1
|
A Possible Explanation for the Low Penetrance of Pathogenic KCNE1 Variants in Long QT Syndrome Type 5. Pharmaceuticals (Basel) 2022; 15:ph15121550. [PMID: 36559002 PMCID: PMC9782992 DOI: 10.3390/ph15121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Long QT syndrome (LQTS) is an inherited cardiac rhythm disorder associated with increased incidence of cardiac arrhythmias and sudden death. LQTS type 5 (LQT5) is caused by dominant mutant variants of KCNE1, a regulatory subunit of the voltage-gated ion channels generating the cardiac potassium current IKs. While mutant LQT5 KCNE1 variants are known to inhibit IKs amplitudes in heterologous expression systems, cardiomyocytes from a transgenic rabbit LQT5 model displayed unchanged IKs amplitudes, pointing towards the critical role of additional factors in the development of the LQT5 phenotype in vivo. In this study, we demonstrate that KCNE3, a candidate regulatory subunit of IKs channels minimizes the inhibitory effects of LQT5 KCNE1 variants on IKs amplitudes, while current deactivation is accelerated. Such changes recapitulate IKs properties observed in LQT5 transgenic rabbits. We show that KCNE3 accomplishes this by displacing the KCNE1 subunit within the IKs ion channel complex, as evidenced by a dedicated biophysical assay. These findings depict KCNE3 as an integral part of the IKs channel complex that regulates IKs function in cardiomyocytes and modifies the development of the LQT5 phenotype.
Collapse
|
2
|
Sanguinetti MC, Seebohm G. Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (K V7.1) Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:335-353. [PMID: 35138621 DOI: 10.1007/978-981-16-4254-8_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
KCNQ1 (KV7.1) K+ channels are expressed in multiple tissues, including the heart, pancreas, colon, and inner ear. The gene encoding the KCNQ1 protein was discovered by a positional cloning effort to determine the genetic basis of long QT syndrome, an inherited ventricular arrhythmia that can cause sudden death. Mutations in KCNQ1 can also cause other types of arrhythmia (i.e., short QT syndrome, atrial fibrillation) and the gene may also have a role in diabetes and certain cancers. KCNQ1 α-subunits can partner with accessory β-subunits (KCNE1-KCNE5) to form K+-selective channels that have divergent biophysical properties. In the heart, KCNQ1 α-subunits coassemble with KCNE1 β-subunits to form channels that conduct IKs, a very slowly activating delayed rectifier K+ current. KV7.1 channels are highly regulated by PIP2, calmodulin, and phosphorylation, and rich pharmacology includes blockers and gating modulators. Recent biophysical studies and a cryo-EM structure of the KCNQ1-calmodulin complex have provided new insights into KV7.1 channel function, and how interactions between KCNQ1 and KCNE subunits alter the gating properties of heteromultimeric channels.
Collapse
Affiliation(s)
| | - Guiscard Seebohm
- Cellular Electrophysiology and Molecular Biology, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Heterogeneous repolarization creates ventricular tachycardia circuits in healed myocardial infarction scar. Nat Commun 2022; 13:830. [PMID: 35149693 PMCID: PMC8837660 DOI: 10.1038/s41467-022-28418-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
Arrhythmias originating in scarred ventricular myocardium are a major cause of death, but the underlying mechanism allowing these rhythms to exist remains unknown. This gap in knowledge critically limits identification of at-risk patients and treatment once arrhythmias become manifest. Here we show that potassium voltage-gated channel subfamily E regulatory subunits 3 and 4 (KCNE3, KCNE4) are uniquely upregulated at arrhythmia sites within scarred myocardium. Ventricular arrhythmias occur in areas with a distinctive cardiomyocyte repolarization pattern, where myocyte tracts with short repolarization times connect to myocytes tracts with long repolarization times. We found this unique pattern of repolarization heterogeneity only in ventricular arrhythmia circuits. In contrast, conduction abnormalities were ubiquitous within scar. These repolarization heterogeneities are consistent with known functional effects of KCNE3 and KCNE4 on the slow delayed-rectifier potassium current. We observed repolarization heterogeneity using conventional cardiac electrophysiologic techniques that could potentially translate to identification of at-risk patients. The neutralization of the repolarization heterogeneities could represent a potential strategy for the elimination of ventricular arrhythmia circuits. Ventricular arrhythmias after heart attack are a leading cause of death. Here the authors show, in a porcine model, that KCNE3 and KCNE4 upregulation and a unique pattern of repolarization heterogeneity in the scar facilitate reentrant ventricular tachycardia.
Collapse
|
4
|
Ravindran D, Kok C, Farraha M, Selvakumar D, Clayton ZE, Kumar S, Chong J, Kizana E. Gene and Cell Therapy for Cardiac Arrhythmias. Clin Ther 2020; 42:1911-1922. [PMID: 32988632 DOI: 10.1016/j.clinthera.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE In the last decade, interest in gene therapy as a therapeutic technology has increased, largely driven by an exciting yet modest number of successful applications for monogenic diseases. Setbacks in the use of gene therapy for cardiac disease have motivated efforts to develop vectors with enhanced tropism for the heart and more efficient delivery methods. Although monogenic diseases are the logical target, cardiac arrhythmias represent a group of conditions amenable to gene therapy because of focal targets (biological pacemakers, nodal conduction, or stem cell-related arrhythmias) or bystander effects on cells not directly transduced because of electrical coupling. METHODS This review provides a contemporary narrative of the field of gene therapy for experimental cardiac arrhythmias, including those associated with stem cell transplant. Recent articles published in the English language and available through the PubMed database and other prominent literature are discussed. FINDINGS The promise of gene therapy has been realized for a handful of monogenic diseases and is actively being pursued for cardiac applications in preclinical models. With improved vectors, it is likely that cardiac disease will also benefit from this technology. Cardiac arrhythmias, whether inherited or acquired, are a group of conditions with a potentially lower threshold for phenotypic correction and as such hold unique potential as targets for cardiac gene therapy. IMPLICATIONS There has been a proliferation of research on the potential of gene therapy for cardiac arrhythmias. This body of investigation forms a strong basis on which further developments, particularly with viral vectors, are likely to help this technology progress along its translational trajectory.
