1
|
Kallionpää RA, Martikkala E, Haapaniemi P, Karppinen SM, Riihilä P, Rokka A, Leivo I, Pihlajaniemi T, Peltonen S, Peltonen J. Mass spectrometric insights into the protein composition of human cutaneous neurofibromas: comparison of neurofibromas with the overlying skin. Br J Cancer 2025:10.1038/s41416-025-03055-9. [PMID: 40394150 DOI: 10.1038/s41416-025-03055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 04/20/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Cutaneous neurofibromas (cNFs) are the hallmark of the tumor-predisposition syndrome neurofibromatosis 1 (NF1). While cNFs are always benign, they markedly decrease quality of life in individuals with NF1. Understanding the differences between cNFs and the skin is essential for developing treatments for cNFs. METHODS We collected 15 cNFs from four NF1 individuals and used mass spectrometry to compare the tumor tissue with the skin overlying each tumor. Data were analyzed based on Gene Ontology (GO) terms. RESULTS The expression patterns of the Schwann cell marker S100B and several keratins confirmed successful dissection of cNF tissue from the overlying skin. Hierarchical clustering showed extensive overlap between the tumor and skin samples in three out of four individuals, suggesting high overall similarity between the two tissue types. Based on the analysis of the GO terms, cNFs were associated with decreased expression of proteins related to cell proliferation, extracellular matrix remodeling, angiogenesis and cellular metabolism. CONCLUSION The cNFs are relatively quiescent, consistent with their benign nature and limited growth potential. The development of pharmacological therapy for cNFs requires overcoming the high similarity between cNFs and the overlying skin. The present dataset can serve as a resource for future research on cNFs.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Eija Martikkala
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pekka Haapaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sanna-Maria Karppinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Pilvi Riihilä
- Department of Dermatology and Venereology, University of Turku, Turku, Finland
- Department of Dermatology, Turku University Hospital, Turku, Finland
- FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Ilmo Leivo
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland
- Department of Dermatology, Turku University Hospital, Turku, Finland
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Dermatology and Allergology, University of Helsinki, Helsinki, Finland
- Inflammation Center, Helsinki University Hospital, Helsinki, Finland
| | - Juha Peltonen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, Turku, Finland.
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
2
|
Pham TTQ, Liao CP, Shih YH, Lee WR, Liao YH, Chou CL, Chiu YW, Liu D, Wang HC, Chen BJ, Shao YHJ, Yeh TS, Lai KH, Weng HJ. Enhanced CXCL10 expression in mast cells for cutaneous neurofibroma presenting with pain and itch. Br J Cancer 2025; 132:611-621. [PMID: 39979642 PMCID: PMC11961721 DOI: 10.1038/s41416-025-02956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Cutaneous neurofibroma (cNF) presenting with pain and itch substantially affects the quality of life. The CXCL10/CXCR3 axis, a well-known chemokine signaling pathway involved in pain and itch transmission, has recently been implicated in neurofibroma development. Our study aims to investigate the expression patterns and potential roles of the CXCL10/CXCR3 axis in pain and itch associated with cNFs. METHODS We examined the expression of CXCL10/CXCR3 and immune cell profiles in 53 human solitary cNFs through immunohistochemical staining. The Chinese version of the Short-form McGill Pain Questionnaire and the Chinese Eppendorf Itch Questionnaire were used to assess pain and itch symptoms of cNF tumors, respectively. RESULTS Elevated expression of CXCL10/CXCR3 was observed in tumoral and dermal parts of symptomatic cNFs. The percentage of mast cells expressing CXCL10, but not CXCR3, was significantly higher in symptomatic cNFs compared to asymptomatic cNFs (51.18% vs. 19.07%, respectively, p < 0.0001). The symptomatic cNFs exhibited significantly higher intraepidermal nerve fiber density compared to asymptomatic cNFs (p = 0.009). CONCLUSIONS Our study suggests that CXCL10, potentially mediated by mast cells, may contribute to sensory dysfunction in cNF and may be a target for treating the pain and itch symptoms associated with cNFs. Our study suggests a model in which the CXCL10/CXCR3 pathway plays a role in inducing pain and itch in cNFs, potentially through mast cell mediation. Mast cells may increase the secretion of CXCL10, thereby contributing to pain and itch in cNF, making them a potential target for treating these symptoms. Created in BioRender. Pham, Q. (2025) https://BioRender.com/i89y356 .
