1
|
Braga F, Luís Medinas R, Meira B, Cotovio G, Caetano Silva R. Manic Switch Associated With Primidone in a Patient Treated for Essential Tremor. J Clin Psychopharmacol 2025:00004714-990000000-00364. [PMID: 40178937 DOI: 10.1097/jcp.0000000000002008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
2
|
Su Z, Garvert MM, Zhang L, Vogel TA, Cutler J, Husain M, Manohar SG, Lockwood PL. Dorsomedial and ventromedial prefrontal cortex lesions differentially impact social influence and temporal discounting. PLoS Biol 2025; 23:e3003079. [PMID: 40294095 PMCID: PMC12036846 DOI: 10.1371/journal.pbio.3003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/21/2025] [Indexed: 04/30/2025] Open
Abstract
The medial prefrontal cortex (mPFC) has long been associated with economic and social decision-making in neuroimaging studies. Several debates question whether different ventral mPFC (vmPFC) and dorsal mPFC (dmPFC) regions have specific functions or whether there is a gradient supporting social and nonsocial cognition. Here, we tested an unusually large sample of rare participants with focal damage to the mPFC (N = 33), individuals with lesions elsewhere (N = 17), and healthy controls (N = 71) (total N = 121). Participants completed a temporal discounting task to estimate their baseline discounting preferences before learning the preferences of two other people, one who was more temporally impulsive and one more patient. We used Bayesian computational models to estimate baseline discounting and susceptibility to social influence after learning others' economic preferences. mPFC damage increased susceptibility to impulsive social influence compared to healthy controls and increased overall susceptibility to social influence compared to those with lesions elsewhere. Importantly, voxel-based lesion-symptom mapping (VLSM) of computational parameters showed that this heightened susceptibility to social influence was attributed specifically to damage to the dmPFC (area 9; permutation-based threshold-free cluster enhancement (TFCE) p < 0.025). In contrast, lesions in the vmPFC (areas 13 and 25) and ventral striatum were associated with a preference for seeking more immediate rewards (permutation-based TFCE p < 0.05). We show that the dmPFC is causally implicated in susceptibility to social influence, with distinct ventral portions of mPFC involved in temporal discounting. These findings provide causal evidence for sub-regions of the mPFC underpinning fundamental social and cognitive processes.
Collapse
Affiliation(s)
- Zhilin Su
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Mona M. Garvert
- Faculty of Human Sciences, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lei Zhang
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Todd A. Vogel
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Jo Cutler
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Sanjay G. Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Patricia L. Lockwood
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Centre for Developmental Sciences, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Cheng Y, Cai H, Liu S, Yang Y, Pan S, Zhang Y, Mo F, Yu Y, Zhu J. Brain Network Localization of Gray Matter Atrophy and Neurocognitive and Social Cognitive Dysfunction in Schizophrenia. Biol Psychiatry 2025; 97:148-156. [PMID: 39103010 DOI: 10.1016/j.biopsych.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Numerous studies have established the presence of gray matter atrophy and brain activation abnormalities during neurocognitive and social cognitive tasks in schizophrenia. Despite a growing consensus that diseases localize better to distributed brain networks than individual anatomical regions, relatively few studies have examined brain network localization of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia. METHODS To address this gap, we initially identified brain locations of structural and functional abnormalities in schizophrenia from 301 published neuroimaging studies with 8712 individuals with schizophrenia and 9275 healthy control participants. By applying novel functional connectivity network mapping to large-scale resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to 3 brain abnormality networks of schizophrenia. RESULTS The gray matter atrophy network of schizophrenia comprised a broadly distributed set of brain areas predominantly implicating the ventral attention, somatomotor, and default networks. The neurocognitive dysfunction network was also composed of widespread brain areas primarily involving the frontoparietal and default networks. By contrast, the social cognitive dysfunction network consisted of circumscribed brain regions mainly implicating the default, subcortical, and visual networks. CONCLUSIONS Our findings suggest shared and unique brain network substrates of gray matter atrophy and neurocognitive and social cognitive dysfunction in schizophrenia, which may not only refine the understanding of disease neuropathology from a network perspective but may also contribute to more targeted and effective treatments for impairments in different cognitive domains in schizophrenia.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Siyu Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Shan Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqi Zhang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Fan Mo
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China; Anhui Provincial Institute of Translational Medicine, Hefei, China; Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China.
| |
Collapse
|
4
|
Xu R, Zhang X, Zhou S, Guo L, Mo F, Ma H, Zhu J, Qian Y. Brain structural damage networks at different stages of schizophrenia. Psychol Med 2024:1-11. [PMID: 39660416 DOI: 10.1017/s0033291724003088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND Neuroimaging studies have documented brain structural changes in schizophrenia at different stages of the illness, including clinical high-risk (cHR), genetic high-risk (gHR), first-episode schizophrenia (FES), and chronic schizophrenia (ChS). There is growing awareness that neuropathological processes associated with a disease fail to map to a specific brain region but do map to a specific brain network. We sought to investigate brain structural damage networks across different stages of schizophrenia. METHODS We initially identified gray matter alterations in 523 cHR, 855 gHR, 2162 FES, and 2640 ChS individuals relative to 6963 healthy controls. By applying novel functional connectivity network mapping to large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we mapped these affected brain locations to four specific networks. RESULTS Brain structural damage networks of cHR and gHR had limited and non-overlapping spatial distributions, with the former mainly involving the frontoparietal network and the latter principally implicating the subcortical network, indicative of distinct neuropathological mechanisms underlying cHR and gHR. By contrast, brain structural damage networks of FES and ChS manifested as similar patterns of widespread brain areas predominantly involving the somatomotor, ventral attention, and subcortical networks, suggesting an emergence of more prominent brain structural abnormalities with illness onset that have trait-like stability over time. CONCLUSIONS Our findings may not only provide a refined picture of schizophrenia neuropathology from a network perspective, but also potentially contribute to more targeted and effective intervention strategies for individuals at different schizophrenia stages.
Collapse
Affiliation(s)
- Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Shanlei Zhou
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Lixin Guo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Haining Ma
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Hefei 230032, Anhui Province, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei 230032, China
| |
Collapse
|
5
|
Okpaleke Amazu C, Nathwani K, Berwerth Pereira M, Rente Lavastida D, Parker JM. Managing a Complex Case of Bipolar Disorder in a Patient With Recurrent Hospitalizations. Cureus 2024; 16:e64271. [PMID: 39130846 PMCID: PMC11315583 DOI: 10.7759/cureus.64271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Bipolar disorder type 1 (BD-1) is a complex psychiatric disorder characterized by recurrent episodes of mania and depression. While manic episodes typically present with classic symptoms such as impulsivity, elevated mood, and increased energy, atypical presentations are not as common and when encountered may pose diagnostic challenges. In addition, multiple previous hospitalizations can prove for a more nuanced case with a potentially worse prognosis. This clinical case study explores the atypical clinical presentation of a 22-year-old Hispanic male with BD-1 and discusses the challenges associated with the correct diagnosis and recognition of this disorder. Typical BD-1 symptoms consist of depressive and manic episodes. The mania can encompass elevated mood, increased energy, racing thoughts, decreased need for sleep, grandiosity, and impulsivity. The typical depressive episodes consist of fatigue, low mood, loss of motivation, changes in appetite or weight, and even suicidal thoughts. Atypical symptoms consist of a mixture of both mania and depression at once, psychosis, present with seasonal patterns, anxious distress, catatonia, and rapid cycling of mood. The patient, with a medical history of BD-1, anxiety, polysubstance abuse, and multiple inpatient psychiatric hospitalizations presented to the emergency department via involuntary hold due to threats of suicidal behavior. Upon arrival, he presented with a myriad of typical and atypical acute manic symptoms including severe agitation, disorganization, anxiety, pressured speech, and rapid mood cycling. Throughout his admission he demonstrated extreme episodes of agitation, making threats of physical violence towards staff, attempting self-injury, behaving violently towards others, and displaying impulsivity as well as grandiosity despite receiving his long-acting injectable neuroleptic medication just three weeks prior to his hospitalization. Scheduled medication treatment during his inpatient hospitalization included a combination of risperidone, thorazine, divalproex sodium, mirtazapine, clonazepam, and temazepam. This clinical case underscores the importance of recognizing both typical and atypical presentations of manic episodes in BD-1 as well as the challenges involved in the treatment of a patient with severe and refractory symptoms requiring frequent hospitalizations.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan M Parker
- Psychiatry, Jackson Behavioral Health Hospital/University of Miami Health System, Miami, USA
| |
Collapse
|
6
|
Boylu ME, Kırpınar İ. Myelinolysis cases presenting with manic attack after rapid correction of hyponatremia: Two cases. Bipolar Disord 2024; 26:401-404. [PMID: 38238083 DOI: 10.1111/bdi.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Myelinolysis is a neurological condition that can display diverse psychiatric symptoms, with electrolyte imbalance, alcoholism and malnutrition being the frequent causes. Rapid correction of hyponatremia may trigger pontine and extra-pontine myelinolysis. CASES This paper examines two cases: one of hyponatremia after antihypertensive use and the other of myelinolysis due to rapid correction of hyponatremia. Since myelinolysis appeared as a manic episode, the patients sought treatment at the psychiatry outpatient clinic. Further tests were conducted to rule out organic causes and the diagnosis was confirmed prior to referring the patients to the neurology clinic. CONCLUSION Psychiatrists should be meticulous in excluding organic causes in first-episode mania and consider these possibilities in the differential diagnosis for the pertinent patient group.