Collapse
Affiliation(s)
- Dhanya Ravindran
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Cindy Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Melad Farraha
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Dinesh Selvakumar
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - James Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
5
|
Shugg T, Hudmon A, Overholser BR. Neurohormonal Regulation of I Ks in Heart Failure: Implications for Ventricular Arrhythmogenesis and Sudden Cardiac Death. J Am Heart Assoc 2020; 9:e016900. [PMID: 32865116 PMCID: PMC7726975 DOI: 10.1161/jaha.120.016900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heart failure (HF) results in sustained alterations in neurohormonal signaling, including enhanced signaling through the sympathetic nervous system and renin-angiotensin-aldosterone system pathways. While enhanced sympathetic nervous system and renin-angiotensin-aldosterone system activity initially help compensate for the failing myocardium, sustained signaling through these pathways ultimately contributes to HF pathophysiology. HF remains a leading cause of mortality, with arrhythmogenic sudden cardiac death comprising a common mechanism of HF-related death. The propensity for arrhythmia development in HF occurs secondary to cardiac electrical remodeling that involves pathological regulation of ventricular ion channels, including the slow component of the delayed rectifier potassium current, that contribute to action potential duration prolongation. To elucidate a mechanistic explanation for how HF-mediated electrical remodeling predisposes to arrhythmia development, a multitude of investigations have investigated the specific regulatory effects of HF-associated stimuli, including enhanced sympathetic nervous system and renin-angiotensin-aldosterone system signaling, on the slow component of the delayed rectifier potassium current. The objective of this review is to summarize the current knowledge related to the regulation of the slow component of the delayed rectifier potassium current in response to HF-associated stimuli, including the intracellular pathways involved and the specific regulatory mechanisms.
Collapse
Affiliation(s)
- Tyler Shugg
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIN
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue University College of PharmacyWest LafayetteIN
| | - Brian R. Overholser
- Division of Clinical PharmacologyIndiana University School of MedicineIndianapolisIN
- Department of Pharmacy PracticePurdue University College of PharmacyIndianapolisIN
| |
Collapse
|
6
|
Sun J, MacKinnon R. Structural Basis of Human KCNQ1 Modulation and Gating. Cell 2019; 180:340-347.e9. [PMID: 31883792 DOI: 10.1016/j.cell.2019.12.003] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/25/2019] [Accepted: 12/04/2019] [Indexed: 01/04/2023]
Abstract
KCNQ1, also known as Kv7.1, is a voltage-dependent K+ channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels.
Collapse
Affiliation(s)
- Ji Sun
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
7
|
Deckelbaum RA, Lobov IB, Cheung E, Halasz G, Rajamani S, Lerner J, Tong C, Li Z, Boland P, Dominguez M, Hughes V, Yancopoulos GD, Murphy AJ, Thurston G, Cao J, Romano C, Gale NW. The potassium channel Kcne3 is a VEGFA-inducible gene selectively expressed by vascular endothelial tip cells. Angiogenesis 2019; 23:179-192. [PMID: 31754927 PMCID: PMC7160073 DOI: 10.1007/s10456-019-09696-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/02/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is largely driven by motile endothelial tip-cells capable of invading avascular tissue domains and enabling new vessel formation. Highly responsive to Vascular Endothelial Growth-Factor-A (VEGFA), endothelial tip-cells also suppress angiogenic sprouting in adjacent stalk cells, and thus have been a primary therapeutic focus in addressing neovascular pathologies. Surprisingly, however, there remains a paucity of specific endothelial tip-cell markers. Here, we employ transcriptional profiling and a lacZ reporter allele to identify Kcne3 as an early and selective endothelial tip-cell marker in multiple angiogenic contexts. In development, Kcne3 expression initiates during early phases of angiogenesis (E9) and remains specific to endothelial tip-cells, often adjacent to regions expressing VEGFA. Consistently, Kcne3 activation is highly responsive to exogenous VEGFA but maintains tip-cell specificity throughout normal retinal angiogenesis. We also demonstrate endothelial tip-cell selectivity of Kcne3 in several injury and tumor models. Together, our data show that Kcne3 is a unique marker of sprouting angiogenic tip-cells and offers new opportunities for investigating and targeting this cell type.
Collapse
Affiliation(s)
- Ron A Deckelbaum
- Department of Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA.
| | | | - Eunice Cheung
- Department of Ophthalmology, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Gabor Halasz
- Department of Bioinformatics, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Saathyaki Rajamani
- Department of Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Julia Lerner
- Department of Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Chunxiang Tong
- Department of Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Zhe Li
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Patricia Boland
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Melissa Dominguez
- Department of Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Virginia Hughes
- Department of Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - George D Yancopoulos
- Department of Research, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Andrew J Murphy
- Department of Research, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Gavin Thurston
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, 10591, USA
| | - Jingtai Cao
- Department of Ophthalmology, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Carmelo Romano
- Department of Ophthalmology, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| | - Nicholas W Gale
- Department of Pre-Therapeutic Target Discovery, Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA
| |
Collapse
|
8
|
Delisle BP, Yu Y, Puvvula P, Hall AR, Huff C, Moon AM. Tbx3-Mediated Regulation of Cardiac Conduction System Development and Function: Potential Contributions of Alternative RNA Processing. Pediatr Cardiol 2019; 40:1388-1400. [PMID: 31372681 DOI: 10.1007/s00246-019-02166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
In this article, we provide a brief summary of work by us and others to discover the molecular underpinnings of early conduction system development and function. We focus on how the multifunctional protein Tbx3 contributes to acquisition and homeostasis of the tissue-specific properties of the sinoatrial and atrioventricular nodes. We also provide unpublished, preliminary findings supporting the role of Tbx3-regulated alternative RNA processing in the developing conduction system.
Collapse
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavan Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA
| | - Allison R Hall
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA. .,Departments of Pediatrics and Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Faridi R, Tona R, Brofferio A, Hoa M, Olszewski R, Schrauwen I, Assir MZ, Bandesha AA, Khan AA, Rehman AU, Brewer C, Ahmed W, Leal SM, Riazuddin S, Boyden SE, Friedman TB. Mutational and phenotypic spectra of KCNE1 deficiency in Jervell and Lange-Nielsen Syndrome and Romano-Ward Syndrome. Hum Mutat 2019; 40:162-176. [PMID: 30461122 PMCID: PMC6328321 DOI: 10.1002/humu.23689] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 11/11/2022]
Abstract
KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel-complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange-Nielson syndrome (JLNS1 and JLNS2), a cardio-auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal-hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano-Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild-type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss-of-function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype-phenotype spectrum for KCNE1 variants.