Collapse
Affiliation(s)
- Trang Thao Quoc Pham
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Dermatology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Chung-Ping Liao
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Yi-Hsien Shih
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Chia-Lun Chou
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Yun-Wen Chiu
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Donald Liu
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Hao-Chin Wang
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Bo-Jung Chen
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Yu-Hsuan Joni Shao
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, 110301, Taiwan
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, 110301, Taiwan
| | - Tian-Shin Yeh
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110301, Taiwan
| | - Hao-Jui Weng
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
3
|
Pundavela J, Hall A, Dinglasan SA, Choi K, Rizvi TA, Trapnell BC, Wu J, Ratner N. Granulocyte-Macrophage Colony Stimulating Factor Receptor Contributes to Plexiform Neurofibroma Initiation. Cancers (Basel) 2025; 17:905. [PMID: 40075752 PMCID: PMC11899227 DOI: 10.3390/cancers17050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Plexiform neurofibroma (PNF) is an immune cell-rich peripheral nerve sheath tumor that develops primarily in individuals with Neurofibromatosis Type 1 (NF1). Granulocyte-macrophage colony stimulating factor receptor-β (GM-CSFR-βc) is a shared component of receptors for the cytokines GM-CSF, IL-3, and IL-5, ligands with immunomodulatory and tumor promoting roles. In the present study, we use genetically engineered mouse model of neurofibroma. We identified the expression of GM-CSFR-βc and GM-CSFR-α on PNF cells and on macrophages and dendritic cells in the PNF, using the Nf1f/f; DhhCre mouse model of neurofibroma formation. Genetic deletion of GM-CSFR-βc in this model reduced the number of PNFs, which was associated with decreased numbers of tumor-associated Iba1+ macrophages and CD11c+ dendritic cells (DC), while loss of GM-CSFR-α had no effect. Deletion of GM-CSFR-α or GM-CSFR-βc did not improve mouse survival or the structure of Remak bundles in peripheral nerves. Proteome analysis of tumor lysates showed altered levels of numerous cytokines after receptor loss, suggesting that the compensatory effects of other cyto/chemokines maintain a proinflammatory environment promoting neurofibroma. Thus, GM-CSFR-βc signaling contributes modestly to neurofibroma formation, apparently independently of its ligand GM-CSF.
Collapse
Affiliation(s)
- Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (J.P.); (A.H.); (S.A.D.); (K.C.); (T.A.R.); (J.W.)
| | - Ashley Hall
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (J.P.); (A.H.); (S.A.D.); (K.C.); (T.A.R.); (J.W.)
| | - Samantha Anne Dinglasan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (J.P.); (A.H.); (S.A.D.); (K.C.); (T.A.R.); (J.W.)
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (J.P.); (A.H.); (S.A.D.); (K.C.); (T.A.R.); (J.W.)
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (J.P.); (A.H.); (S.A.D.); (K.C.); (T.A.R.); (J.W.)
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Departments of Medicine and Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (J.P.); (A.H.); (S.A.D.); (K.C.); (T.A.R.); (J.W.)
- Department of Pediatric, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (J.P.); (A.H.); (S.A.D.); (K.C.); (T.A.R.); (J.W.)
- Department of Pediatric, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Khan S, Alson D, Sun L, Maloney C, Sun D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers (Basel) 2024; 16:3639. [PMID: 39518076 PMCID: PMC11545784 DOI: 10.3390/cancers16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes individuals to develop benign and malignant tumors of the nerve sheath. Understanding the signatures of cancer stem cells (CSCs) for NF1-associated tumors may facilitate the early detection of tumor progression. Background: Neural crest cells, the cell of origin of NF1-associated tumors, can initiate multiple tumor types, including melanoma, neuroblastoma, and schwannoma. CSCs within these tumors have been reported; however, identifying and targeting CSC populations remains a challenge. Results: This study aims to leverage existing studies on neural crest-derived CSCs to explore markers pertinent to NF1 tumorigenesis. By focusing on the molecular and cellular dynamics within these tumors, we summarize CSC signatures in tumor maintenance, progression, and treatment resistance. Conclusion: A review of these signatures in the context of NF1 will provide insights into NF1 tumor biology and pave the way for developing targeted therapies and improving treatment outcomes for NF1 patients.
Collapse
Affiliation(s)
- Sajjad Khan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Donia Alson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Li Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caroline Maloney
- Department of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daochun Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatric, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Children Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Pundavela J, Dinglasan SA, Touvron M, Hummel SA, Hu L, Rizvi TA, Choi K, Hildeman DA, Ratner N. Stimulator of interferon gene facilitates recruitment of effector CD8 T cells that drive neurofibromatosis type 1 nerve tumor initiation and maintenance. SCIENCE ADVANCES 2024; 10:eado6342. [PMID: 39413183 PMCID: PMC11482331 DOI: 10.1126/sciadv.ado6342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Plexiform neurofibromas (PNFs) are benign nerve tumors driven by loss of the NF1 tumor suppressor in Schwann cells. PNFs are rich in immune cells, but whether immune cells are necessary for tumorigenesis is unknown. We show that inhibition of stimulator of interferon gene (STING) reduces plasma CXCL10, tumor T cell and dendritic cell (DC) recruitment, and tumor formation. Further, mice lacking XCR-1+ DCs showed reduced tumor-infiltrating T cells and PNF tumors. Antigen-presenting cells from tumor-bearing mice promoted CD8+ T cell proliferation in vitro, and PNF T cells expressed high levels of CCL5, implicating T cell activation. Notably, tumors and nerve-associated macrophages were absent in Rag1-/-; Nf1f/f; DhhCre mice and adoptive transfer of CD8+ T cells from tumor-bearing mice restored PNF initiation. In this setting, PNF shrunk upon subsequent T cell removal. Thus, STING pathway activation contributes to CD8+ T cell-dependent inflammatory responses required for PNF initiation and maintenance.