Collapse
Affiliation(s)
- Muhammed Emin Boylu
- Faculty of Medicine, Psychiatry Department, Bezmialem Vakıf University, Istanbul, Turkey
| | - İsmet Kırpınar
- Faculty of Medicine, Psychiatry Department, Bezmialem Vakıf University, Istanbul, Turkey
| |
Collapse
|
7
|
Siddiqi SH, Fox MD. Targeting Symptom-Specific Networks With Transcranial Magnetic Stimulation. Biol Psychiatry 2024; 95:502-509. [PMID: 37979642 DOI: 10.1016/j.biopsych.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
Increasing evidence suggests that the clinical effects of transcranial magnetic stimulation are target dependent. Within any given symptom, precise targeting of specific brain circuits may improve clinical outcomes. This principle can also be extended across symptoms-stimulation of different circuits may lead to different symptom-level outcomes. This may include targeting different symptoms within the same disorder (such as dysphoria vs. anxiety in patients with major depression) or targeting the same symptom across different disorders (such as primary major depression and depression secondary to stroke, traumatic brain injury, epilepsy, multiple sclerosis, or Parkinson's disease). Some of these symptom-specific changes may be desirable, while others may be undesirable. This review focuses on the conceptual framework through which symptom-specific target circuits may be identified, tested, and implemented.
Collapse
Affiliation(s)
- Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Wu Y, Su YA, Zhu L, Li J, Si T. Advances in functional MRI research in bipolar disorder: from the perspective of mood states. Gen Psychiatr 2024; 37:e101398. [PMID: 38292862 PMCID: PMC10826570 DOI: 10.1136/gpsych-2023-101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bipolar disorder is characterised by recurrent and alternating episodes of mania/hypomania and depression. Current breakthroughs in functional MRI techniques have uncovered the functional neuroanatomy of bipolar disorder. However, the pathophysiology underlying mood instability, mood switching and the development of extreme mood states is less well understood. This review presents a comprehensive overview of current evidence from functional MRI studies from the perspective of mood states. We first summarise the disrupted brain activation patterns and functional connectivity that have been reported in bipolar disorder, irrespective of the mood state. We next focus on research that solely included patients in a single mood state for a better understanding of the pathophysiology of bipolar disorder and research comparing patients with different mood states to dissect mood state-related effects. Finally, we briefly summarise current theoretical models and conclude this review by proposing potential avenues for future research. A comprehensive understanding of the pathophysiology with consideration of mood states could not only deepen our understanding of how acute mood episodes develop at a neurophysiological level but could also facilitate the identification of biological targets for personalised treatment and the development of new interventions for bipolar disorder.
Collapse
Affiliation(s)
- Yankun Wu
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yun-Ai Su
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Linlin Zhu
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jitao Li
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tianmei Si
- Department of Clinical Psychopharmacology, Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
9
|
Roseman M, Elias U, Kletenik I, Ferguson MA, Fox MD, Horowitz Z, Marshall GA, Spiers HJ, Arzy S. A neural circuit for spatial orientation derived from brain lesions. Cereb Cortex 2024; 34:bhad486. [PMID: 38100330 PMCID: PMC10793567 DOI: 10.1093/cercor/bhad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
There is disagreement regarding the major components of the brain network supporting spatial cognition. To address this issue, we applied a lesion mapping approach to the clinical phenomenon of topographical disorientation. Topographical disorientation is the inability to maintain accurate knowledge about the physical environment and use it for navigation. A review of published topographical disorientation cases identified 65 different lesion sites. Our lesion mapping analysis yielded a topographical disorientation brain map encompassing the classic regions of the navigation network: medial parietal, medial temporal, and temporo-parietal cortices. We also identified a ventromedial region of the prefrontal cortex, which has been absent from prior descriptions of this network. Moreover, we revealed that the regions mapped are correlated with the Default Mode Network sub-network C. Taken together, this study provides causal evidence for the distribution of the spatial cognitive system, demarking the major components and identifying novel regions.
Collapse
Affiliation(s)
- Moshe Roseman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Uri Elias
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Isaiah Kletenik
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Zalman Horowitz
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gad A Marshall
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| | - Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
10
|
Vogel AC, Black KJ. Brain Imaging in Routine Psychiatric Practice. MISSOURI MEDICINE 2024; 121:37-43. [PMID: 38404436 PMCID: PMC10887461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Technologies in the 21st century provide increasingly detailed and accurate maps of brain structure and function. So why don't psychiatrists order brain imaging on all our patients? Here we briefly review major neuroimaging methods and some of their findings in psychiatry. As clinicians and neuroimaging researchers, we are eager to bring brain imaging into daily clinical practice. However, to be clinically useful, any test in medicine must demonstrate adequate test statistics, and show proven benefits that outweigh its risks and costs. In 2024, beyond certain limited circumstances, we have no imaging tests that can meet those standards to provide diagnosis or guide treatment. This cold fact explains why for most psychiatric patients, neuroimaging is not currently recommended by professional organizations or the National Institute of Mental Health.
Collapse
Affiliation(s)
- Alecia C Vogel
- Assistant Professor of Psychiatry (Child), Washington University School of Medicine in St. Louis, Missouri
| | - Kevin J Black
- Professor of Psychiatry, Neurology, Radiology, and Neuroscience at Washington University School of Medicine in St. Louis, Missouri
| |
Collapse
|
11
|
Altuwairqi Y. Bipolar Disorder Due to Traumatic Brain Injury: A Case Report. Cureus 2023; 15:e51292. [PMID: 38288174 PMCID: PMC10824366 DOI: 10.7759/cureus.51292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
I report an unusual case in Saudi Arabia of a 28-year-old man who had bipolar disorder due to a traumatic brain injury suffered 10 years previously. He had been evaluated and diagnosed with schizoaffective disorder as well as amphetamine and hash use disorder until recently, when the team noticed a poor response to treatment and the continuation of his cognitive features. After a reevaluation of the history and evidence of the brain lesions on the MRI, the diagnosis was changed to bipolar disorder due to a traumatic brain injury. The patient had shown a fair response to valproate and risperidone. This report emphasizes the significance of ruling out the medical factors contributing to the manifestation of any novel psychiatric symptom, necessitating greater attention to the account of cranial trauma and periods of unconsciousness. Psychiatrists should be aware of these overlooked cases and encourage colleagues in the field to maintain a high index of suspicion and to take a good relevant history of brain injury insults, especially when there are cognitive features and a poor response to medications. The patient exhibited symptoms of inattention, memory difficulties, reasoning deficits, and poor judgment, but he did not meet the criteria for a minor or major cognitive disorder.
Collapse
|
12
|
Stanley MPH, Silbersweig DA, Perez DL. Toward a Unified Classification System for Brain-Mind Disorders: Putting Calls for Integrated Clinical Neuroscience Into Action. Cogn Behav Neurol 2023; 36:199-201. [PMID: 37724742 DOI: 10.1097/wnn.0000000000000353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 09/21/2023]
Abstract
Dividing the brain-mind into the specialized fields of neurology and psychiatry has produced many granular advantages, but these silos have imposed barriers to comprehensively understanding and contextualizing the fundamentals governing mental life and its maladies. Scientific inquiry into these fundamentals cannot reach its full potential without interdigitating the boundaries of two specialties of the same organ for both scholarship and clinical practice. We propose that to truly integrate disorders of the brain and the mind for research and clinical care, we must carefully reexamine the classification of its disorders (nosology) as an instrument to develop a coherent pathological and psychological framework. We call on professional organizations from neurology, psychiatry, behavioral neurology, neuropsychiatry, neuropsychology, and other relevant subspecialties (eg, geriatric psychiatry) to convene a multidisciplinary task force to define the current classification principles of their subspecialties and work toward developing an integrated nosology. The effect of a shared classification system, which we acknowledge is a difficult proposition philosophically and politically, would have transformative potential across educational, clinical, scientific, programmatic, and sociocultural realms. If accomplished, this initiative would provide a definitive step toward reducing stigma (and promoting reimbursement parity) for the full spectrum of complex brain disorders (regardless of traditional neurologic vs psychiatric conceptualizations).