Collapse
Affiliation(s)
- Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alessandra Brofferio
- Cardiology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muhammad Z.K. Assir
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Akhtar A. Bandesha
- Cardiology Department, The Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Asma A. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54550, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Brewer
- Audiology Unit, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Wasim Ahmed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sheikh Riazuddin
- Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore 54550, Pakistan
| | - Steven E. Boyden
- Section on Genetics of Communication Disorders, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit. Sci Rep 2015; 5:13399. [PMID: 26307551 PMCID: PMC4549624 DOI: 10.1038/srep13399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/24/2015] [Indexed: 01/03/2023] Open
Abstract
KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (I(ks)) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed I(ks) current inhibition. Here, chemically synthesized SSD609 was shown to exert I(ks) inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K(+) current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes.
Collapse
|
11
|
Motloch LJ, Akar FG. Gene therapy to restore electrophysiological function in heart failure. Expert Opin Biol Ther 2015; 15:803-17. [PMID: 25865107 DOI: 10.1517/14712598.2015.1036734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Heart failure (HF) is a major public health epidemic and a leading cause of morbidity and mortality in the industrialized world. Existing treatments for patients with HF are often associated with pro-arrhythmic activity and risk of sudden cardiac death. Therefore, development of novel, effective and safe therapeutic options for HF patients is a critical area of unmet need. AREAS COVERED In this article, we review recent advances in the emerging field of cardiac gene therapy for the treatment of tachy- and bradyarrhythmias in HF. We provide an overview of gene-based approaches that modulate myocardial conduction, repolarization, calcium cycling and adrenergic signaling to restore heart rate and rhythm. EXPERT OPINION We highlight major advantages of gene therapy for arrhythmias, including the ability to selectively target specific cell populations and to limit the therapeutic effect to the region that requires modification. We illustrate how advances in our fundamental understanding of the molecular origins of arrhythmogenic disorders are allowing investigators to use targeted gene-based approaches to successfully correct abnormal excitability in the atria, ventricles and conduction system. Translation of various gene therapy approaches to humans may revolutionize our ability to combat lethal arrhythmias in HF patients.
Collapse
Affiliation(s)
- Lukas J Motloch
- The Cardiovascular Institute, Mount Sinai School of Medicine , One Gustave L. Levy Place, Box 1030, New York, NY 10029 , USA
| | | |
Collapse
|
12
|
Akar FG, Hajjar RJ. Gene therapies for arrhythmias in heart failure. Pflugers Arch 2014; 466:1211-7. [PMID: 24566976 DOI: 10.1007/s00424-014-1485-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/16/2023]
Abstract
In this article, we review recent advances in our understanding of arrhythmia mechanisms in the failing heart. We focus on changes in repolarization, conduction, and intracellular calcium cycling because of their importance to the vast majority of clinical arrhythmias in heart failure. We highlight recent efforts to combat arrhythmias using gene-based approaches that target ion channel, gap junction, and calcium cycling proteins. We further discuss the advantages and limitations associated with individual approaches.
Collapse
Affiliation(s)
- Fadi G Akar
- The Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA,
| | | |
Collapse
|
13
|
Abstract
Cardiac regenerative therapies seek to grow new myocardium after "irreversible" injury such as myocardial infarction. Various cell types and delivery techniques have been used in experimental models of human disease and clinical trials. When selecting a candidate stem cell type for clinical use, multiple factors need to be taken into consideration. The ability to regenerate myocardium without potentiating arrhythmogenesis is a critical property. Skeletal myoblasts engraft, differentiate, and are arrhythmogenic; in contrast, bone marrow-derived cells do not engraft long-term and have not been associated with excess arrhythmias. Neither cell type, however, achieves true myocardial regeneration. Recognition of the existence of cardiac stem cells and of the ability of mature myocytes to reenter the cell cycle and proliferate has motivated the development of new approaches to cardiac regenerative medicine. Cardiosphere-derived cells decrease scar mass and regenerate viable myocardium both in animal models and in the CADUCEUS (Cardiosphere-Derived Cells For Heart Regeneration After Myocardial Infarction) clinical trial. Although cardiosphere-derived cells fulfill the criteria for stem cells, their stemness appears not to mediate the therapeutic benefit; instead, indirect mechanisms lead to proliferation of the host myocardium. Being of endogenous origin, the newly grown heart muscle is electrically and mechanically well integrated with preexisting myocardial tissue. We hypothesize that cardiac arrhythmias are less likely to complicate cell therapy when the mechanisms of benefit involve secondary proliferation of endogenous myocardium. Conversely, arrhythmias will more likely bedevil therapeutic approaches (such as transplantation of skeletal myoblasts or pluripotent stem cells) that lead to exogenous grafts within the heart, with the degree of coupling and the extent of inhomogeneity being critical determinants of the net effect.
Collapse
Affiliation(s)
- Eduardo Marbán
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | |
Collapse
|
14
|
Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci U S A 2011; 109:E154-63. [PMID: 22203979 DOI: 10.1073/pnas.1115165109] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
TBX3 is critical for human development: mutations in TBX3 cause congenital anomalies in patients with ulnar-mammary syndrome. Data from mice and humans suggest multiple roles for Tbx3 in development and function of the cardiac conduction system. The mechanisms underlying the functional development, maturation, and maintenance of the conduction system are not well understood. We tested the requirements for Tbx3 in these processes. We generated a unique series of Tbx3 hypomorphic and conditional mouse mutants with varying levels and locations of Tbx3 activity within the heart, and developed techniques for evaluating in vivo embryonic conduction system function. Disruption of Tbx3 function in different regions of the developing heart causes discrete phenotypes and lethal arrhythmias: sinus pauses and bradycardia indicate sinoatrial node dysfunction, whereas preexcitation and atrioventricular block reveal abnormalities in the atrioventricular junction. Surviving Tbx3 mutants are at increased risk for sudden death. Arrhythmias induced by knockdown of Tbx3 in adults reveal its requirement for conduction system homeostasis. Arrhythmias in Tbx3-deficient embryos are accompanied by disrupted expression of multiple ion channels despite preserved expression of previously described conduction system markers. These findings indicate that Tbx3 is required for the conduction system to establish and maintain its correct molecular identity and functional properties. In conclusion, Tbx3 is required for the functional development, maturation, and homeostasis of the conduction system in a highly dosage-sensitive manner. TBX3 and its regulatory targets merit investigation as candidates for human arrhythmias.