Collapse
Affiliation(s)
- Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha Anne Dinglasan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melissa Touvron
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah A. Hummel
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Hu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Wang F, Guo B, Jia Z, Jing Z, Wang Q, Li M, Lu B, Liang W, Hu W, Fu X. The Role of CXCR3 in Nervous System-Related Diseases. Mediators Inflamm 2024; 2024:8347647. [PMID: 39429695 PMCID: PMC11488998 DOI: 10.1155/2024/8347647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Inflammatory chemokines are a group of G-protein receptor ligands characterized by conserved cysteine residues, which can be divided into four main subfamilies: CC, CXC, XC, and CX3C. The C-X-C chemokine receptor (CXCR) 3 and its ligands, C-X-C chemokine ligands (CXCLs), are widely expressed in both the peripheral nervous system (PNS) and central nervous system (CNS). This comprehensive literature review aims to examine the functions and pathways of CXCR3 and its ligands in nervous system-related diseases. In summary, while the related pathways and the expression levels of CXCR3 and its ligands are varied among different cells in PNS and CNS, the MPAK pathway is the core via which CXCR3 exerts physiological functions. It is not only the core pathway of CXCR3 after activation but also participates in the expression of CXCR3 ligands in the nervous system. In addition, despite CXCR3 being a common inflammatory chemokine receptor, there is no consensus on its precise roles in various diseases. This uncertainty may be attributable to distinct inflammatory characteristics, that inflammation simultaneously possesses the dual properties of damage induction and repair facilitation.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bing Guo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziyang Jia
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qingyi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bingqi Lu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Patritti-Cram J, Rahrmann EP, Rizvi TA, Scheffer KC, Phoenix TN, Largaespada DA, Ratner N. NF1-dependent disruption of the blood-nerve-barrier is improved by blockade of P2RY14. iScience 2024; 27:110294. [PMID: 39100928 PMCID: PMC11294707 DOI: 10.1016/j.isci.2024.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/17/2023] [Accepted: 06/14/2024] [Indexed: 08/06/2024] Open
Abstract
The blood-nerve-barrier (BNB) that regulates peripheral nerve homeostasis is formed by endoneurial capillaries and perineurial cells surrounding the Schwann cell (SC)-rich endoneurium. Barrier dysfunction is common in human tumorigenesis, including in some nerve tumors. We identify barrier disruption in human NF1 deficient neurofibromas, which were characterized by reduced perineurial cell glucose transporter 1 (GLUT1) expression and increased endoneurial fibrin(ogen) deposition. Conditional Nf1 loss in murine SCs recapitulated these alterations and revealed decreased tight junctions and decreased caveolin-1 (Cav1) expression in mutant nerves and in tumors, implicating reduced Cav1-mediated transcytosis in barrier disruption and tumorigenesis. Additionally, elevated receptor tyrosine kinase activity and genetic deletion of Cav1 increased endoneurial fibrin(ogen), and promoted SC tumor formation. Finally, when SC lacked Nf1, genetic loss or pharmacological inhibition of P2RY14 rescued Cav1 expression and barrier function. Thus, loss of Nf1 in SC causes dysfunction of the BNB via P2RY14-mediated G-protein coupled receptor (GPCR) signaling.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0713, USA
| | - Eric P. Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine C. Scheffer
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Wrinkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - David A. Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
8
|
Hirbe AC, Dehner CA, Dombi E, Eulo V, Gross AM, Sundby T, Lazar AJ, Widemann BC. Contemporary Approach to Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Am Soc Clin Oncol Educ Book 2024; 44:e432242. [PMID: 38710002 PMCID: PMC11656191 DOI: 10.1200/edbk_432242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Most malignant peripheral nerve sheath tumors (MPNSTs) are clinically aggressive high-grade sarcomas, arising in individuals with neurofibromatosis type 1 (NF1) at a significantly elevated estimated lifetime frequency of 8%-13%. In the setting of NF1, MPNSTs arise from malignant transformation of benign plexiform neurofibroma and borderline atypical neurofibromas. Composed of neoplastic cells from the Schwannian lineage, these cancers recur in approximately 50% of individuals, and most patients die within five years of diagnosis, despite surgical resection, radiation, and chemotherapy. Treatment for metastatic disease is limited to cytotoxic chemotherapy and investigational clinical trials. In this article, we review the pathophysiology of this aggressive cancer and current approaches to surveillance and treatment.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vanessa Eulo
- Division of Oncology, Department of Medicine, University of Alabama, Birmingham, AL
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Cheng F, Wang C, Yan B, Yin Z, Liu Y, Zhang L, Li M, Liao P, Gao H, Jia Z, Li D, Liu Q, Lei P. CSF1R blockade slows progression of cerebral hemorrhage by reducing microglial proliferation and increasing infiltration of CD8 + CD122+ T cells into the brain. Int Immunopharmacol 2024; 133:112071. [PMID: 38636374 DOI: 10.1016/j.intimp.2024.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Microglia play a pivotal role in the neuroinflammatory response after brain injury, and their proliferation is dependent on colony-stimulating factors. In the present study, we investigated the effect of inhibiting microglia proliferation on neurological damage post intracerebral hemorrhage (ICH) in a mouse model, an aspect that has never been studied before. Using a colony-stimulating factor-1 receptor antagonist (GW2580), we observed that inhibition of microglia proliferation significantly ameliorated neurobehavioral deficits, attenuated cerebral edema, and reduced hematoma volume after ICH. This intervention was associated with a decrease in pro-inflammatory factors in microglia and an increased infiltration of peripheral regulatory CD8 + CD122+ T cells into the injured brain tissue. The CXCR3/CXCL10 axis is the mechanism of brain homing of regulatory CD8 + CD122+ T cells, and the high expression of IL-10 is the hallmark of their synergistic anti-inflammatory effect with microglia. And activated astrocytes around the insult site are a prominent source of CXCL10. Thus, inhibition of microglial proliferation offers a new perspective for clinical translation. The cross-talk between multiple cells involved in the regulation of the inflammatory response highlights the comprehensive nature of neuroimmunomodulation.