Collapse
Affiliation(s)
- Michael P H Stanley
- Division of Cognitive Neurology, Department of Neurology, Brigham & Women's Hospital Center for Brain Mind Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Behavioral Neurology and Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A Silbersweig
- Department of Psychiatry, Brigham & Women's Hospital Center for Brain Mind Medicine, Harvard Medical School, Boston, Massachusetts
| | - David L Perez
- Division of Behavioral Neurology and Integrated Brain Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Division of Neuropsychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Jiang J, Ferguson MA, Grafman J, Cohen AL, Fox MD. A Lesion-Derived Brain Network for Emotion Regulation. Biol Psychiatry 2023; 94:640-649. [PMID: 36796601 DOI: 10.1016/j.biopsych.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Emotion regulation has been linked to specific brain networks based on functional neuroimaging, but networks causally involved in emotion regulation remain unknown. METHODS We studied patients with focal brain damage (N = 167) who completed the managing emotion subscale of the Mayer-Salovey-Caruso Emotional Intelligence Test, a measure of emotion regulation. First, we tested whether patients with lesions to an a priori network derived from functional neuroimaging showed impaired emotion regulation. Next, we leveraged lesion network mapping to derive a de novo brain network for emotion regulation. Finally, we used an independent lesion database (N = 629) to test whether damage to this lesion-derived network would increase the risk of neuropsychiatric conditions associated with emotion regulation impairment. RESULTS First, patients with lesions intersecting the a priori emotion regulation network derived from functional neuroimaging showed impairments in the managing emotion subscale of the Mayer-Salovey-Caruso Emotional Intelligence Test. Next, our de novo brain network for emotion regulation derived from lesion data was defined by functional connectivity to the left ventrolateral prefrontal cortex. Finally, in the independent database, lesions associated with mania, criminality, and depression intersected this de novo brain network more than lesions associated with other disorders. CONCLUSIONS The findings suggest that emotion regulation maps to a connected brain network centered on the left ventrolateral prefrontal cortex. Lesion damage to part of this network is associated with reported difficulties in managing emotions and is related to increased likelihood of having one of several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jing Jiang
- Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts.
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts; Center for the Study of World Religions, Harvard Divinity School, Cambridge, Massachusetts
| | - Jordan Grafman
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Shirley Ryan Ability Laboratory, Chicago, Illinois
| | - Alexander L Cohen
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, Massachusetts; Department of Neurology, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, Brigham & Women's Hospital, Boston, Massachusetts
| |
Collapse
|
14
|
Schaper FLWVJ, Nordberg J, Cohen AL, Lin C, Hsu J, Horn A, Ferguson MA, Siddiqi SH, Drew W, Soussand L, Winkler AM, Simó M, Bruna J, Rheims S, Guenot M, Bucci M, Nummenmaa L, Staals J, Colon AJ, Ackermans L, Bubrick EJ, Peters JM, Wu O, Rost NS, Grafman J, Blumenfeld H, Temel Y, Rouhl RPW, Joutsa J, Fox MD. Mapping Lesion-Related Epilepsy to a Human Brain Network. JAMA Neurol 2023; 80:891-902. [PMID: 37399040 PMCID: PMC10318550 DOI: 10.1001/jamaneurol.2023.1988] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 07/04/2023]
Abstract
Importance It remains unclear why lesions in some locations cause epilepsy while others do not. Identifying the brain regions or networks associated with epilepsy by mapping these lesions could inform prognosis and guide interventions. Objective To assess whether lesion locations associated with epilepsy map to specific brain regions and networks. Design, Setting, and Participants This case-control study used lesion location and lesion network mapping to identify the brain regions and networks associated with epilepsy in a discovery data set of patients with poststroke epilepsy and control patients with stroke. Patients with stroke lesions and epilepsy (n = 76) or no epilepsy (n = 625) were included. Generalizability to other lesion types was assessed using 4 independent cohorts as validation data sets. The total numbers of patients across all datasets (both discovery and validation datasets) were 347 with epilepsy and 1126 without. Therapeutic relevance was assessed using deep brain stimulation sites that improve seizure control. Data were analyzed from September 2018 through December 2022. All shared patient data were analyzed and included; no patients were excluded. Main Outcomes and Measures Epilepsy or no epilepsy. Results Lesion locations from 76 patients with poststroke epilepsy (39 [51%] male; mean [SD] age, 61.0 [14.6] years; mean [SD] follow-up, 6.7 [2.0] years) and 625 control patients with stroke (366 [59%] male; mean [SD] age, 62.0 [14.1] years; follow-up range, 3-12 months) were included in the discovery data set. Lesions associated with epilepsy occurred in multiple heterogenous locations spanning different lobes and vascular territories. However, these same lesion locations were part of a specific brain network defined by functional connectivity to the basal ganglia and cerebellum. Findings were validated in 4 independent cohorts including 772 patients with brain lesions (271 [35%] with epilepsy; 515 [67%] male; median [IQR] age, 60 [50-70] years; follow-up range, 3-35 years). Lesion connectivity to this brain network was associated with increased risk of epilepsy after stroke (odds ratio [OR], 2.82; 95% CI, 2.02-4.10; P < .001) and across different lesion types (OR, 2.85; 95% CI, 2.23-3.69; P < .001). Deep brain stimulation site connectivity to this same network was associated with improved seizure control (r, 0.63; P < .001) in 30 patients with drug-resistant epilepsy (21 [70%] male; median [IQR] age, 39 [32-46] years; median [IQR] follow-up, 24 [16-30] months). Conclusions and Relevance The findings in this study indicate that lesion-related epilepsy mapped to a human brain network, which could help identify patients at risk of epilepsy after a brain lesion and guide brain stimulation therapies.
Collapse
Affiliation(s)
- Frederic L. W. V. J. Schaper
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
- Department of Neurology and School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Janne Nordberg
- Turku Brain and Mind Center, Department of Clinical Neurophysiology, Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Alexander L. Cohen
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher Lin
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Joey Hsu
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Michael A. Ferguson
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Shan H. Siddiqi
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - William Drew
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Louis Soussand
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Anderson M. Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville
| | - Marta Simó
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge - Institut Català d’Oncologia (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge - Institut Català d’Oncologia (IDIBELL), L’Hospitalet del Llobregat, Barcelona, Spain
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Lyon Neurosciences Research Center, Hospices Civils de Lyon and University of Lyon, Lyon, France
- Institut national de la santé et de la recherche médicale, Lyon, France
| | - Marc Guenot
- Institut national de la santé et de la recherche médicale, Lyon, France
- Department of Functional Neurosurgery, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Marco Bucci
- Turku PET Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Julie Staals
- Department of Neurology and School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert J. Colon
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze & Maastricht, the Netherlands
- Department of Epileptology, Centre Hospitalier Universitaire Martinique, Fort-de-France, France
| | - Linda Ackermans
- Department of Neurosurgery and School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ellen J. Bubrick
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jurriaan M. Peters
- Harvard Medical School, Harvard University, Boston, Massachusetts
- Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts
| | - Ona Wu
- Harvard Medical School, Harvard University, Boston, Massachusetts
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Natalia S. Rost
- Harvard Medical School, Harvard University, Boston, Massachusetts
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Think + Speak Lab, Shirley Ryan Ability Lab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hal Blumenfeld
- Departments of Neurology, Neuroscience and Neurosurgery, Yale School of Medicine, New Haven, Connecticut
| | - Yasin Temel
- Department of Neurosurgery and School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rob P. W. Rouhl
- Department of Neurology and School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
- Academic Center for Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze & Maastricht, the Netherlands
| | - Juho Joutsa
- Turku Brain and Mind Center, Department of Clinical Neurophysiology, Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
- Turku PET Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry and Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
15
|
Skye J, Bruss J, Herbet G, Tranel D, Boes AD. Localization of a Medial Temporal Lobe-Precuneus Network for Time Orientation. Ann Neurol 2023; 94:421-433. [PMID: 37183996 PMCID: PMC10524450 DOI: 10.1002/ana.26681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE Time orientation is a fundamental cognitive process in which one's personal sense of time is matched with a universal reference. Time orientation is commonly assessed through mental status examination, yet its neural correlates remain unclear. Large lesions have been associated with deficits in time orientation, but the regional anatomy implicated in time disorientation is not well established. The current study investigates the anatomy of time disorientation and its network correlates in patients with focal brain lesions. METHODS Time orientation was assessed 3 months or more after lesion onset using the Benton Temporal Orientation Test (BTOT) in 550 patients with acquired, focal brain lesions, 39 of whom were impaired. Multivariate lesion-symptom mapping and lesion network mapping were used to evaluate the anatomy and networks associated with time disorientation. Performance on a variety of neuropsychological tests was compared between the time oriented and time disoriented group. RESULTS Lesion-symptom mapping showed that lesions of the precuneus, medial temporal lobes (MTL), and occipito-temporal cortex were associated with time disorientation (r = 0.264, p < 0.001). Lesion network mapping using normative connectome data demonstrated that these regional findings occurred along a network that includes white and gray matter connecting the precuneus and MTL. There was a strong behavioral and anatomical association of time disorientation with memory impairment, such that the 2 processes could not be fully disentangled. INTERPRETATION We interpret these findings as novel evidence for a network involving the precuneus and the medial temporal lobe in supporting time orientation. ANN NEUROL 2023;94:421-433.