Collapse
|
15
|
Alzamora R, O'Mahony F, Bustos V, Rapetti-Mauss R, Urbach V, Cid LP, Sepúlveda FV, Harvey BJ. Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K⁺ channels. J Physiol 2011; 589:5091-107. [PMID: 21911611 DOI: 10.1113/jphysiol.2011.215772] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The KCNQ1 potassium channel associates with various KCNE ancillary subunits that drastically affect channel gating and pharmacology. Co-assembly with KCNE3 produces a current with nearly instantaneous activation, some time-dependent activation at very positive potentials, a linear current-voltage relationship and a 10-fold higher sensitivity to chromanol 293B. KCNQ1:KCNE3 channels are expressed in colonic crypts and mediate basolateral K(+) recycling required for Cl(-) secretion. We have previously reported the female-specific anti-secretory effects of oestrogen via KCNQ1:KCNE3 channel inhibition in colonic crypts. This study was designed to determine whether sex and oestrogen regulate the expression and function of KCNQ1 and KCNE3 in rat distal colon. Colonic crypts were isolated from Sprague-Dawley rats and used for whole-cell patch-clamp and to extract total RNA and protein. Sheets of epithelium were used for short-circuit current recordings. KCNE1 and KCNE3 mRNA and protein abundance were significantly higher in male than female crypts. No expression of KCNE2 was found and no difference was observed in KCNQ1 expression between male and female (at oestrus) colonic crypts. Male crypts showed a 2.2-fold higher level of association of KCNQ1 and KCNE3 compared to female cells. In female colonic crypts, KCNQ1 and KCNE3 protein expression fluctuated throughout the oestrous cycle and 17β-oestradiol (E2 10 nM) produced a rapid (<15 min) dissociation of KCNQ1 and KCNE3 in female crypts only. Whole-cell K(+) currents showed a linear current-voltage relationship in male crypts, while K(+) currents in colonic crypts isolated from females displayed voltage-dependent outward rectification. Currents in isolated male crypts and epithelial sheets were 10-fold more sensitive to specific KCNQ1 inhibitors, such as chromanol 293B and HMR-1556, than in female. The effect of E2 on K(+) currents mediated by KCNQ1 with or without different β-subunits was assayed from current-voltage relations elicited in CHO cells transfected with KCNQ1 and KCNE3 or KCNE1 cDNA. E2 (100 nM) reduced the currents mediated by the KCNQ1:KCNE3 potassium channel and had no effect on currents via KCNQ1:KCNE1 or KCNQ1 alone. Currents mediated by the complex formed by KCNQ1 and the mutant KCNE3-S82A β-subunit (mutation of the site for PKCδ-promoted phosphorylation and modulation of the activity of KCNE3) showed rapid run-down and insensitivity to E2. Together, these data suggest that oestrogen regulates the expression of the KCNE1 and KCNE3 and with it the gating and pharmacological properties of the K(+) conductance required for Cl(-) secretion. The decreased association of the KCNQ1:KCNE3 channel complex promoted by oestrogen exposure underlies the molecular mechanism for the sexual dimorphism and oestrous cycle dependence of the anti-secretory actions of oestrogen in the intestine.
Collapse
Affiliation(s)
- Rodrigo Alzamora
- Department of Molecular Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Republic of Ireland
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- T Jespersen
- Department of Biomedical Sciences 16.5, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Boink GJJ, Rosen MR. Regenerative therapies in electrophysiology and pacing: introducing the next steps. J Interv Card Electrophysiol 2010; 31:3-16. [PMID: 21161675 DOI: 10.1007/s10840-010-9529-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/04/2010] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality of cardiac arrhythmias are major international health concerns. Drug and device therapies have made inroads but alternative approaches are still being sought. For example, gene and cell therapies have been explored for treatment of brady- and tachyarrhythmias, and proof of concept has been obtained for both biological pacing in the setting of heart block and gene therapy for ventricular tachycardias. This paper reviews the state of the art developments with regard to gene and cell therapies for cardiac arrhythmias and discusses next steps.
Collapse
Affiliation(s)
- Gerard J J Boink
- Heart Failure Research Center, Academic Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
18
|
Ohno S, Toyoda F, Zankov DP, Yoshida H, Makiyama T, Tsuji K, Honda T, Obayashi K, Ueyama H, Shimizu W, Miyamoto Y, Kamakura S, Matsuura H, Kita T, Horie M. NovelKCNE3mutation reduces repolarizing potassium current and associated with long QT syndrome. Hum Mutat 2009; 30:557-63. [DOI: 10.1002/humu.20834] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Gepstein L. Experimental molecular and stem cell therapies in cardiac electrophysiology. Ann N Y Acad Sci 2008; 1123:224-31. [PMID: 18375594 DOI: 10.1196/annals.1420.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the most exciting fields in cardiovascular research today involves the possible use of stem cells, cell and gene therapies, and tissue engineering for the treatment of a variety of cardiovascular disorders. Here, we review on the possible applications of these emerging strategies in the field of cardiac electrophysiology. Initially, the elegant cell and gene therapy approaches proposed for the treatment of bradyarrhythmias are described. These gene therapy approaches are mainly focused on the generation of biological pacemakers either by altering the neurohumoral control of existing pacemaking cells (by overexpressing the beta-adrenergic receptor) or by converting quiescent cardiomyocytes into pacemaking cells by shifting the balance between diastolic repolarization and depolarization currents. An alternative approach explores the possibility of grafting pacemaking cells, which were either derived directly during the differentiation of human embryonic stem cells or engineered from mesenchymal stem cells, into the myocardium as a cell therapy strategy for biological pacemaking. We then describe the possible applications of similar strategies for the treatment of common tachyarrhythmias by overexpression of different ion channels, or their modifiers, either directly in host cardiomyocytes or ex vivo in cells that will be eventually transplanted into the heart. Next, we discuss the electrophysiological implications of cardiac stem cell therapy for heart failure. Finally, we address the obstacles, challenges, and avenues for further research required to make these novel strategies a clinical reality.
