homeostasis, respiratory health, inflammation, cancer and other physiological and pathological states will be substantiated using freely available data from open-access databases, experimental data and literature review. Future directions should envision capturing its diversity and exploiting pharmacological options beyond the classical ECS suspects (exogenous cannabinoids and cannabinoid receptor monomers) as signaling through cannabinoid receptor heteromers offers new possibilities for different biochemical outcomes in the cell.
Collapse
|
41
|
Deeba F, Kumar A, Mukherjee M, Sharma AK, Sharma M. Targeting the endocannabinoid system in diabesity: Fact or fiction? Drug Discov Today 2021; 26:1750-1758. [PMID: 33781949 DOI: 10.1016/j.drudis.2021.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 03/22/2021] [Indexed: 01/04/2023]
Abstract
'Diabesity' refers to a rising epidemic indicated by the intricate relationship between obesity and diabetes. The global prevalence of these coexisting, insidious diseases increases social and economic health burdens at a rapid pace. Numerous reports delineate the involvement of the underlying endocannabinoid (EC) signaling system through the cannabinoid-1 (CB1) receptor in the regulation of metabolism and adiposity. Conversely, EC inverse agonists can result in severe depression and suicidal thoughts through interactions with CB1/2 receptors in the brain. This review attempts to elucidate a possible mechanism for the amelioration of diabesity. Moreover, we also highlight the available targets of the CB1 receptor, which could pave the way for safe and effective therapy.
Collapse
Affiliation(s)
- Farah Deeba
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Haryana 122413, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Sector-125 NOIDA- 201303, Gautam Buddha Nagar, U.P, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Haryana 122413, India.
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India.
| |
Collapse
|
42
|
Cinar R, Iyer MR, Kunos G. Dual inhibition of CB 1 receptors and iNOS, as a potential novel approach to the pharmacological management of acute and long COVID-19. Br J Pharmacol 2021; 179:2121-2127. [PMID: 33769552 PMCID: PMC8251289 DOI: 10.1111/bph.15461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
COVID‐19 (SARS‐CoV‐2) causes multiple inflammatory complications, resulting not only in severe lung inflammation but also harm to other organs. Although the current focus is on the management of acute COVID‐19, there is growing concern about long‐term effects of COVID‐19 (Long Covid), such as fibroproliferative changes in the lung, heart and kidney. Therefore, the identification of therapeutic targets not only for the management of acute COVID‐19 but also for preventing Long Covid are needed, and would mitigate against long‐lasting health burden and economic costs, in addition to saving lives. COVID‐19 induces pathological changes via multiple pathways, which could be targeted simultaneously for optimal effect. We discuss the potential pathologic function of increased activity of the endocannabinoid/CB1 receptor system and inducible NO synthase (iNOS). We advocate a polypharmacology approach, wherein a single chemical entity simultaneously interacts with CB1 receptors and iNOS causing inhibition, as a potential therapeutic strategy for COVID‐19‐related health complications.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
43
|
Khan N, Laudermilk L, Ware J, Rosa T, Mathews K, Gay E, Amato G, Maitra R. Peripherally Selective CB1 Receptor Antagonist Improves Symptoms of Metabolic Syndrome in Mice. ACS Pharmacol Transl Sci 2021; 4:757-764. [PMID: 33860199 DOI: 10.1021/acsptsci.0c00213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is a complex disorder that stems from the additive effects of multiple underlying causes such as obesity, insulin resistance, and chronic low-grade inflammation. The endocannabinoid system plays a central role in appetite regulation, energy balance, lipid metabolism, insulin sensitivity, and β-cell function. The type 1 cannabinoid receptor (CB1R) antagonist SR141716A (rimonabant) showed promising antiobesity effects, but its use was discontinued due to adverse psychiatric events in some users. These adverse effects are due to antagonism of CB1R in the central nervous system (CNS). As such, CNS-sparing CB1R antagonists are presently being developed for various indications. In this study, we report that a recently described compound, 3-{1-[8-(2-chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]piperidin-4-yl}-1-[6-(difluoromethoxy)pyridin-3-yl]urea (RTI1092769), a pyrazole based weak inverse agonist/antagonist of CB1 with very limited brain exposure, improves MetS related complications. Treatment with RTI1092769 inhibited weight gain and improved glucose utilization in obese mice maintained on a high fat diet. Hepatic triglyceride content and steatosis significantly improved with treatment. These phenotypes were supported by improvement in several biomarkers associated with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). These results reinforce the idea that CB1 antagonists with limited brain exposure should be pursued for MetS and other important indications.