Collapse
Affiliation(s)
- Jax Skye
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Joel Bruss
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France
| | - Daniel Tranel
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Aaron D. Boes
- Department of Neurology, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Chacón-González J, Restrepo-Martínez M, Moreno-Avellán Á, Ramírez-Bermúdez J. Polymicrogyria: An Unusual Case of Secondary Mania. J Psychiatr Pract 2023; 29:415-420. [PMID: 37678371 DOI: 10.1097/pra.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND Secondary mania refers to a manic episode that arises during a medical illness other than bipolar disorder or in response to a drug or medication. As the psychopathological features of secondary mania resemble those of mania due to bipolar disorder, misdiagnosis is frequent. PURPOSE AND BASIC PROCEDURES We present the case of a 20-year-old woman who developed a manic episode with psychotic symptoms, in whom polymicrogyria, a malformation of the cortical development with abnormal electroencephalographic activity, was documented. After initiating antiepileptic management, the affective symptoms completely subsided. MAIN FINDINGS To date, no specific recommendations are available concerning when to perform advanced studies in patients with a manic episode; however, as our case shows, these are much needed. PRINCIPAL CONCLUSION Because the treatment of secondary conditions largely depends on finding the underlying cause, patients with a new-onset mania should undergo a thorough assessment for secondary causes.
Collapse
|
17
|
Xu C, Qi L, Wang X, Schaper FLWVJ, Wu D, Yu T, Yan X, Jin G, Wang Q, Wang X, Huang X, Wang Y, Chen Y, Liu J, Wang Y, Horn A, Fisher RS, Ren L. Functional connectomic profile correlates with effective anterior thalamic stimulation for refractory epilepsy. Brain Stimul 2023; 16:1302-1309. [PMID: 37633491 DOI: 10.1016/j.brs.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) is an effective treatment for refractory epilepsy; however, seizure outcome varies among individuals. Identifying a reliable noninvasive biomarker to predict good responders would be helpful. OBJECTIVES To test whether the functional connectivity between the ANT-DBS sites and the seizure foci correlates with effective seizure control in refractory epilepsy. METHODS We performed a proof-of-concept pilot study of patients with focal refractory epilepsy receiving ANT-DBS. Using normative human connectome data derived from 1000 healthy participants, we investigated whether intrinsic functional connectivity between the seizure foci and the DBS site was associated with seizure outcome. We repeated this analysis controlling for the extent of seizure foci, distance between the seizure foci and DBS site, and using functional connectivity of the ANT instead of the DBS site to test the contribution of variance in DBS sites. RESULTS Eighteen patients with two or more seizure foci were included. Greater functional connectivity between the seizure foci and the DBS site correlated with more favorable outcome. The degree of functional connectivity accounted for significant variance in clinical outcomes (DBS site: |r| = 0.773, p < 0.001 vs ANT-atlas: |r| = 0.715, p = 0.001), which remained significant when controlling for the extent of the seizure foci (|r| = 0.773, p < 0.001) and the distance between the seizure foci and DBS site (|r| = 0.777, p < 0.001). Significant correlations were independent of variance in the DBS sites (|r| = 0.148, p = 0.57). CONCLUSION These findings suggest that functional connectomic profile is a potential reliable non-invasive biomarker to predict ANT-DBS outcomes. Accordingly, the identification of ANT responders could decrease the surgical risk for patients who may not benefit and optimize the cost-effective allocation of health care resources.
Collapse
Affiliation(s)
- Cuiping Xu
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Lei Qi
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Frédéric L W V J Schaper
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Di Wu
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Tao Yu
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- National Center for Neurological Disorders, Beijing, China; Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Guangyuan Jin
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Qiao Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xiaopeng Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Xinqi Huang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuke Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuanhong Chen
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Jinghui Liu
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Yuping Wang
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States; Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany; MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology, Massachusetts General Hospital, Harvard Medical School, United States
| | - Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Liankun Ren
- National Center for Neurological Disorders, Beijing, China; Department of Neurology, Xuanwu Hospital, Clinical Center for Epilepsy, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
18
|
Bateman JR, Ferguson MA, Anderson CA, Arciniegas DB, Gilboa A, Berman BD, Fox MD. Network Localization of Spontaneous Confabulation. J Neuropsychiatry Clin Neurosci 2023; 36:45-52. [PMID: 37415502 DOI: 10.1176/appi.neuropsych.20220160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
OBJECTIVE Spontaneous confabulation is a symptom in which false memories are conveyed by the patient as true. The purpose of the study was to identify the neuroanatomical substrate of this complex symptom and evaluate the relationship to related symptoms, such as delusions and amnesia. METHODS Twenty-five lesion locations associated with spontaneous confabulation were identified in a systematic literature search. The network of brain regions functionally connected to each lesion location was identified with a large connectome database (N=1,000) and compared with networks derived from lesions associated with nonspecific (i.e., variable) symptoms (N=135), delusions (N=32), or amnesia (N=53). RESULTS Lesions associated with spontaneous confabulation occurred in multiple brain locations, but they were all part of a single functionally connected brain network. Specifically, 100% of lesions were connected to the mammillary bodies (familywise error rate [FWE]-corrected p<0.05). This connectivity was specific for lesions associated with confabulation compared with lesions associated with nonspecific symptoms or delusions (FWE-corrected p<0.05). Lesions associated with confabulation were more connected to the orbitofrontal cortex than those associated with amnesia (FWE-corrected p<0.05). CONCLUSIONS Spontaneous confabulation maps to a common functionally connected brain network that partially overlaps, but is distinct from, networks associated with delusions or amnesia. These findings lend new insight into the neuroanatomical bases of spontaneous confabulation.
Collapse
Affiliation(s)
- James R Bateman
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, N.C., and Mental Illness Research, Education and Clinical Center, Salisbury VA Medical Center, Salisbury, N.C. (Bateman); Department of Neurology and Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston (Ferguson, Fox); Behavioral Neurology Section, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora (Anderson, Arciniegas); Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque (Arciniegas); Rotman Research Institute at Baycrest Health Sciences and Department of Psychology, University of Toronto, Toronto (Gilboa); Department of Neurology, Virginia Commonwealth University, Richmond, Va. (Berman)
| | - Michael A Ferguson
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, N.C., and Mental Illness Research, Education and Clinical Center, Salisbury VA Medical Center, Salisbury, N.C. (Bateman); Department of Neurology and Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston (Ferguson, Fox); Behavioral Neurology Section, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora (Anderson, Arciniegas); Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque (Arciniegas); Rotman Research Institute at Baycrest Health Sciences and Department of Psychology, University of Toronto, Toronto (Gilboa); Department of Neurology, Virginia Commonwealth University, Richmond, Va. (Berman)
| | - C Alan Anderson
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, N.C., and Mental Illness Research, Education and Clinical Center, Salisbury VA Medical Center, Salisbury, N.C. (Bateman); Department of Neurology and Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston (Ferguson, Fox); Behavioral Neurology Section, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora (Anderson, Arciniegas); Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque (Arciniegas); Rotman Research Institute at Baycrest Health Sciences and Department of Psychology, University of Toronto, Toronto (Gilboa); Department of Neurology, Virginia Commonwealth University, Richmond, Va. (Berman)
| | - David B Arciniegas
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, N.C., and Mental Illness Research, Education and Clinical Center, Salisbury VA Medical Center, Salisbury, N.C. (Bateman); Department of Neurology and Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston (Ferguson, Fox); Behavioral Neurology Section, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora (Anderson, Arciniegas); Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque (Arciniegas); Rotman Research Institute at Baycrest Health Sciences and Department of Psychology, University of Toronto, Toronto (Gilboa); Department of Neurology, Virginia Commonwealth University, Richmond, Va. (Berman)
| | - Asaf Gilboa
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, N.C., and Mental Illness Research, Education and Clinical Center, Salisbury VA Medical Center, Salisbury, N.C. (Bateman); Department of Neurology and Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston (Ferguson, Fox); Behavioral Neurology Section, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora (Anderson, Arciniegas); Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque (Arciniegas); Rotman Research Institute at Baycrest Health Sciences and Department of Psychology, University of Toronto, Toronto (Gilboa); Department of Neurology, Virginia Commonwealth University, Richmond, Va. (Berman)
| | - Brian D Berman
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, N.C., and Mental Illness Research, Education and Clinical Center, Salisbury VA Medical Center, Salisbury, N.C. (Bateman); Department of Neurology and Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston (Ferguson, Fox); Behavioral Neurology Section, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora (Anderson, Arciniegas); Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque (Arciniegas); Rotman Research Institute at Baycrest Health Sciences and Department of Psychology, University of Toronto, Toronto (Gilboa); Department of Neurology, Virginia Commonwealth University, Richmond, Va. (Berman)
| | - Michael D Fox
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, N.C., and Mental Illness Research, Education and Clinical Center, Salisbury VA Medical Center, Salisbury, N.C. (Bateman); Department of Neurology and Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston (Ferguson, Fox); Behavioral Neurology Section, Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora (Anderson, Arciniegas); Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque (Arciniegas); Rotman Research Institute at Baycrest Health Sciences and Department of Psychology, University of Toronto, Toronto (Gilboa); Department of Neurology, Virginia Commonwealth University, Richmond, Va. (Berman)
| |
Collapse
|
19
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
Trapp NT, Bruss JE, Manzel K, Grafman J, Tranel D, Boes AD. Large-scale lesion symptom mapping of depression identifies brain regions for risk and resilience. Brain 2023; 146:1672-1685. [PMID: 36181425 PMCID: PMC10319784 DOI: 10.1093/brain/awac361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding neural circuits that support mood is a central goal of affective neuroscience, and improved understanding of the anatomy could inform more targeted interventions in mood disorders. Lesion studies provide a method of inferring the anatomical sites causally related to specific functions, including mood. Here, we performed a large-scale study evaluating the location of acquired, focal brain lesions in relation to symptoms of depression. Five hundred and twenty-six individuals participated in the study across two sites (356 male, average age 52.4 ± 14.5 years). Each subject had a focal brain lesion identified on structural imaging and an assessment of depression using the Beck Depression Inventory-II, both obtained in the chronic period post-lesion (>3 months). Multivariate lesion-symptom mapping was performed to identify lesion sites associated with higher or lower depression symptom burden, which we refer to as 'risk' versus 'resilience' regions. The brain networks and white matter tracts associated with peak regional findings were identified using functional and structural lesion network mapping, respectively. Lesion-symptom mapping identified brain regions significantly associated with both higher and lower depression severity (r = 0.11; P = 0.01). Peak 'risk' regions include the bilateral anterior insula, bilateral dorsolateral prefrontal cortex and left dorsomedial prefrontal cortex. Functional lesion network mapping demonstrated that these 'risk' regions localized to nodes of the salience network. Peak 'resilience' regions include the right orbitofrontal cortex, right medial prefrontal cortex and right inferolateral temporal cortex, nodes of the default mode network. Structural lesion network mapping implicated dorsal prefrontal white matter tracts as 'risk' tracts and ventral prefrontal white matter tracts as 'resilience' tracts, although the structural lesion network mapping findings did not survive correction for multiple comparisons. Taken together, these results demonstrate that lesions to specific nodes of the salience network and default mode network are associated with greater risk versus resiliency for depression symptoms in the setting of focal brain lesions.