Collapse
Affiliation(s)
- Lior Gepstein
- The Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
20
|
Gepstein L. Electrophysiologic implications of myocardial stem cell therapies. Heart Rhythm 2008; 5:S48-52. [DOI: 10.1016/j.hrthm.2008.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Indexed: 10/22/2022]
|
21
|
Mechanisms of Disease: ion channel remodeling in the failing ventricle. ACTA ACUST UNITED AC 2008; 5:196-207. [DOI: 10.1038/ncpcardio1130] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 11/25/2007] [Indexed: 11/08/2022]
|
22
|
Yankelson L, Feld Y, Bressler-Stramer T, Itzhaki I, Huber I, Gepstein A, Aronson D, Marom S, Gepstein L. Cell therapy for modification of the myocardial electrophysiological substrate. Circulation 2008; 117:720-31. [PMID: 18212286 DOI: 10.1161/circulationaha.106.671776] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Traditional antiarrhythmic pharmacological therapies are limited by their global cardiac action, low efficacy, and significant proarrhythmic effects. We present a novel approach for the modification of the myocardial electrophysiological substrate using cell grafts genetically engineered to express specific ionic channels. METHODS AND RESULTS To test the aforementioned concept, we performed ex vivo, in vivo, and computer simulation studies to determine the ability of fibroblasts transfected to express the voltage-sensitive potassium channel Kv1.3 to modify the local myocardial excitable properties. Coculturing of the transfected fibroblasts with neonatal rat ventricular myocyte cultures resulted in a significant reduction (68%) in the spontaneous beating frequency of the cultures compared with baseline values and cocultures seeded with naive fibroblasts. In vivo grafting of the transfected fibroblasts in the rat ventricular myocardium significantly prolonged the local effective refractory period from an initial value of 84+/-8 ms (cycle length, 200 ms) to 154+/-13 ms (P<0.01). Margatoxin partially reversed this effect (effective refractory period, 117+/-8 ms; P<0.01). In contrast, effective refractory period did not change in nontransplanted sites (86+/-7 ms) and was only mildly increased in the animals injected with wild-type fibroblasts (73+/-5 to 88+/-4 ms; P<0.05). Similar effective refractory period prolongation also was found during slower pacing drives (cycle length, 350 to 500 ms) after transplantation of the potassium channels expressing fibroblasts (Kv1.3 and Kir2.1) in pigs. Computer modeling studies confirmed the in vivo results. CONCLUSIONS Genetically engineered cell grafts, transfected to express potassium channels, can couple with host cardiomyocytes and alter the local myocardial electrophysiological properties by reducing cardiac automaticity and prolonging refractoriness.
Collapse
Affiliation(s)
- Lior Yankelson
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lundby A, Ravn LS, Svendsen JH, Haunsø S, Olesen SP, Schmitt N. KCNE3 Mutation V17M Identified in a Patient with Lone Atrial Fibrillation. Cell Physiol Biochem 2008; 21:47-54. [DOI: 10.1159/000113746] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2007] [Indexed: 11/19/2022] Open
|
24
|
Bajwa PJ, Alioua A, Lee JW, Straus DS, Toro L, Lytle C. Fenofibrate inhibits intestinal Cl- secretion by blocking basolateral KCNQ1 K+ channels. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1288-99. [PMID: 17916649 DOI: 10.1152/ajpgi.00234.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibrate produced a persistent inhibition of cAMP-stimulated electrogenic Cl(-) secretion by isolated jejunum and colon without affecting electroneutral fluxes of (22)Na(+) or (86)Rb(+) (K(+)) across unstimulated colonic mucosa. When applied acutely to isolated mouse intestinal mucosa, 100 microM fenofibrate inhibited cAMP-stimulated I(sc) within 5 min. In T84 cells, fenofibrate rapidly inhibited approximately 80% the Cl(-) secretory responses to forskolin (cAMP) and to heat stable enterotoxin STa (cGMP) without affecting the response to carbachol (Ca(2+)). Both fenofibrate and clofibrate inhibited cAMP-stimulated I(sc) with an IC(50) approximately 1 muM, whereas other PPARalpha activators (gemfibrozil and Wy-14,643) were without effect. Membrane permeabilization experiments on T84 cells indicated that fenofibrate inhibits basolateral cAMP-stimulated K(+) channels (putatively KCNQ1/KCNE3) without affecting Ca(2+)-stimulated K(+) channel activity, whereas clofibrate inhibits both K(+) pathways. Fenofibrate had no effect on apical cAMP-stimulated Cl(-) channel activity. Patch-clamp analysis of HEK-293T cells confirmed that 100 microM fenofibrate rapidly inhibits K(+) currents associated with ectopic expression of human KCNQ1 with or without the KCNE3 beta-subunit. We conclude that fenofibrate inhibits intestinal cAMP-stimulated Cl(-) secretion through a nongenomic mechanism that involves a selective inhibition of basolateral KCNQ1/KCNE3 channel complexes. Our findings raise the prospect of fenofibrate as a safe and effective antidiarrheal agent.
Collapse
Affiliation(s)
- Poonam J Bajwa
- Division of Biomedical Sciences, University of California, Riverside, CA 92521-0121, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cardiovascular diseases remain a major cause of morbidity and mortality. Despite significant gains in medical and surgical treatment of these conditions, the burden imposed continues to increase, particularly as the population ages. Hence, there exists an impetus to explore novel therapeutic approaches. Gene therapy, broadly defined as the use of nucleic acid sequences as medicine, is an example of such a novel approach. The potential of gene therapy has been explored in several models of both inherited monogenic and acquired polygenic cardiovascular diseases, such as heart failure and arrhythmia. Exciting developments in gene transfer technology and important insights into the molecular basis of these common diseases have placed them within reach of gene-based therapy.
Collapse
Affiliation(s)
- Eddy Kizana
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia, and Division of Cardiology, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Toyoda F, Ueyama H, Ding WG, Matsuura H. Modulation of functional properties of KCNQ1 channel by association of KCNE1 and KCNE2. Biochem Biophys Res Commun 2006; 344:814-20. [PMID: 16631607 DOI: 10.1016/j.bbrc.2006.03.213] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 03/28/2006] [Indexed: 11/27/2022]
Abstract
The KCNE proteins (KCNE1 through KCNE5) function as beta-subunits of several voltage-gated K(+) channels. Assembly of KCNQ1 K(+) channel alpha-subunits and KCNE1 underlies cardiac I(Ks), while KCNQ1 interacts with all other members of KCNE forming complexes with different properties. Here we investigated synergic actions of KCNE1 and KCNE2 on functional properties of KCNQ1 heterologously expressed in COS7 cells. Patch-clamp recordings from cells expressing KCNQ1 and KCNE1 exhibited the slowly activating current, while co-expression of KCNQ1 with KCNE2 produced a practically time-independent current. When KCNQ1 was co-expressed with both of KCNE1 and KCNE2, the membrane current exhibited a voltage- and time-dependent current whose characteristics differed substantially from those of the KCNQ1/KCNE1 current. The KCNQ1/KCNE1/KCNE2 current had a more depolarized activation voltage, a faster deactivation kinetics, and a less sensitivity to activation by mefenamic acid. These results suggest that KCNE2 can functionally couple to KCNQ1 even in the presence of KCNE1.