Collapse
Affiliation(s)
- Fangyuan Cheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Lan Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Meimei Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Han Gao
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Zexi Jia
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China
| | - Dai Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China
| | - Qiang Liu
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin 300462, China.
| |
Collapse
|
10
|
Perrino MR, Ahmari N, Hall A, Jackson M, Na Y, Pundavela J, Szabo S, Woodruff TM, Dombi E, Kim MO, Köhl J, Wu J, Ratner N. C5aR plus MEK inhibition durably targets the tumor milieu and reveals tumor cell phagocytosis. Life Sci Alliance 2024; 7:e202302229. [PMID: 38458648 PMCID: PMC10923703 DOI: 10.26508/lsa.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
Plexiform neurofibromas (PNFs) are nerve tumors caused by loss of NF1 and dysregulation of RAS-MAPK signaling in Schwann cells. Most PNFs shrink in response to MEK inhibition, but targets with increased and durable effects are needed. We identified the anaphylatoxin C5a as increased in PNFs and expressed largely by PNF m acrophages. We defined pharmacokinetic and immunomodulatory properties of a C5aR1/2 antagonist and tested if peptide antagonists augment the effects of MEK inhibition. MEK inhibition recruited C5AR1 to the macrophage surface; short-term inhibition of C5aR elevated macrophage apoptosis and Schwann cell death, without affecting MEK-induced tumor shrinkage. PNF macrophages lacking C5aR1 increased the engulfment of dying Schwann cells, allowing their visualization. Halting combination therapy resulted in altered T-cell distribution, elevated Iba1+ and CD169+ immunoreactivity, and profoundly altered cytokine expression, but not sustained trumor shrinkage. Thus, C5aRA inhibition independently induces macrophage cell death and causes sustained and durable effects on the PNF microenvironment.
Collapse
Affiliation(s)
- Melissa R Perrino
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Niousha Ahmari
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Hall
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Jackson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Youjin Na
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sara Szabo
- Departmentd of Pediatrics and Pediatric Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Mi-Ok Kim
- Department Biostatistics, University of California, San Francisco, CA, USA
| | - Jörg Köhl
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Institute for Systemic Inflammation Research, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Chatterjee J, Koleske JP, Chao A, Sauerbeck AD, Chen JK, Qi X, Ouyang M, Boggs LG, Idate R, Marco Y Marquez LI, Kummer TT, Gutmann DH. Brain injury drives optic glioma formation through neuron-glia signaling. Acta Neuropathol Commun 2024; 12:21. [PMID: 38308315 PMCID: PMC10837936 DOI: 10.1186/s40478-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Tissue injury and tumorigenesis share many cellular and molecular features, including immune cell (T cells, monocytes) infiltration and inflammatory factor (cytokines, chemokines) elaboration. Their common pathobiology raises the intriguing possibility that brain injury could create a tissue microenvironment permissive for tumor formation. Leveraging several murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome and two experimental methods of brain injury, we demonstrate that both optic nerve crush and diffuse traumatic brain injury induce optic glioma (OPG) formation in mice harboring Nf1-deficient preneoplastic progenitors. We further elucidate the underlying molecular and cellular mechanisms, whereby glutamate released from damaged neurons stimulates IL-1β release by oligodendrocytes to induce microglia expression of Ccl5, a growth factor critical for Nf1-OPG formation. Interruption of this cellular circuit using glutamate receptor, IL-1β or Ccl5 inhibitors abrogates injury-induced glioma progression, thus establishing a causative relationship between injury and tumorigenesis.