Collapse
Affiliation(s)
- Nicholas T Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel E Bruss
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Kenneth Manzel
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Jordan Grafman
- Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Tranel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
21
|
Li AD, Loi SM, Velakoulis D, Walterfang M. Mania Following Traumatic Brain Injury: A Systematic Review. J Neuropsychiatry Clin Neurosci 2023; 35:341-351. [PMID: 37021383 DOI: 10.1176/appi.neuropsych.20220105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Mania is an uncommon, but debilitating, psychiatric occurrence following TBI. The literature on mania following TBI is largely limited to case reports and case series. In the present review, the investigators describe the clinical, diagnostic, and treatment characteristics of mania following TBI. METHODS A systematic search of MEDLINE, EMBASE, and PsycINFO was conducted for English-language studies published from 1980 to July 15, 2021. The included studies provided the required individual primary data and sufficient information on clinical presentation or treatment of manic symptoms. Studies with patients who reported a history of mania or bipolar disorder prior to TBI and studies with patients who sustained TBI before adulthood were excluded. RESULTS Forty-one studies were included, which reported information for 50 patients (the mean±SD age at mania onset was 39.1±14.3 years). Patients were more frequently male, aged <50 years, and without a personal or family history of psychiatric disorders. Although 74% of patients reported mania developing within 1 year following TBI, latencies of up to 31 years were observed. Illness trajectory varied from a single manic episode to recurrent mood episodes. Rapid cycling was reported in six patients. Mood stabilizers and antipsychotics were most frequently used to improve symptoms. CONCLUSIONS Heterogeneity of lesion locations and coexisting vulnerabilities make causality difficult to establish. Valproate or a second-generation antipsychotic, such as olanzapine or quetiapine, may be considered first-line therapy in the absence of high-level evidence for a more preferred treatment. Early escalation to combined therapy (mood stabilizer and second-generation antipsychotic) is recommended to control symptoms and prevent recurrence. Larger prospective studies and randomized controlled trials are needed to refine diagnostic criteria and provide definitive treatment recommendations.
Collapse
Affiliation(s)
- Anna D Li
- Melbourne Medical School (Li) and Department of Psychiatry (Loi, Velakoulis, Walterfang), University of Melbourne, Parkville, Australia; Department of Neuropsychiatry, Royal Melbourne Hospital, Parkville (all authors); Florey Institute for Neuroscience and Mental Health, Parkville (Walterfang)
| | - Samantha M Loi
- Melbourne Medical School (Li) and Department of Psychiatry (Loi, Velakoulis, Walterfang), University of Melbourne, Parkville, Australia; Department of Neuropsychiatry, Royal Melbourne Hospital, Parkville (all authors); Florey Institute for Neuroscience and Mental Health, Parkville (Walterfang)
| | - Dennis Velakoulis
- Melbourne Medical School (Li) and Department of Psychiatry (Loi, Velakoulis, Walterfang), University of Melbourne, Parkville, Australia; Department of Neuropsychiatry, Royal Melbourne Hospital, Parkville (all authors); Florey Institute for Neuroscience and Mental Health, Parkville (Walterfang)
| | - Mark Walterfang
- Melbourne Medical School (Li) and Department of Psychiatry (Loi, Velakoulis, Walterfang), University of Melbourne, Parkville, Australia; Department of Neuropsychiatry, Royal Melbourne Hospital, Parkville (all authors); Florey Institute for Neuroscience and Mental Health, Parkville (Walterfang)
| |
Collapse
|
22
|
Jimenez-Marin A, De Bruyn N, Gooijers J, Llera A, Meyer S, Alaerts K, Verheyden G, Swinnen SP, Cortes JM. Multimodal and multidomain lesion network mapping enhances prediction of sensorimotor behavior in stroke patients. Sci Rep 2022; 12:22400. [PMID: 36575263 PMCID: PMC9794717 DOI: 10.1038/s41598-022-26945-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Beyond the characteristics of a brain lesion, such as its etiology, size or location, lesion network mapping (LNM) has shown that similar symptoms after a lesion reflects similar dis-connectivity patterns, thereby linking symptoms to brain networks. Here, we extend LNM by using a multimodal strategy, combining functional and structural networks from 1000 healthy participants in the Human Connectome Project. We apply multimodal LNM to a cohort of 54 stroke patients with the aim of predicting sensorimotor behavior, as assessed through a combination of motor and sensory tests. Results are two-fold. First, multimodal LNM reveals that the functional modality contributes more than the structural one in the prediction of sensorimotor behavior. Second, when looking at each modality individually, the performance of the structural networks strongly depended on whether sensorimotor performance was corrected for lesion size, thereby eliminating the effect that larger lesions generally produce more severe sensorimotor impairment. In contrast, functional networks provided similar performance regardless of whether or not the effect of lesion size was removed. Overall, these results support the extension of LNM to its multimodal form, highlighting the synergistic and additive nature of different types of network modalities, and their corresponding influence on behavioral performance after brain injury.
Collapse
Affiliation(s)
- Antonio Jimenez-Marin
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Nele De Bruyn
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Alberto Llera
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
- LIS Data Solutions, Machine Learning Group, Santander, Spain
| | - Sarah Meyer
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Kaat Alaerts
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- LBI-KU Leuven Brain Institute, Leuven, Belgium
| | - Jesus M Cortes
- Computational Neuroimaging Group, Biocruces-Bizkaia Health Research Institute, Biocruces Bizkaia, Plaza de Cruces S/N, 48903, Barakaldo, Spain.
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
- IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
23
|
Kazour F, Atanasova B, Mourad M, El Hachem C, Desmidt T, Richa S, El-Hage W. Mania associated olfactory dysfunction: A comparison between bipolar subjects in mania and remission. J Psychiatr Res 2022; 156:330-338. [PMID: 36323136 DOI: 10.1016/j.jpsychires.2022.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this study was to assess the olfactory functions of patients with bipolar disorder in manic phase and to compare them to those of bipolar subjects in remission and healthy controls. METHODS We recruited 96 participants divided in 3 groups: bipolar mania (MB), euthymic bipolar in remission (EB) and healthy controls (HC). All participants underwent an assessment of their olfactory functions using the Sniffin' sticks threshold and identification tests. Odors' pleasantness, intensity, familiarity and emotion were assessed. All participants were screened for the presence of psychiatric disorder through the MINI questionnaire. Clinical evaluation explored dimensions of mania, depression, anxiety respectively through YMRS, MADRS and STAI scales. Anhedonia was explored through the Chapman physical and social anhedonia questionnaire. RESULTS Patients in mania had deficits in identifying positive smells compared to bipolar subjects in remission and to healthy controls (MB < EB < HC; p < 0.001). Hedonic (MB < EB = HC; p < 0.001) and emotional (MB < EB = HC; p < 0.001) ratings of positive smells were lower in patients in manic phase compared to remitted subjects or controls. Mania was associated to higher emotion rating of negative smells compared to remitted subjects and controls (MB > EB = HC; p < 0.001). There was no difference between the 3 groups in the ratings of intensity and familiarity of smells, as well as in the olfactory threshold testing. The 3 groups showed no difference in the identification of negative smells. CONCLUSIONS Patients in manic episodes showed deficits in identifying positive odors. They evaluated these smells as less pleasant and less emotional compared to remitted bipolar subjects and healthy controls. These olfactory dysfunctions may constitute potential indicators of manic state. The persistence of olfactory dysfunction in remission phase (deficit in the olfactory identification of positive odors compared to healthy controls) may constitute a potential trait indicator of bipolarity.