Collapse
Affiliation(s)
- Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan.
| | | | | | | |
Collapse
|
27
|
Jespersen T, Grunnet M, Olesen SP. The KCNQ1 potassium channel: from gene to physiological function. Physiology (Bethesda) 2006; 20:408-16. [PMID: 16287990 DOI: 10.1152/physiol.00031.2005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The voltage-gated KCNQ1 (KvLQT1, Kv7.1) potassium channel plays a crucial role in shaping the cardiac action potential as well as in controlling the water and salt homeostasis in several epithelial tissues. KCNQ1 channels in these tissues are tightly regulated by auxiliary proteins and accessory factors, capable of modulating the properties of the channel complexes. This paper reviews the current knowledge about the KCNQ1 channel with a major focus on interacting proteins and physiological functions.
Collapse
Affiliation(s)
- Thomas Jespersen
- Department of Medical Physiology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
28
|
Jespersen T, Grunnet M, Rasmussen HB, Jørgensen NB, Jensen HS, Angelo K, Olesen SP, Klaerke DA. The corticosteroid hormone induced factor: a new modulator of KCNQ1 channels? Biochem Biophys Res Commun 2006; 341:979-88. [PMID: 16476578 DOI: 10.1016/j.bbrc.2006.01.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
The corticosteroid hormone induced factor (CHIF) is a member of the one-transmembrane segment protein family named FXYD, which also counts phospholemman and the Na,K-pump gamma-subunit. Originally it was suggested that CHIF could induce the expression of the I(Ks) current when expressed in Xenopus laevis oocytes, but recently CHIF has attracted attention as a modulatory subunit of the Na,K-pump. In renal and intestinal epithelia, the expression of CHIF is dramatically up-regulated in response to aldosterone stimulation, and regulation of epithelial ion channels by CHIF is an attractive hypothesis. To study a potential regulatory effect of the CHIF subunit on KCNQ1 channels, co-expression experiments were performed in Xenopus laevis oocytes and mammalian CHO-K1 cells. Electrophysiological characterization was obtained by two-electrode voltage-clamp and patch-clamp, respectively. In both expression systems, we find that CHIF drastically modulates the KCNQ1 current; in the presence of CHIF, the KCNQ1 channels open at all membrane potentials. Thereby, CHIF is the first accessory subunit shown to be capable of modulating both the Na,K-pump and an ion channel. To find a possible physiological function of the constitutively open KCNQ1/CHIF complex, the precise localization of KCNQ1 and CHIF in distal colon and kidney from control and salt-depleted rats was determined by confocal microscopy. However, in these tissues, we did not detect an obvious overlap in expression between KCNQ1 and CHIF. In conclusion, the hormone-regulated subunit CHIF modulates the voltage sensitivity of the KCNQ channels, but so far evidence for an actual co-localization of CHIF and KCNQ1 channels in native tissue is lacking.
Collapse
Affiliation(s)
- Thomas Jespersen
- Department of Medical Physiology and Danish Arrhythmia Research Centre, The Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
29
|
de Castro MP, Aránega A, Franco D. Protein distribution of Kcnq1, Kcnh2, and Kcne3 potassium channel subunits during mouse embryonic development. ACTA ACUST UNITED AC 2006; 288:304-15. [PMID: 16463373 DOI: 10.1002/ar.a.20312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Voltage-dependent potassium channels consist of a pore-forming alpha-subunit, which is modulated by additional beta-ancillary or regulatory subunits. Kcnq1 and Kcnh2 alpha-channel subunits play pivotal roles in the developing and adult heart. However, Kcnq1 and Kcnh2 have a much wider expression profile than strictly confined to the myocardium, similar to their putative regulatory Kcne1-5 beta-subunits. At present, the distribution of distinct potassium channel subunits has been partially mapped in adult tissues, whereas almost no information is available during embryonic development. In this study, we report a detailed analysis of Kcnq1, Kcnh2, and Kcne3 protein expression during mouse embryogenesis. Our results demonstrate that Kcnq1 and Kcnh2 are widely distributed. Coexpression of both alpha-subunits is observed in a wide variety of organs, such as heart and the skeletal muscle, whereas others display unique Kcnq1 or Knch2 expression. Interestingly, Kcne3 expression is also widely observed in distinct tissue layers during embryogenesis, supporting the notion that an exquisite balance of alpha- and beta-subunit expression is required for modulating potassium conductance in distinct organs and tissue layers.
Collapse
Affiliation(s)
- María Pilar de Castro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | | | | |
Collapse
|
30
|
|
31
|
Saucerman JJ, Healy SN, Belik ME, Puglisi JL, McCulloch AD. Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation: computational models of whole cells and heterogeneous tissue. Circ Res 2004; 95:1216-24. [PMID: 15528464 DOI: 10.1161/01.res.0000150055.06226.4e] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The KCNQ1-G589D gene mutation, associated with a long-QT syndrome, has been shown to disrupt yotiao-mediated targeting of protein kinase A and protein phosphatase-1 to the I(Ks) channel. To investigate how this defect may lead to ventricular arrhythmia during sympathetic stimulation, we use integrative computational models of beta-adrenergic signaling, myocyte excitation-contraction coupling, and action potential propagation in a rabbit ventricular wedge. Paradoxically, we find that the KCNQ1-G589D mutation alone does not prolong the QT interval. But when coupled with beta-adrenergic stimulation in a whole-cell model, the KCNQ1-G589D mutation induced QT prolongation and transient afterdepolarizations, known cellular mechanisms for arrhythmogenesis. These cellular mechanisms amplified tissue heterogeneities in a three-dimensional rabbit ventricular wedge model, elevating transmural dispersion of repolarization and creating other T-wave abnormalities on simulated electrocardiograms. Increasing heart rate protected both single myocyte and the coupled myocardium models from arrhythmic consequences. These findings suggest that the KCNQ1-G589D mutation disrupts a critical link between beta-adrenergic signaling and myocyte electrophysiology, creating both triggers of cardiac arrhythmia and a myocardial substrate vulnerable to such electrical disturbances.