Collapse
Affiliation(s)
- Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Joshua P Koleske
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Astoria Chao
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xuanhe Qi
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Megan Ouyang
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lucy G Boggs
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Rujuta Idate
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lara Isabel Marco Y Marquez
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Terrence T Kummer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Mazuelas H, Magallón-Lorenz M, Uriarte-Arrazola I, Negro A, Rosas I, Blanco I, Castellanos E, Lázaro C, Gel B, Carrió M, Serra E. Unbalancing cAMP and Ras/MAPK pathways as a therapeutic strategy for cutaneous neurofibromas. JCI Insight 2024; 9:e168826. [PMID: 38175707 PMCID: PMC11143965 DOI: 10.1172/jci.insight.168826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Cutaneous neurofibromas (cNFs) are benign Schwann cell (SC) tumors arising from subepidermal glia. Individuals with neurofibromatosis type 1 (NF1) may develop thousands of cNFs, which greatly affect their quality of life. cNF growth is driven by the proliferation of NF1-/- SCs and their interaction with the NF1+/- microenvironment. We analyzed the crosstalk between human cNF-derived SCs and fibroblasts (FBs), identifying an expression signature specific to the SC-FB interaction. We validated the secretion of proteins involved in immune cell migration, suggesting a role of SC-FB crosstalk in immune cell recruitment. The signature also captured components of developmental signaling pathways, including the cAMP elevator G protein-coupled receptor 68 (GPR68). Activation of Gpr68 by ogerin in combination with the MEK inhibitor (MEKi) selumetinib reduced viability and induced differentiation and death of human cNF-derived primary SCs, a result corroborated using an induced pluripotent stem cell-derived 3D neurofibromasphere model. Similar results were obtained using other Gpr68 activators or cAMP analogs/adenylyl cyclase activators in combination with selumetinib. Interestingly, whereas primary SC cultures restarted their proliferation after treatment with selumetinib alone was stopped, the combination of ogerin-selumetinib elicited a permanent halt on SC expansion that persisted after drug removal. These results indicate that unbalancing the Ras and cAMP pathways by combining MEKi and cAMP elevators could be used as a potential treatment for cNFs.
Collapse
Affiliation(s)
- Helena Mazuelas
- Hereditary Cancer Group, Translational Cancer Research Program, and
| | | | | | - Alejandro Negro
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Inma Rosas
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ignacio Blanco
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Elisabeth Castellanos
- Clinical Genomics Research Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, Barcelona, Spain
- Genetics Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO-IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Bernat Gel
- Hereditary Cancer Group, Translational Cancer Research Program, and
- Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Meritxell Carrió
- Hereditary Cancer Group, Translational Cancer Research Program, and
| | - Eduard Serra
- Hereditary Cancer Group, Translational Cancer Research Program, and
- Centro de Investigación Biomédica en Red de Cáncer, Spain
| |
Collapse
|
14
|
Kallionpää RA, Peltonen S, Le KM, Martikkala E, Jääskeläinen M, Fazeli E, Riihilä P, Haapaniemi P, Rokka A, Salmi M, Leivo I, Peltonen J. Characterization of Immune Cell Populations of Cutaneous Neurofibromas in Neurofibromatosis 1. J Transl Med 2024; 104:100285. [PMID: 37949359 DOI: 10.1016/j.labinv.2023.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Cutaneous neurofibromas (cNFs) are characteristic of neurofibromatosis 1 (NF1), yet their immune microenvironment is incompletely known. A total of 61 cNFs from 10 patients with NF1 were immunolabeled for different types of T cells and macrophages, and the cell densities were correlated with clinical characteristics. Eight cNFs and their overlying skin were analyzed for T cell receptor CDR domain sequences, and mass spectrometry of 15 cNFs and the overlying skin was performed to study immune-related processes. Intratumoral T cells were detected in all cNFs. Tumors from individuals younger than the median age of the study participants (33 years), growing tumors, and tumors smaller than the data set median showed increased T cell density. Most samples displayed intratumoral or peritumoral aggregations of CD3-positive cells. T cell receptor sequencing demonstrated that the skin and cNFs host distinct T cell populations, whereas no dominant cNF-specific T cell clones were detected. Unique T cell clones were fewer in cNFs than in skin, and mass spectrometry suggested lower expression of proteins related to T cell-mediated immunity in cNFs than in skin. CD163-positive cells, suggestive of M2 macrophages, were abundant in cNFs. Human cNFs have substantial T cell and macrophage populations that may be tumor-specific.
Collapse
Affiliation(s)
- Roope A Kallionpää
- Institute of Biomedicine, University of Turku, Turku, Finland; FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, University of Turku, Turku, Finland; Department of Dermatology, Turku University Hospital, Turku, Finland; Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Dermatology and Venereology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Dermatology and Allergology, University of Helsinki, Helsinki, Finland; Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Kim My Le
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Eija Martikkala
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Elnaz Fazeli
- Institute of Biomedicine, University of Turku, Turku, Finland; Biomedicum Imaging Unit, Faculty of Medicine and HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pilvi Riihilä
- Department of Dermatology and Venereology, University of Turku, Turku, Finland; Department of Dermatology, Turku University Hospital, Turku, Finland; FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Pekka Haapaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, Turku, Finland; MediCity Research Laboratory, and InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Ilmo Leivo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Juha Peltonen
- Institute of Biomedicine, University of Turku, Turku, Finland; FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
15
|
Jiang C, Kumar A, Yu Z, Shipman T, Wang Y, McKay RM, Xing C, Le LQ. Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor. J Clin Invest 2023; 133:e168227. [PMID: 37140985 PMCID: PMC10266775 DOI: 10.1172/jci168227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 05/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes more than 50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall downregulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-β1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-β1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA sequencing, we found that immune cells including macrophages and T cells produce TGF-β1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-β1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as biomarkers for disease diagnosis and treatment response.