Collapse
Affiliation(s)
- Francois Kazour
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France; Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
| | | | - Marc Mourad
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Charline El Hachem
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Thomas Desmidt
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France
| | - Sami Richa
- Department of Psychiatry, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Wissam El-Hage
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France; Clinique Psychiatrique Universitaire, CHU de Tours, Tours, France
| |
Collapse
|
24
|
Kim NY, Taylor JJ, Kim YW, Borsook D, Joutsa J, Li J, Quesada C, Peyron R, Fox MD. Network Effects of Brain Lesions Causing Central Poststroke Pain. Ann Neurol 2022; 92:834-845. [PMID: 36271755 DOI: 10.1002/ana.26468] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study was undertaken to test whether lesions causing central poststroke pain (CPSP) are associated with a specific connectivity profile, whether these connections are associated with metabolic changes, and whether this network aligns with neuromodulation targets for pain. METHODS Two independent lesion datasets were utilized: (1) subcortical lesions from published case reports and (2) thalamic lesions with metabolic imaging using 18F- fluorodeoxyglucose positron emission tomography-computed tomography. Functional connectivity between each lesion location and the rest of the brain was assessed using a normative connectome (n = 1,000), and connections specific to CPSP were identified. Metabolic changes specific to CPSP were also identified and related to differences in lesion connectivity. Therapeutic relevance of the network was explored by testing for alignment with existing brain stimulation data and by prospectively targeting the network with repetitive transcranial magnetic stimulation (rTMS) in 7 patients with CPSP. RESULTS Lesion locations causing CPSP showed a specific pattern of brain connectivity that was consistent across two independent lesion datasets (spatial r = 0.82, p < 0.0001). Connectivity differences were correlated with postlesion metabolism (r = -0.48, p < 0.001). The topography of this lesion-based pain network aligned with variability in pain improvement across 12 prior neuromodulation targets and across 32 patients who received rTMS to primary motor cortex (p < 0.05). Prospectively targeting this network with rTMS improved CPSP in 6 of 7 patients. INTERPRETATION Lesions causing pain are connected to a specific brain network that shows metabolic abnormalities and promise as a neuromodulation target. ANN NEUROL 2022;92:834-845.
Collapse
Affiliation(s)
- Na Young Kim
- Department and Research, Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, Yongin Severance Hospital, Yongin, Republic of Korea.,Center for Digital Heath, Yongin Severance Hospital, Yongin, Republic of Korea
| | - Joseph J Taylor
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.,Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yong Wook Kim
- Department and Research, Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - David Borsook
- Harvard Medical School, Boston, MA, USA.,Departments of Psychiatry and Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Juho Joutsa
- Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland.,Turku PET Center, Neurocenter, Turku University Hospital, Turku, Finland
| | - Jing Li
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Laboratory-Lyon Neurosciences Research Center, National Institute of Health and Medical Research U1028, Lyon, France.,Stephanois Pain Center, Saint-Etienne Regional University Hospital Center, Saint-Etienne, France.,Department of Physical Therapy, Claude Bernard Lyon-1 University, Lyon, France
| | - Roland Peyron
- Central Integration of Pain (NeuroPain) Laboratory-Lyon Neurosciences Research Center, National Institute of Health and Medical Research U1028, Lyon, France.,Department of Physical Therapy, Claude Bernard Lyon-1 University, Lyon, France.,Neurology Department, Saint-Etienne Regional University Hospital Center, Saint-Etienne, France
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.,Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
25
|
McInnis MG, Andreassen OA, Andreazza AC, Alon U, Berk M, Brister T, Burdick KE, Cui D, Frye M, Leboyer M, Mitchell PB, Merikangas K, Nierenberg AA, Nurnberger JI, Pham D, Vieta E, Yatham LN, Young AH. Strategies and foundations for scientific discovery in longitudinal studies of bipolar disorder. Bipolar Disord 2022; 24:499-508. [PMID: 35244317 PMCID: PMC9440950 DOI: 10.1111/bdi.13198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Bipolar disorder (BD) is a complex and dynamic condition with a typical onset in late adolescence or early adulthood followed by an episodic course with intervening periods of subthreshold symptoms or euthymia. It is complicated by the accumulation of comorbid medical and psychiatric disorders. The etiology of BD remains unknown and no reliable biological markers have yet been identified. This is likely due to lack of comprehensive ontological framework and, most importantly, the fact that most studies have been based on small nonrepresentative clinical samples with cross-sectional designs. We propose to establish large, global longitudinal cohorts of BD studied consistently in a multidimensional and multidisciplinary manner to determine etiology and help improve treatment. Herein we propose collection of a broad range of data that reflect the heterogenic phenotypic manifestations of BD that include dimensional and categorical measures of mood, neurocognitive, personality, behavior, sleep and circadian, life-story, and outcomes domains. In combination with genetic and biological information such an approach promotes the integrating and harmonizing of data within and across current ontology systems while supporting a paradigm shift that will facilitate discovery and become the basis for novel hypotheses.
Collapse
Affiliation(s)
| | - Ole A. Andreassen
- NORMENT CentreUniversity of Oslo and Oslo University HospitalOsloNorway
| | - Ana C. Andreazza
- Department of Pharmacology & ToxicologyTemerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
| | | | - Michael Berk
- Deakin UniversityIMPACT – the Institute for Mental and Physical Health and Clinical TranslationSchool of MedicineBarwon HealthGeelongAustralia
- OrygenThe National Centre of Excellence in Youth Mental HealthCentre for Youth Mental HealthFlorey Institute for Neuroscience and Mental Health and the Department of PsychiatryThe University of MelbourneMelbourneAustralia
| | - Teri Brister
- National Alliance on Mental IllnessArlingtonVirginiaUSA
| | | | - Donghong Cui
- Shanghai Mental Health CenterShanghai Jiao Tong University School of MedicineShanghai Mental Health CenterShangaiChina
| | | | - Marion Leboyer
- Département de psychiatrieUniversité Paris Est Creteil (UPEC)AP‐HPHôpitaux Universitaires H. MondorDMU IMPACTINSERM, translational NeuropsychiatryFondation FondaMentalCreteilFrance
| | | | - Kathleen Merikangas
- Intramural Research ProgramNational Institute of Mental HealthBethesdaMarylandUSA
| | | | | | - Daniel Pham
- Milken InstituteCenter for Strategic PhilanthopyWashingtonDistrict of ColumbiaUSA
| | - Eduard Vieta
- Bipolar and Depressive disorders UnitHospital ClinicInstitute of NeuroscienceUniversity of BarcelonaIDIBAPSCIBERSAMBarcelonaCataloniaSpain
| | | | - Allan H. Young
- Department of Psychological MedicineInstitute of Psychiatry, Psychology and NeuroscienceKing’s College London & South London and Maudsley NHS Foundation TrustBethlem Royal HospitalBeckenhamKentUK
| |
Collapse
|
26
|
Mendonça M, Cotovio G, Barbosa R, Grunho M, Oliveira-Maia AJ. An Argument in Favor of Deep Brain Stimulation for Uncommon Movement Disorders: The Case for N-of-1 Trials in Holmes Tremor. Front Hum Neurosci 2022; 16:921523. [PMID: 35782038 PMCID: PMC9247189 DOI: 10.3389/fnhum.2022.921523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) is part of state-of-the-art treatment for medically refractory Parkinson’s disease, essential tremor or primary dystonia. However, there are multiple movement disorders that present after a static brain lesion and that are frequently refractory to medical treatment. Using Holmes tremor (HT) as an example, we discuss the effectiveness of currently available treatments and, performing simulations using a Markov Chain approach, propose that DBS with iterative parameter optimization is expected to be more effective than an approach based on sequential trials of pharmacological agents. Since, in DBS studies for HT, the thalamus is a frequently chosen target, using data from previous studies of lesion connectivity mapping in HT, we compared the connectivity of thalamic and non-thalamic targets with a proxy of the HT network, and found a significantly higher connectivity of thalamic DBS targets in HT. The understanding of brain networks provided by analysis of functional connectivity may thus provide an informed framework for proper surgical targeting of individual patients. Based on these findings, we argue that there is an ethical imperative to at least consider surgical options in patients with uncommon movement disorders, while simultaneously providing consistent information regarding the expected effectiveness and risks, even in a scenario of surgical-risk aversion. An approach based on n-of-1 DBS trials may ultimately significantly improve outcomes while informing on optimal therapeutic targets and parameter settings for HT and other disabling and rare movement disorders.