Collapse
MESH Headings
- Action Potentials/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adrenergic beta-1 Receptor Agonists
- Amino Acid Substitution
- Animals
- Binding Sites
- Computational Biology
- Computer Simulation
- Cytoskeletal Proteins/metabolism
- Electrocardiography
- Heart Ventricles/cytology
- Ion Transport/drug effects
- Isoproterenol/pharmacology
- KCNQ Potassium Channels
- KCNQ1 Potassium Channel
- Long QT Syndrome/etiology
- Long QT Syndrome/genetics
- Long QT Syndrome/physiopathology
- Models, Cardiovascular
- Models, Molecular
- Mutation, Missense
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Point Mutation
- Potassium/metabolism
- Potassium Channels, Voltage-Gated/chemistry
- Potassium Channels, Voltage-Gated/genetics
- Potassium Channels, Voltage-Gated/metabolism
- Protein Binding
- Protein Conformation
- Protein Interaction Mapping
- Rabbits
- Receptors, Adrenergic, beta-1/physiology
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Bioengineering, Whitaker Institute of Biomedical Engineering, University of California San Diego, La Jolla92037-0412, USA
| | | | | | | | | |
Collapse
|
32
|
McCrossan ZA, Abbott GW. The MinK-related peptides. Neuropharmacology 2004; 47:787-821. [PMID: 15527815 DOI: 10.1016/j.neuropharm.2004.06.018] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2004] [Revised: 06/04/2004] [Accepted: 06/18/2004] [Indexed: 11/20/2022]
Abstract
Voltage-gated potassium (Kv) channels mediate rapid, selective diffusion of K+ ions through the plasma membrane, controlling cell excitability, secretion and signal transduction. KCNE genes encode a family of single transmembrane domain proteins called MinK-related peptides (MiRPs) that function as ancillary or beta subunits of Kv channels. When co-expressed in heterologous systems, MiRPs confer changes in Kv channel conductance, gating kinetics and pharmacology, and are fundamental to recapitulation of the properties of some native currents. Inherited mutations in KCNE genes are associated with diseases of cardiac and skeletal muscle, and the inner ear. This article reviews our current understanding of MiRPs--their functional roles, the mechanisms underlying their association with Kv alpha subunits, their patterns of native expression and emerging evidence of the potential roles of MiRPs in the brain. The ubiquity of MiRP expression and their promiscuous association with Kv alpha subunits suggest a prominent role for MiRPs in channel dependent systems.
Collapse
Affiliation(s)
- Zoe A McCrossan
- Greenberg Division of Cardiology, Department of Medicine, Department of Pharmacology, Weill Medical College of Cornell University, Starr 463, 520 East 70th Street, New York, NY 10021, USA
| | | |
Collapse
|
33
|
Li GR, Lau CP, Leung TK, Nattel S. Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm 2004; 1:460-8. [PMID: 15851200 DOI: 10.1016/j.hrthm.2004.06.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Accepted: 05/26/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study was designed to determine whether ionic currents in right ventricular myocytes from explanted human transplant recipient hearts are related to right ventricular histopathology and function. BACKGROUND Cardiac action potential duration (APD) is prolonged in ventricular tissues/cells from patients with heart failure, but the ionic mechanisms are not well documented. METHODS Membrane currents and transmembrane action potentials in myocytes from right ventricular epicardium of explanted human hearts were recorded using whole-cell patch clamp technique. Data from cells from right ventricles with severe histologic and functional abnormalities (abnormal histology group [AH]) and from right ventricles with preserved histology and function (relatively normal histology group [RNH]) were compared. RESULTS We found that APD at 50% (APD(50)) and 90% repolarization (APD(90)) were significantly longer in AH cells than in RNH cells. Early afterdepolarizations (EADs) were observed in 20% of AH cells and none of the RNH cells. Inwardly rectifying K(+) current (I(K1)) was decreased (both inward and outward components). Both transient outward K(+) current (I(to1)) and slowly delayed rectifier K(+) current (I(Ks)) were down-regulated in AH cells. L-type Ca(2+) (I(Ca.L)) was not altered in AH cells. CONCLUSIONS I(K1), I(to1), and I(Ks) are down-regulated in AH cells of human heart failure. This down-regulation contributes to APD prolongation that favors the occurrence of arrhythmogenic EADs and suggests a link between human cardiac histopathologic/functional abnormalities and arrhythmogenic ionic remodeling.
Collapse
Affiliation(s)
- Gui-Rong Li
- Department of Medicine and Institute of Cardiovascular Science and Medicine, Faculty of Medicine, The University of Hong Kong, China.
| | | | | | | |
Collapse
|
34
|
Jespersen T, Rasmussen HB, Grunnet M, Jensen HS, Angelo K, Dupuis DS, Vogel LK, Jorgensen NK, Klaerke DA, Olesen SP. Basolateral localisation of KCNQ1 potassium channels in MDCK cells: molecular identification of an N-terminal targeting motif. J Cell Sci 2004; 117:4517-26. [PMID: 15316073 DOI: 10.1242/jcs.01318] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
KCNQ1 potassium channels are expressed in many epithelial tissues as well as in the heart. In epithelia KCNQ1 channels play an important role in salt and water transport and the channel has been reported to be located apically in some cell types and basolaterally in others. Here we show that KCNQ1 channels are located basolaterally when expressed in polarised MDCK cells. The basolateral localisation of KCNQ1 is not affected by co-expression of any of the five KCNE β-subunits. We characterise two independent basolateral sorting signals present in the N-terminal tail of KCNQ1. Mutation of the tyrosine residue at position 51 resulted in a non-polarized steady-state distribution of the channel. The importance of tyrosine 51 in basolateral localisation was emphasized by the fact that a short peptide comprising this tyrosine was able to redirect the p75 neurotrophin receptor, an otherwise apically located protein, to the basolateral plasma membrane. Furthermore, a di-leucine-like motif at residues 38-40 (LEL) was found to affect the basolateral localisation of KCNQ1. Mutation of these two leucines resulted in a primarily intracellular localisation of the channel.
Collapse
Affiliation(s)
- Thomas Jespersen
- Department of Medical Physiology and Copenhagen Heart Research Center, The Panum Institute, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Murata M, Cingolani E, McDonald AD, Donahue JK, Marbán E. Creation of a genetic calcium channel blocker by targeted gem gene transfer in the heart. Circ Res 2004; 95:398-405. [PMID: 15242970 DOI: 10.1161/01.res.0000138449.85324.c5] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium channel blockers are among the most commonly used therapeutic drugs. Nevertheless, the utility of calcium channel blockers for heart disease is limited because of the potent vasodilatory effect that causes hypotension, and other side effects attributable to blockade of noncardiac channels. Therefore, focal calcium channel blockade by gene transfer is highly desirable. With a view to creating a focally applicable genetic calcium channel blocker, we overexpressed the ras-related small G-protein Gem in the heart by somatic gene transfer. Adenovirus-mediated delivery of Gem markedly decreased L-type calcium current density in ventricular myocytes, resulting in the abbreviation of action potential duration. Furthermore, transduction of Gem resulted in a significant shortening of the electrocardiographic QTc interval and reduction of left ventricular systolic function. Focal delivery of Gem to the atrioventricular (AV) node significantly slowed AV nodal conduction (prolongation of PR and AH intervals), which was effective in the reduction of heart rate during atrial fibrillation. Thus, these results indicate that gene transfer of Gem functions as a genetic calcium channel blocker, the local application of which can effectively modulate cardiac electrical and contractile function.