Collapse
Affiliation(s)
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Ze Yu
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Lyda Hill Department of Bioinformatics
| | - Lu Q. Le
- Department of Dermatology
- Simmons Comprehensive Cancer Center
- UTSW Comprehensive Neurofibromatosis Clinic
- Hamon Center for Regenerative Science and Medicine, and
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
16
|
Wang X, Zhang Y, Wang S, Ni H, Zhao P, Chen G, Xu B, Yuan L. The role of CXCR3 and its ligands in cancer. Front Oncol 2022; 12:1022688. [PMID: 36479091 PMCID: PMC9720144 DOI: 10.3389/fonc.2022.1022688] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/25/2022] [Indexed: 07/30/2023] Open
Abstract
Chemokines are a class of small cytokines or signaling proteins that are secreted by cells. Owing to their ability to induce directional chemotaxis of nearby responding cells, they are called chemotactic cytokines. Chemokines and chemokine receptors have now been shown to influence many cellular functions, including survival, adhesion, invasion, and proliferation, and regulate chemokine levels. Most malignant tumors express one or more chemokine receptors. The CXC subgroup of chemokine receptors, CXCR3, is mainly expressed on the surface of activated T cells, B cells, and natural killer cells, and plays an essential role in infection, autoimmune diseases, and tumor immunity by binding to specific receptors on target cell membranes to induce targeted migration and immune responses. It is vital to treat infections, autoimmune diseases, and tumors. CXCR3 and its ligands, CXCL9, CXCL10, and CXCL11, are closely associated with the development and progression of many tumors. With the elucidation of its mechanism of action, CXCR3 is expected to become a new indicator for evaluating the prognosis of patients with tumors and a new target for clinical tumor immunotherapy. This article reviews the significance and mechanism of action of the chemokine receptor CXCR3 and its specific ligands in tumor development.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yangyang Zhang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Sen Wang
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Hongyan Ni
- Department of Surgery, Henan No.3 Provincial People’s Hospital, Zhengzhou, China
| | - Peng Zhao
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Guangyu Chen
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
17
|
Kershner LJ, Choi K, Wu J, Zhang X, Perrino M, Salomonis N, Shern JF, Ratner N. Multiple Nf1 Schwann cell populations reprogram the plexiform neurofibroma tumor microenvironment. JCI Insight 2022; 7:e154513. [PMID: 36134665 PMCID: PMC9675562 DOI: 10.1172/jci.insight.154513] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
To define alterations early in tumor formation, we studied nerve tumors in neurofibromatosis 1 (NF1), a tumor predisposition syndrome. Affected individuals develop neurofibromas, benign tumors driven by NF1 loss in Schwann cells (SCs). By comparing normal nerve cells to plexiform neurofibroma (PN) cells using single-cell and bulk RNA sequencing, we identified changes in 5 SC populations, including a de novo SC progenitor-like (SCP-like) population. Long after Nf1 loss, SC populations developed PN-specific expression of Dcn, Postn, and Cd74, with sustained expression of the injury response gene Postn and showed dramatic expansion of immune and stromal cell populations; in corresponding human PNs, the immune and stromal cells comprised 90% of cells. Comparisons between injury-related and tumor monocytes/macrophages support early monocyte recruitment and aberrant macrophage differentiation. Cross-species analysis verified each SC population and unique conserved patterns of predicted cell-cell communication in each SC population. This analysis identified PROS1-AXL, FGF-FGFR, and MIF-CD74 and its effector pathway NF-κB as deregulated in NF1 SC populations, including SCP-like cells predicted to influence other types of SCs, stromal cells, and/or immune cells in mouse and human. These findings highlight remarkable changes in multiple types of SCs and identify therapeutic targets for PN.