Collapse
Affiliation(s)
- Nayaab Khan
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Lucas Laudermilk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Jalen Ware
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Taylor Rosa
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Kelly Mathews
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Elaine Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - George Amato
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
44
|
Suryavanshi SV, Kovalchuk I, Kovalchuk O. Cannabinoids as Key Regulators of Inflammasome Signaling: A Current Perspective. Front Immunol 2021; 11:613613. [PMID: 33584697 PMCID: PMC7876066 DOI: 10.3389/fimmu.2020.613613] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are cytoplasmic inflammatory signaling protein complexes that detect microbial materials, sterile inflammatory insults, and certain host-derived elements. Inflammasomes, once activated, promote caspase-1–mediated maturation and secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18, leading to pyroptosis. Current advances in inflammasome research support their involvement in the development of chronic inflammatory disorders in contrast to their role in regulating innate immunity. Cannabis (marijuana) is a natural product obtained from the Cannabis sativa plant, and pharmacologically active ingredients of the plant are referred to as cannabinoids. Cannabinoids and cannabis extracts have recently emerged as promising novel drugs for chronic medical conditions. Growing evidence indicates the potent anti-inflammatory potential of cannabinoids, especially Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and synthetic cannabinoids; however, the mechanisms remain unclear. Several attempts have been made to decipher the role of cannabinoids in modulating inflammasome signaling in the etiology of chronic inflammatory diseases. In this review, we discuss recently published evidence on the effect of cannabinoids on inflammasome signaling. We also discuss the contribution of various cannabinoids in human diseases concerning inflammasome regulation. Lastly, in the milieu of coronavirus disease-2019 (COVID-19) pandemic, we confer available evidence linking inflammasome activation to the pathophysiology of COVID-19 suggesting overall, the importance of cannabinoids as possible drugs to target inflammasome activation in or to support the treatment of a variety of human disorders including COVID-19.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
45
|
Dao M, François H. Cannabinoid Receptor 1 Inhibition in Chronic Kidney Disease: A New Therapeutic Toolbox. Front Endocrinol (Lausanne) 2021; 12:720734. [PMID: 34305821 PMCID: PMC8293381 DOI: 10.3389/fendo.2021.720734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) concerns millions of individuals worldwide, with few therapeutic strategies available to date. Recent evidence suggests that the endocannabinoid system (ECS) could be a new therapeutic target to prevent CKD. ECS combines receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R), and ligands. The most prominent receptor within the kidney is CB1R, its endogenous local ligands being anandamide and 2-arachidonoylglycerol. Therefore, the present review focuses on the therapeutic potential of CB1R and not CB2R. In the normal kidney, CB1R is expressed in many cell types, especially in the vasculature where it contributes to the regulation of renal hemodynamics. CB1R could also participate to water and sodium balance and to blood pressure regulation but its precise role remains to decipher. CB1R promotes renal fibrosis in both metabolic and non-metabolic nephropathies. In metabolic syndrome, obesity and diabetes, CB1R inhibition not only improves metabolic parameters, but also exerts a direct role in preventing renal fibrosis. In non-metabolic nephropathies, its inhibition reduces the development of renal fibrosis. There is a growing interest of the industry to develop new CB1R antagonists without central nervous side-effects. Experimental data on renal fibrosis are encouraging and some molecules are currently under early-stage clinical phases (phases I and IIa studies). In the present review, we will first describe the role of the endocannabinoid receptors, especially CB1R, in renal physiology. We will next explore the role of endocannabinoid receptors in both metabolic and non-metabolic CKD and renal fibrosis. Finally, we will discuss the therapeutic potential of CB1R inhibition using the new pharmacological approaches. Overall, the new pharmacological blockers of CB1R could provide an additional therapeutic toolbox in the management of CKD and renal fibrosis from both metabolic and non-metabolic origin.