Collapse
Affiliation(s)
- Mitsushige Murata
- Institute of Molecular Cardiobiology and Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Md 21205, USA
| | | | | | | | | |
Collapse
|
36
|
Zareba W, Moss AJ, Sheu G, Kaufman ES, Priori S, Vincent GM, Towbin JA, Benhorin J, Schwartz PJ, Napolitano C, Hall WJ, Keating MT, Qi M, Robinson JL, Andrews ML. Location of mutation in the KCNQ1 and phenotypic presentation of long QT syndrome. J Cardiovasc Electrophysiol 2004; 14:1149-53. [PMID: 14678125 DOI: 10.1046/j.1540-8167.2003.03177.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Recent data showed that long QT syndrome (LQTS) patients with mutations in the pore region of the HERG (LQT2) gene have significantly higher risk of cardiac events than subjects with mutations in the non-pore region. The aim of this study was to determine whether there is an association between the location of mutations in the KCNQ1 gene and cardiac events in LQT1 patients. METHODS AND RESULTS The study population consisted of 294 LQT1 patients with KCNQ1 gene mutations. Demographic, clinical, and follow-up information was compared among subjects with different locations of KCNQ1 mutations defined as pre-pore region including N-terminus (1-278), pore region (279-354), and post-pore region including C-terminus (>354). Cardiac events observed during follow-up from birth until age of last contact or age 40 years were defined as syncope, cardiac arrest, or sudden death. There were 164 (56%) LQT1 patients with pre-pore mutations, 101 (34%) with pore mutations, and 29 (10%) with post-pore mutations. QTc duration did not differ significantly among the three subgroups (mean QTc = 494, 487, and 501 ms, respectively). There was no significant difference between groups with regard to the risk of cardiac events by age 40 years. CONCLUSION There are no significant differences in clinical presentation, ECG parameters, and cardiac events among LQT1 patients with different locations of KCNQ1 mutations. These findings indicate that factors other than location of mutation influence clinical phenotype in patients with LQT1 mutations.
Collapse
Affiliation(s)
- Wojciech Zareba
- Cardiology Unit of the Department of Medicine, Heart Research Follow-up Program, Box 653, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bilbao R, Reay DP, Koppanati BM, Clemens PR. Biocompatibility of adenoviral vectors in poly(vinyl chloride) tubing catheters with presence or absence of plasticizer di-2-ethylhexyl phthalate. J Biomed Mater Res A 2004; 69:91-6. [PMID: 14999755 DOI: 10.1002/jbm.a.20116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adenoviral (Ad) vectors feature attractive characteristics for gene therapy of a wide variety of diseases. In many cases, the Ad vector must be administered using catheters and other plastic medical devices. Although poly(vinyl chloride) is one of the most frequently used catheter materials, it is relatively rigid and requires the addition of a plasticizer such as di-2-ethylhexyl phthalate (DEHP) to increase its flexibility. In this study, we demonstrated that exposure to a DEHP-containing catheter decreased the infectivity of Ad vectors but not the total particle number of the vector. Loss of Ad vector infectivity was directly related to the time of exposure to the DEHP-containing catheter, but it was not due to simple leaching of the chemical from the plastic. The loss of Ad vector infectivity could be prevented by preflushing the tube with albumin. Careful consideration of the compatibility between gene therapy vectors and medical delivery devices will be critical to the success of human gene therapy applications.
Collapse
Affiliation(s)
- Roberto Bilbao
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
38
|
Gepstein L, Feld Y, Yankelson L. Somatic gene and cell therapy strategies for the treatment of cardiac arrhythmias. Am J Physiol Heart Circ Physiol 2004; 286:H815-22. [PMID: 14766670 DOI: 10.1152/ajpheart.00962.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Abstract
Most antiarrhythmic drugs are ion channel blockers, and to date, those tested in large randomized placebo-controlled clinical trials have shown no decrease in mortality outcome. This apparent lack of survival benefit may result from the significant liabilities associated with these agents that offset any long-term benefit. Despite the current success of implantable defibrillators and the future promise of gene therapy, there is still a pressing need for new antiarrhythmic drugs. An improved understanding of cardiac ion channels and novel approaches to target selection and compound screening will provide new opportunities for drug discovery in the near future. Here, we briefly review the multiple mechanisms of arrhythmia, the history of drug failures, and the possibilities that evolving technologies may provide in the search for more efficacious and safer antiarrhythmic drugs.
Collapse
Affiliation(s)
- Michael C Sanguinetti
- Department of Physiology, Eccles Institute of Human Genetics, University of Utah, 15 N 2030 E, Room 4220, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
40
|
Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN, Yang YQ, Li YB, Liu Y, Xu HJ, Li XF, Ma N, Mou CP, Chen Z, Barhanin J, Huang W. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 2003; 299:251-4. [PMID: 12522251 DOI: 10.1126/science.1077771] [Citation(s) in RCA: 722] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia whose molecular etiology is poorly understood. We studied a family with hereditary persistent AF and identified the causative mutation (S140G) in the KCNQ1 (KvLQT1) gene on chromosome 11p15.5. The KCNQ1 gene encodes the pore-forming alpha subunit of the cardiac I(Ks) channel (KCNQ1/KCNE1), the KCNQ1/KCNE2 and the KCNQ1/KCNE3 potassium channels. Functional analysis of the S140G mutant revealed a gain-of-function effect on the KCNQ1/KCNE1 and the KCNQ1/KCNE2 currents, which contrasts with the dominant negative or loss-of-function effects of the KCNQ1 mutations previously identified in patients with long QT syndrome. Thus, the S140G mutation is likely to initiate and maintain AF by reducing action potential duration and effective refractory period in atrial myocytes.
Collapse
Affiliation(s)
- Yi-Han Chen
- Department of Cardiology, Tongji Hospital, and Institute of Medical Genetics, Tongji University, 399 Xin Cun Road, Shanghai 200065, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|