Collapse
Affiliation(s)
- Marcelo Mendonça
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- *Correspondence: Marcelo Mendonça,
| | - Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Raquel Barbosa
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- Department of Neurology, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Miguel Grunho
- Department of Neurology, Hospital Garcia de Orta, Almada, Portugal
| | - Albino J. Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- Albino J. Oliveira-Maia,
| |
Collapse
|
27
|
Siddiqi SH, Kording KP, Parvizi J, Fox MD. Causal mapping of human brain function. Nat Rev Neurosci 2022; 23:361-375. [PMID: 35444305 PMCID: PMC9387758 DOI: 10.1038/s41583-022-00583-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Mapping human brain function is a long-standing goal of neuroscience that promises to inform the development of new treatments for brain disorders. Early maps of human brain function were based on locations of brain damage or brain stimulation that caused a functional change. Over time, this approach was largely replaced by technologies such as functional neuroimaging, which identify brain regions in which activity is correlated with behaviours or symptoms. Despite their advantages, these technologies reveal correlations, not causation. This creates challenges for interpreting the data generated from these tools and using them to develop treatments for brain disorders. A return to causal mapping of human brain function based on brain lesions and brain stimulation is underway. New approaches can combine these causal sources of information with modern neuroimaging and electrophysiology techniques to gain new insights into the functions of specific brain areas. In this Review, we provide a definition of causality for translational research, propose a continuum along which to assess the relative strength of causal information from human brain mapping studies and discuss recent advances in causal brain mapping and their relevance for developing treatments.
Collapse
Affiliation(s)
- Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Josef Parvizi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Lesion network mapping of mania using different normative connectomes. Brain Struct Funct 2022; 227:3121-3127. [PMID: 35575827 DOI: 10.1007/s00429-022-02508-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/08/2022] [Indexed: 11/02/2022]
Abstract
Lesion network mapping is a neuroimaging technique that explores the network of regions functionally connected to lesions causing a common syndrome. The technique uses resting state functional connectivity from large databases of healthy individuals, i.e., connectomes, and has allowed for important insight into the potential network mechanisms underlying several neuropsychiatric disorders. However, concerns regarding reproducibility have arisen, that may be due to the use of different connectomes, with variable MRI acquisition parameters and preprocessing methods. Here, we tested the impact of using different connectomes on the results of lesion network mapping for mania. We found results were reliable and consistent independent of the connectome used.
Collapse
|
29
|
Pan C, Li G, Sun W, Miao J, Qiu X, Lan Y, Wang Y, Wang H, Zhu Z, Zhu S. Neural Substrates of Poststroke Depression: Current Opinions and Methodology Trends. Front Neurosci 2022; 16:812410. [PMID: 35464322 PMCID: PMC9019549 DOI: 10.3389/fnins.2022.812410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Poststroke depression (PSD), affecting about one-third of stroke survivors, exerts significant impact on patients’ functional outcome and mortality. Great efforts have been made since the 1970s to unravel the neuroanatomical substrate and the brain-behavior mechanism of PSD. Thanks to advances in neuroimaging and computational neuroscience in the past two decades, new techniques for uncovering the neural basis of symptoms or behavioral deficits caused by focal brain damage have been emerging. From the time of lesion analysis to the era of brain networks, our knowledge and understanding of the neural substrates for PSD are increasing. Pooled evidence from traditional lesion analysis, univariate or multivariate lesion-symptom mapping, regional structural and functional analyses, direct or indirect connectome analysis, and neuromodulation clinical trials for PSD, to some extent, echoes the frontal-limbic theory of depression. The neural substrates of PSD may be used for risk stratification and personalized therapeutic target identification in the future. In this review, we provide an update on the recent advances about the neural basis of PSD with the clinical implications and trends of methodology as the main features of interest.
Collapse
|
30
|
Cohen AL. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments. J Neurodev Disord 2022; 14:19. [PMID: 35279095 PMCID: PMC8918299 DOI: 10.1186/s11689-022-09433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
A wide variety of model systems and experimental techniques can provide insight into the structure and function of the human brain in typical development and in neurodevelopmental disorders. Unfortunately, this work, whether based on manipulation of animal models or observational and correlational methods in humans, has a high attrition rate in translating scientific discovery into practicable treatments and therapies for neurodevelopmental disorders.With new computational and neuromodulatory approaches to interrogating brain networks, opportunities exist for "bedside-to bedside-translation" with a potentially shorter path to therapeutic options. Specifically, methods like lesion network mapping can identify brain networks involved in the generation of complex symptomatology, both from acute onset lesion-related symptoms and from focal developmental anomalies. Traditional neuroimaging can examine the generalizability of these findings to idiopathic populations, while non-invasive neuromodulation techniques such as transcranial magnetic stimulation provide the ability to do targeted activation or inhibition of these specific brain regions and networks. In parallel, real-time functional MRI neurofeedback also allow for endogenous neuromodulation of specific targets that may be out of reach for transcranial exogenous methods.Discovery of novel neuroanatomical circuits for transdiagnostic symptoms and neuroimaging-based endophenotypes may now be feasible for neurodevelopmental disorders using data from cohorts with focal brain anomalies. These novel circuits, after validation in large-scale highly characterized research cohorts and tested prospectively using noninvasive neuromodulation and neurofeedback techniques, may represent a new pathway for symptom-based targeted therapy.
Collapse
Affiliation(s)
- Alexander Li Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Ferguson MA, Schaper FL, Cohen A, Siddiqi S, Merrill SM, Nielsen JA, Grafman J, Urgesi C, Fabbro F, Fox MD. A Neural Circuit for Spirituality and Religiosity Derived From Patients With Brain Lesions. Biol Psychiatry 2022; 91:380-388. [PMID: 34454698 PMCID: PMC8714871 DOI: 10.1016/j.biopsych.2021.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Over 80% of the global population consider themselves religious, with even more identifying as spiritual, but the neural substrates of spirituality and religiosity remain unresolved. METHODS In two independent brain lesion datasets (N1 = 88; N2 = 105), we applied lesion network mapping to test whether lesion locations associated with spiritual and religious belief map to a specific human brain circuit. RESULTS We found that brain lesions associated with self-reported spirituality map to a brain circuit centered on the periaqueductal gray. Intersection of lesion locations with this same circuit aligned with self-reported religiosity in an independent dataset and previous reports of lesions associated with hyper-religiosity. Lesion locations causing delusions and alien limb syndrome also intersected this circuit. CONCLUSIONS These findings suggest that spirituality and religiosity map to a common brain circuit centered on the periaqueductal gray, a brainstem region previously implicated in fear conditioning, pain modulation, and altruistic behavior.
Collapse
Affiliation(s)
- Michael A. Ferguson
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA
| | - Frederic L.W.V.J. Schaper
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA,Department of Neurology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Alexander Cohen
- Harvard Medical School, Boston, MA, 02115, USA,Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Shan Siddiqi
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA,Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA,Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah M. Merrill
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jared A. Nielsen
- Department of Psychology, Brigham Young University, Provo, Utah, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Think + Speak Lab, Shirley Ryan Ability Lab, Chicago, Illinois, USA,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cosimo Urgesi
- Cognitive Neuroscience Laboratory, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Franco Fabbro
- Cognitive Neuroscience Laboratory, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Michael D. Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, MA, 02115, USA,Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA,Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Kletenik I, Ferguson MA, Bateman JR, Cohen AL, Lin C, Tetreault A, Pelak VS, Anderson CA, Prasad S, Darby RR, Fox MD. Network Localization of Unconscious Visual Perception in Blindsight. Ann Neurol 2022; 91:217-224. [PMID: 34961965 PMCID: PMC10013845 DOI: 10.1002/ana.26292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Blindsight is a disorder where brain injury causes loss of conscious but not unconscious visual perception. Prior studies have produced conflicting results regarding the neuroanatomical pathways involved in this unconscious perception. METHODS We performed a systematic literature search to identify lesion locations causing visual field loss in patients with blindsight (n = 34) and patients without blindsight (n = 35). Resting state functional connectivity between each lesion location and all other brain voxels was computed using a large connectome database (n = 1,000). Connections significantly associated with blindsight (vs no blindsight) were identified. RESULTS Functional connectivity between lesion locations and the ipsilesional medial pulvinar was significantly associated with blindsight (family wise error p = 0.029). No significant connectivity differences were found to other brain regions previously implicated in blindsight. This finding was independent of methods (eg, flipping lesions to the left or right) and stimulus type (moving vs static). INTERPRETATION Connectivity to the ipsilesional medial pulvinar best differentiates lesion locations associated with blindsight versus those without blindsight. Our results align with recent data from animal models and provide insight into the neuroanatomical substrate of unconscious visual abilities in patients. ANN NEUROL 2022;91:217-224.