Collapse
Affiliation(s)
- Leah J. Kershner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Melissa Perrino
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, and
- Departments of Pediatrics and Bioinformatics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Anastasaki C, Mo J, Chen JK, Chatterjee J, Pan Y, Scheaffer SM, Cobb O, Monje M, Le LQ, Gutmann DH. Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of neurofibromatosis-1. Nat Commun 2022; 13:2785. [PMID: 35589737 PMCID: PMC9120229 DOI: 10.1038/s41467-022-30466-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal activity is emerging as a driver of central and peripheral nervous system cancers. Here, we examined neuronal physiology in mouse models of the tumor predisposition syndrome Neurofibromatosis-1 (NF1), with different propensities to develop nervous system cancers. We show that central and peripheral nervous system neurons from mice with tumor-causing Nf1 gene mutations exhibit hyperexcitability and increased secretion of activity-dependent tumor-promoting paracrine factors. We discovered a neurofibroma mitogen (COL1A2) produced by peripheral neurons in an activity-regulated manner, which increases NF1-deficient Schwann cell proliferation, establishing that neurofibromas are regulated by neuronal activity. In contrast, mice with the Arg1809Cys Nf1 mutation, found in NF1 patients lacking neurofibromas or optic gliomas, do not exhibit neuronal hyperexcitability or develop these NF1-associated tumors. The hyperexcitability of tumor-prone Nf1-mutant neurons results from reduced NF1-regulated hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function, such that neuronal excitability, activity-regulated paracrine factor production, and tumor progression are attenuated by HCN channel activation. Collectively, these findings reveal that NF1 mutations act at the level of neurons to modify tumor predisposition by increasing neuronal excitability and activity-regulated paracrine factor production. Neuronal activity is emerging as a driver of nervous system tumors. Here, the authors show in mouse models of Neurofibromatosis-1 (NF1) that Nf1 mutations differentially drive both central and peripheral nervous system tumor growth in mice through reduced hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Juan Mo
- Department of Dermatology, University of Texas, Southwestern, Dallas, TX, 75390, USA
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yuan Pan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas, Southwestern, Dallas, TX, 75390, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
19
|
Patritti Cram J, Wu J, Coover RA, Rizvi TA, Chaney KE, Ravindran R, Cancelas JA, Spinner RJ, Ratner N. P2RY14 cAMP signaling regulates Schwann cell precursor self-renewal, proliferation, and nerve tumor initiation in a mouse model of neurofibromatosis. eLife 2022; 11:73511. [PMID: 35311647 PMCID: PMC8959601 DOI: 10.7554/elife.73511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 01/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is characterized by nerve tumors called neurofibromas, in which Schwann cells (SCs) show deregulated RAS signaling. NF1 is also implicated in regulation of cAMP. We identified the G-protein-coupled receptor (GPCR) P2ry14 in human neurofibromas, neurofibroma-derived SC precursors (SCPs), mature SCs, and mouse SCPs. Mouse Nf1-/- SCP self-renewal was reduced by genetic or pharmacological inhibition of P2ry14. In a mouse model of NF1, genetic deletion of P2ry14 rescued low cAMP signaling, increased mouse survival, delayed neurofibroma initiation, and improved SC Remak bundles. P2ry14 signals via Gi to increase intracellular cAMP, implicating P2ry14 as a key upstream regulator of cAMP. We found that elevation of cAMP by either blocking the degradation of cAMP or by using a P2ry14 inhibitor diminished NF1-/- SCP self-renewal in vitro and neurofibroma SC proliferation in in vivo. These studies identify P2ry14 as a critical regulator of SCP self-renewal, SC proliferation, and neurofibroma initiation.
Collapse
Affiliation(s)
- Jennifer Patritti Cram
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Ramya Ravindran
- Molecular and Developmental Biology, Cincinnati Children's Hospital, Cincinnati, United States
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Hoxworth Blood Center, College of Medicine, University of Cincinnati, Cincinnati, United States
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, Rochester, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, United States
| |
Collapse
|
20
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
21
|
Sun D, Xie XP, Zhang X, Wang Z, Sait SF, Iyer SV, Chen YJ, Brown R, Laks DR, Chipman ME, Shern JF, Parada LF. Stem-like cells drive NF1-associated MPNST functional heterogeneity and tumor progression. Cell Stem Cell 2021; 28:1397-1410.e4. [PMID: 34010628 PMCID: PMC8349880 DOI: 10.1016/j.stem.2021.04.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
NF1-associated malignant peripheral nerve sheath tumors (MPNSTs) are the major cause of mortality in neurofibromatosis. MPNSTs arise from benign peripheral nerve plexiform neurofibromas that originate in the embryonic neural crest cell lineage. Using reporter transgenes that label early neural crest lineage cells in multiple NF1 MPNST mouse models, we discover and characterize a rare MPNST cell population with stem-cell-like properties, including quiescence, that is essential for tumor initiation and relapse. Following isolation of these cells, we derive a cancer-stem-cell-specific gene expression signature that includes consensus embryonic neural crest genes and identify Nestin as a marker for the MPNST cell of origin. Combined targeting of cancer stem cells along with antimitotic chemotherapy yields effective tumor inhibition and prolongs survival. Enrichment of the cancer stem cell signature in cognate human tumors supports the generality and relevance of cancer stem cells to MPNST therapy development.