Collapse
Affiliation(s)
- Myriam Dao
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Néphrologie et Transplantation Rénale Adulte, Hôpital Necker Enfants Malades, Paris, France
| | - Helene François
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Hôpital Tenon, Sorbonne Université, Paris, France
- *Correspondence: Helene François,
| |
Collapse
|
46
|
Miao H, Wu XQ, Zhang DD, Wang YN, Guo Y, Li P, Xiong Q, Zhao YY. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res 2021; 163:105316. [PMID: 33248198 DOI: 10.1016/j.phrs.2020.105316] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Fibrosis is the excessive deposition of extracellular matrix components, which results in disruption of tissue architecture and loss of organ function. Fibrosis leads to high morbidity and mortality worldwide, mainly due to the lack of effective therapeutic strategies against fibrosis. It is generally accepted that fibrosis occurs during an aberrant wound healing process and shares a common pathogenesis across different organs such as the heart, liver, kidney, and lung. A better understanding of the fibrosis-related cellular and molecular mechanisms will be helpful for development of targeted drug therapies. Extensive studies revealed that numerous mediators contributed to fibrogenesis, suggesting that targeting these mediators may be an effective therapeutic strategy for antifibrosis. In this review, we describe a number of mediators involved in tissue fibrosis, including aryl hydrocarbon receptor, Yes-associated protein, cannabinoid receptors, angiopoietin-like protein 2, high mobility group box 1, angiotensin-converting enzyme 2, sphingosine 1-phosphate receptor-1, SH2 domain-containing phosphatase-2, and long non-coding RNAs, with the goal that drugs targeting these important mediators might exhibit a beneficial effect on antifibrosis. In addition, these mediators show profibrotic effects on multiple tissues, suggesting that targeting these mediators will exert antifibrotic effects on different organs. Furthermore, we present a variety of compounds that exhibit therapeutic effects against fibrosis. This review suggests therapeutic avenues for targeting organ fibrosis and concurrently identifies challenges and opportunities for designing new therapeutic strategies against fibrosis.
Collapse
Affiliation(s)
- Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, 87131, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, Jiangsu, China.
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
47
|
The Neuroimmunology of Chronic Pain: From Rodents to Humans. J Neurosci 2020; 41:855-865. [PMID: 33239404 DOI: 10.1523/jneurosci.1650-20.2020] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic pain, encompassing conditions, such as low back pain, arthritis, persistent post-surgical pain, fibromyalgia, and neuropathic pain disorders, is highly prevalent but remains poorly treated. The vast majority of therapeutics are directed solely at neurons, despite the fact that signaling between immune cells, glia, and neurons is now recognized as indispensable for the initiation and maintenance of chronic pain. This review highlights recent advances in understanding fundamental neuroimmune signaling mechanisms and novel therapeutic targets in rodent models of chronic pain. We further discuss new technological developments to study, diagnose, and quantify neuroimmune contributions to chronic pain in patient populations.
Collapse
|
48
|
Roger C, Buch C, Muller T, Leemput J, Demizieux L, Passilly-Degrace P, Cinar R, Iyer MR, Kunos G, Vergès B, Degrace P, Jourdan T. Simultaneous Inhibition of Peripheral CB1R and iNOS Mitigates Obesity-Related Dyslipidemia Through Distinct Mechanisms. Diabetes 2020; 69:2120-2132. [PMID: 32680936 PMCID: PMC7506827 DOI: 10.2337/db20-0078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/05/2020] [Indexed: 12/17/2022]
Abstract
Diabetic dyslipidemia, characterized by increased plasma triglycerides and decreased HDL cholesterol levels, is a major factor contributing to nonalcoholic steatohepatitis and cardiovascular risk in type 2 diabetes. Activation of the cannabinoid-1 receptor (CB1R) and activation of inducible nitric oxide synthase (iNOS) are associated with nonalcoholic steatohepatitis progression. Here, we tested whether dual-targeting inhibition of hepatic CB1R and iNOS improves diabetic dyslipidemia in mice with diet-induced obesity (DIO mice). DIO mice were treated for 14 days with (S)-MRI-1867, a peripherally restricted hybrid inhibitor of CB1R and iNOS. (R)-MRI-1867, the CB1R-inactive stereoisomer that retains iNOS inhibitory activity, and JD-5037, a peripherally restricted CB1R antagonist, were used to assess the relative contribution of the two targets to the effects of (S)-MRI-1867. (S)-MRI-1867 reduced hepatic steatosis and the rate of hepatic VLDL secretion, upregulated hepatic LDLR expression, and reduced the circulating levels of proprotein convertase subtilisin/kexin type 9 (PCSK9). The decrease in VLDL secretion could be attributed to CB1R blockade, while the reduction of PCSK9 levels and the related increase in LDLR resulted from iNOS inhibition via an mTOR complex 1-dependent mechanism. In conclusion, this approach based on the concomitant inhibition of CB1R and iNOS represents a promising therapeutic strategy for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Célia Roger