Collapse
Affiliation(s)
- Isaiah Kletenik
- Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Michael A Ferguson
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - James R Bateman
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Alexander L Cohen
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Department of Neurology, and Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Boston, MA
| | - Christopher Lin
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
| | - Aaron Tetreault
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Victoria S Pelak
- Behavioral Neurology Section, Department of Neurology, University of Colorado School of Medicine, Aurora, CO
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO
| | - Clark Alan Anderson
- Behavioral Neurology Section, Department of Neurology, University of Colorado School of Medicine, Aurora, CO
| | - Sashank Prasad
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Division of Neuro-Ophthalmology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Richard Ryan Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael D Fox
- Division of Cognitive and Behavioral Neurology, Brigham and Women's Hospital, Boston, MA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and Department of Neurology, Massachusetts General Hospital, Charlestown, MA
- Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
33
|
Abstract
Mania, the diagnostic hallmark of bipolar disorder, is an episodic disturbance of mood, sleep, behavior, and perception. Improved understanding of the neurobiology of mania is expected to allow for novel avenues to address current challenges in its diagnosis and treatment. Previous research focusing on the impairment of functional neuronal circuits and brain networks has resulted in heterogenous findings, possibly due to a focus on bipolar disorder and its several phases, rather than on the unique context of mania. Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. Our interpretation of the best available evidence is consistent with a convergent model of lateralized circuit dysfunction in mania, with hypoactivity of the ventral prefrontal cortex in the right hemisphere, and hyperactivity of the amygdala, basal ganglia, and anterior cingulate cortex in the left hemisphere of the brain. Clarification of dysfunctional neuroanatomic substrates of mania may contribute not only to improve understanding of the neurobiology of bipolar disorder overall, but also highlights potential avenues for new circuit-based therapeutic approaches in the treatment of mania.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
34
|
An Integrated Neuroimaging Approach to Inform Transcranial Electrical Stimulation Targeting in Visual Hallucinations. Harv Rev Psychiatry 2022; 30:181-190. [PMID: 35576449 PMCID: PMC9179829 DOI: 10.1097/hrp.0000000000000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For decades, noninvasive brain stimulation (NIBS), such as transcranial electrical stimulation (tES), has been used to directly modulate human brain mechanisms of visual perception, setting the groundwork for the development of novel circuit-based therapies. While the field of NIBS has grown considerably over recent years, few studies have used these technologies to treat visual hallucinations (VH). Here, we review the NIBS-VH literature and find mixed results due to shortcomings that may potentially be addressed with a unique multimodal neuroimaging-NIBS approach. We highlight methodological advances in NIBS research that have provided researchers with more precise anatomical measurements that may improve our ability to influence brain activity. Specifically, we propose a methodology that combines neuroimaging advances, clinical neuroscience developments such as the identification of brain regions causally involved in VH, and personalized NIBS approaches that improve anatomical targeting. This methodology may enable us to reconcile existing discrepancies in tES-VH research and pave the way for more effective, VH-specific protocols for treating a number of neuropsychiatric disorders with VH as a core symptom.
Collapse
|
35
|
Abstract
Despite the prevalence of anhedonia across multiple psychiatric disorders, its relevance to treatment selection and prognostication can be unclear (Davey et al., Psychol Med 42(10):2071-81, 2012). Given the challenges in pharmacological and psychosocial treatment, there has been increasing attention devoted to neuroanatomically-targeted treatments. This chapter will present a brief introduction to circuit-targeted therapeutics in psychiatry (Sect. 1), an overview of brain mapping as it relates to anhedonia (Sect. 2), a review of existing studies on brain stimulation for anhedonia (Sect. 3), and a description of emerging approaches to circuit-based neuromodulation for anhedonia (Sect. 4).
Collapse
Affiliation(s)
- Shan H Siddiqi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA.
| | - Nichola Haddad
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
| | - Michael D Fox
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Abstract
Bipolar disorder (BD) is a complex group of neuropsychiatric disorders, typically comprising both manic and depressive episodes. The underlying neuropathology of BD is not established, but a consistent feature is progressive thinning of cortical grey matter (GM) and white matter (WM) in specific pathways, due to loss of subpopulations of neurons and astrocytes, with accompanying disturbance of connectivity. Dysregulation of astrocyte homeostatic functions are implicated in BD, notably regulation of glutamate, calcium signalling, circadian rhythms and metabolism. Furthermore, the beneficial therapeutic effects of the frontline treatments for BD are due at least in part to their positive actions on astrocytes, notably lithium, valproic acid (VPA) and carbamazepine (CBZ), as well as antidepressants and antipsychotics that are used in the management of this disorder. Treatments for BD are ineffective in a large proportion of cases, and astrocytes represent new therapeutic targets that can also serve as biomarkers of illness progression and treatment responsiveness in BD.
Collapse
|
37
|
Russo M, Consoli S, De Rosa M, Calisi D, Dono F, Carrarini C, Onofrj M, De Angelis M, Sensi S. A case of Sars-Cov-2-related mania with prominent psychosis>. Psychiatry Res 2021; 306:114266. [PMID: 34781110 PMCID: PMC8562037 DOI: 10.1016/j.psychres.2021.114266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Affiliation(s)
- M. Russo
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - S. Consoli
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M.A. De Rosa
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - D. Calisi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - F. Dono
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - C. Carrarini
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M. Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - M.V. De Angelis
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - S.L. Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy,Center of Advanced Studies and Technology, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy,Institute for Mind Impairments and Neurological Disorders (IMIND), University of California – Irvine, Irvine, USA,Corresponding author at: Department of Neuroscience, Imaging, and Clinical Sciences, “G. d'Annunzio”, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
38
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
39
|
Klingbeil J, Wawrzyniak M, Stockert A, Brandt ML, Schneider HR, Metelmann M, Saur D. Pathological laughter and crying: insights from lesion network-symptom-mapping. Brain 2021; 144:3264-3276. [PMID: 34142117 DOI: 10.1093/brain/awab224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/07/2021] [Accepted: 04/08/2021] [Indexed: 11/15/2022] Open
Abstract
The study of pathological laughter and crying (PLC) allows insights into the neural basis of laughter and crying, two hallmarks of human nature. PLC is defined by brief, intense and frequent episodes of uncontrollable laughter or crying provoked by trivial stimuli. It occurs secondary to CNS disorders such as stroke, tumours or neurodegenerative diseases. Based on case studies reporting various lesions locations, PLC has been conceptualized as dysfunction in a cortico-limbic-subcortico-thalamo-ponto-cerebellar network. To test whether the heterogeneous lesion locations are indeed linked in a common network, we applied 'lesion network-symptom-mapping' (LNSM) to 70 focal lesions identified in a systematic literature search for case reports of PLC. In LNSM normative connectome data (resting state functional MRI, n = 100) is used to identify the brain regions which are likely affected by diaschisis based on the lesion locations. With LNSM we were able to identify a common network specific for PLC when compared with a control cohort (n = 270). This bilateral network is characterized by positive connectivity to the cingulate and temporomesial cortices, striatum, hypothalamus, mesencephalon and pons and negative connectivity to the primary motor and sensory cortices. In the most influential pathophysiological model of PLC, a center for the control and coordination of facial expressions, respiration and vocalization in the periaqueductal grey is assumed which is controlled via two pathways: an emotional system that exerts excitatory control of the periaqueductal grey descending from the temporal and frontal lobes, basal ganglia and hypothalamus and a volitional system descending from the lateral premotor cortices which can suppress laughter or crying. To test whether the positive and negative PLC subnetworks identified in our analyses can indeed be related to an emotional system and a volitional system, we identified lesions causing emotional (n = 15) or volitional facial paresis (n = 46) in a second literature search. Patients with emotional facial paresis show preserved volitional movements but cannot trigger emotional movements in the affected hemiface, while the reverse is true for volitional facial paresis. Importantly, these lesions map differentially onto the PLC subnetworks: the 'positive PLC subnetwork' is part of the emotional system and the 'negative PLC subnetwork' overlaps with the volitional system for the control of facial movements. Based on this network analysis we propose a two-hit model of PLC: a combination of direct lesion and indirect diaschisis effects cause PLC through the loss of inhibitory cortical control of a dysfunctional emotional system.
Collapse
Affiliation(s)
- Julian Klingbeil
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| | - Max Wawrzyniak
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| | - Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| | - Max-Lennart Brandt
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| | - Hans-Ralf Schneider
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| | - Moritz Metelmann
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| | - Dorothee Saur
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig Medical Centre, 04103 Leipzig, Germany
| |
Collapse
|
40
|
Taylor JJ, Kurt HG, Anand A. Resting State Functional Connectivity Biomarkers of Treatment Response in Mood Disorders: A Review. Front Psychiatry 2021; 12:565136. [PMID: 33841196 PMCID: PMC8032870 DOI: 10.3389/fpsyt.2021.565136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
There are currently no validated treatment biomarkers in psychiatry. Resting State Functional Connectivity (RSFC) is a popular method for investigating the neural correlates of mood disorders, but the breadth of the field makes it difficult to assess progress toward treatment response biomarkers. In this review, we followed general PRISMA guidelines to evaluate the evidence base for mood disorder treatment biomarkers across diagnoses, brain network models, and treatment modalities. We hypothesized that no treatment biomarker would be validated across these domains or with independent datasets. Results are organized, interpreted, and discussed in the context of four popular analytic techniques: (1) reference region (seed-based) analysis, (2) independent component analysis, (3) graph theory analysis, and (4) other methods. Cortico-limbic connectivity is implicated across studies, but there is no single biomarker that spans analyses or that has been replicated in multiple independent datasets. We discuss RSFC limitations and future directions in biomarker development.
Collapse
Affiliation(s)
- Joseph J Taylor
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hatice Guncu Kurt
- Center for Behavioral Health, Cleveland Clinic, Cleveland, OH, United States
| | - Amit Anand
- Center for Behavioral Health, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|