Collapse
Affiliation(s)
- Daochun Sun
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Xuanhua P Xie
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Zilai Wang
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sameer Farouk Sait
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Swathi V Iyer
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yu-Jung Chen
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rebecca Brown
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dan R Laks
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mollie E Chipman
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
22
|
Rabab’h O, Gharaibeh A, Al-Ramadan A, Ismail M, Shah J. Pharmacological Approaches in Neurofibromatosis Type 1-Associated Nervous System Tumors. Cancers (Basel) 2021; 13:cancers13153880. [PMID: 34359780 PMCID: PMC8345673 DOI: 10.3390/cancers13153880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Neurofibromatosis type 1 (NF1) is a common cancer predisposition genetic disease that is associated with significant morbidity and mortality. In this literature review, we discuss the major pathways in the nervous system that are affected by NF1, tumors that are associated with NF1, drugs that target these pathways, and genetic models of NF1. We also summarize the latest updates from clinical trials that are evaluating pharmacological agents to treat these tumors and discuss the efforts that are being made to cure the disease in the future Abstract Neurofibromatosis type 1 is an autosomal dominant genetic disease and a common tumor predisposition syndrome that affects 1 in 3000 to 4000 patients in the USA. Although studies have been conducted to better understand and manage this disease, the underlying pathogenesis of neurofibromatosis type 1 has not been completely elucidated, and this disease is still associated with significant morbidity and mortality. Treatment options are limited to surgery with chemotherapy for tumors in cases of malignant transformation. In this review, we summarize the advances in the development of targeted pharmacological interventions for neurofibromatosis type 1 and related conditions.
Collapse
Affiliation(s)
- Omar Rabab’h
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
| | - Ali Al-Ramadan
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Manar Ismail
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
| | - Jawad Shah
- Insight Research Institute, Flint, MI 48507, USA; (O.R.); (A.G.); (A.A.-R.); (M.I.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Insight Institute of Neurosurgery & Neuroscience, Flint, MI 48507, USA
- Insight Surgical Hospital, Warren, MI 48091, USA
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
23
|
Chaney KE, Perrino MR, Kershner LJ, Patel AV, Wu J, Choi K, Rizvi TA, Dombi E, Szabo S, Largaespada DA, Ratner N. Cdkn2a Loss in a Model of Neurofibroma Demonstrates Stepwise Tumor Progression to Atypical Neurofibroma and MPNST. Cancer Res 2020; 80:4720-4730. [PMID: 32816910 DOI: 10.1158/0008-5472.can-19-1429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Plexiform neurofibromas are benign nerve sheath Schwann cell tumors characterized by biallelic mutations in the neurofibromatosis type 1 (NF1) tumor suppressor gene. Atypical neurofibromas show additional frequent loss of CDKN2A/Ink4a/Arf and may be precursor lesions of aggressive malignant peripheral nerve sheath tumors (MPNST). Here we combined loss of Nf1 in developing Schwann cells with global Ink4a/Arf loss and identified paraspinal plexiform neurofibromas and atypical neurofibromas. Upon transplantation, atypical neurofibromas generated genetically engineered mice (GEM)-PNST similar to human MPNST, and tumors showed reduced p16INK4a protein and reduced senescence markers, confirming susceptibility to transformation. Superficial GEM-PNST contained regions of nerve-associated plexiform neurofibromas or atypical neurofibromas and grew rapidly on transplantation. Transcriptome analyses showed similarities to corresponding human tumors. Thus, we recapitulated nerve tumor progression in NF1 and provided preclinical platforms for testing therapies at each tumor grade. These results support a tumor progression model in which loss of NF1 in Schwann cells drives plexiform neurofibromas formation, additional loss of Ink4a/Arf contributes to atypical neurofibromas formation, and further changes underlie transformation to MPNST. SIGNIFICANCE: New mouse models recapitulate the stepwise progression of NF1 tumors and will be useful to define effective treatments that halt tumor growth and tumor progression in NF1.
Collapse
Affiliation(s)
- Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Melissa R Perrino
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Leah J Kershner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Eva Dombi
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sara Szabo
- Department of Pediatrics and Department of Pediatric Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - David A Largaespada
- Departments of Pediatrics and Genetics, Cell Biology and Development, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
24
|
Fletcher JS, Pundavela J, Ratner N. After Nf1 loss in Schwann cells, inflammation drives neurofibroma formation. Neurooncol Adv 2019; 2:i23-i32. [PMID: 32642730 PMCID: PMC7317060 DOI: 10.1093/noajnl/vdz045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plexiform neurofibromas (PNF) are peripheral nerve tumors caused by bi-allelic loss of NF1 in the Schwann cell (SC) lineage. PNF are common in individuals with Neurofibromatosis type I (NF1) and can cause significant patient morbidity, spurring research into potential therapies. Immune cells are rare in peripheral nerve, whereas in PNF 30% of the cells are monocytes/macrophages. Mast cells, T cells, and dendritic cells (DCs) are also present. NF1 mutant neurofibroma SCs with elevated Ras-GTP signaling resemble injury-induced repair SCs, in producing growth factors and cytokines not normally present in SCs. This provides a cytokine-rich environment facilitating PNF immune cell recruitment and fibrosis. We propose a model based on genetic and pharmacologic evidence in which, after loss of Nf1 in the SC lineage, a lag occurs. Then, mast cells and macrophages are recruited to nerve. Later, T cell/DC recruitment through CXCL10/CXCR3 drives neurofibroma initiation and sustains PNF macrophages and tumor growth. Stat3 signaling is an additional critical mediator of neurofibroma initiation, cytokine production, and PNF growth. At each stage of PNF development therapeutic benefit should be achievable through pharmacologic modulation of leukocyte recruitment and function.
Collapse
Affiliation(s)
- Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|