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Chloé Buch
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Tania Muller
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Julia Leemput
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Laurent Demizieux
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Patricia Passilly-Degrace
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Malliga R Iyer
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Bruno Vergès
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Pascal Degrace
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| | - Tony Jourdan
- INSERM Lipids, Nutrition, Cancer (LNC) UMR1231, Team PADYS, University of Burgundy and Franche-Comté, Dijon, France
| |
Collapse
|
49
|
Briand‐Mésange F, Trudel S, Salles J, Ausseil J, Salles J, Chap H. Possible Role of Adipose Tissue and the Endocannabinoid System in Coronavirus Disease 2019 Pathogenesis: Can Rimonabant Return? Obesity (Silver Spring) 2020; 28:1580-1581. [PMID: 32463562 PMCID: PMC7283662 DOI: 10.1002/oby.22916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Fabienne Briand‐Mésange
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Stéphanie Trudel
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Juliette Salles
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Jérôme Ausseil
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Jean‐Pierre Salles
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| | - Hugues Chap
- Centre de Physiopathologie de Toulouse PurpanU5282Centre National de la Recherche ScientifiqueU1043Institut National de la Santé et de la Recherche MédicaleUniversité de Toulouse–Université Paul SabatierToulouseFrance
| |
Collapse
|
50
|
Huai B, Ding J. Atractylenolide III attenuates bleomycin-induced experimental pulmonary fibrosis and oxidative stress in rat model via Nrf2/NQO1/HO-1 pathway activation. Immunopharmacol Immunotoxicol 2020; 42:436-444. [PMID: 32762376 DOI: 10.1080/08923973.2020.1806871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bleomycin (BLM) is a chemotherapy drug used to treat cancer, one of which side effects is that it can lead to pulmonary fibrosis (PF). Atractylenoide III (AtrIII), derived from the dried roots of rhizoma atractylodis of compositae, is one of the main active substances of rhizoma atractylodis. It has anti-inflammatory, anti-tumor and other effects. This study aimed to investigate whether AtrIII alleviated BLM-induced PF and oxidative stress in rats through the nuclear factor erythroid-2-related factor 2/NQO1,NAD(P)H:quinine oxidoreductase 1/Heme oxygenase-1 (Nrf2/NQO1/HO-1) pathway. METHODS A BLM-induced pulmonary fibrosis model in SD rats was established. The respiratory dynamics were evaluated by using Wholebody flow-through plethysmography. Lung injury and pulmonary fibrosis were observed by Hematoxylin-eosin (HE) and Masson staining. Apoptosis was assay by Tunel assay. Inflammatory factors were detected with commercial kits. Expression of mRNAs and proteins were detected by RT-qPCR and Western blot, respectively. RESULTS AtrIII (1.2, 2.4 mg/kg) improved the lung injury and lung function in the BLM-induced Sprague-Dawley (SD) rats. AtrIII reduced the apoptosis rate and protein expression of Caspase-3 and Caspase-9. AtrIII (1.2, 2.4 mg/kg) decrease the pulmonary fibrosis damage and protein expression transforming growth factor-β (TGF-β) and α-smooth muscle actin (α-SMA). AtrIII also down-regulated the levels of interleukin 6 (IL-6), inductible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α), while up-regulated the level of IL-10 in peripheral blood serum. Moreover, AtrIII (1.2, 2.4 mg/kg) increased the activity of superoxide dismutase (SOD) and glutathione (GSH), while decreased the malondialdehyde (MDA) content and lactate dehydrogenase (LDH) activity. AtrIII (1.2, 2.4 mg/kg) increased the levels of Nrf2, NQO1 and HO-1. In addition, AtrIII reversed the effects of Nrf2 interference on pulmonary fibrosis damage, decreased SOD and GSH activity, and increased MDA content. CONCLUSION AtrIII could attenuate the pulmonary fibrosis and reliev oxidative stress through the Nrf2/NQO1/ HO-1 pathway.
Collapse
Affiliation(s)
- Bin Huai
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, Shandong, China
| | - Jiyu Ding
- Department of Pharmacy, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|