1
|
Kitamura W, Fujii K, Tsuge M, Mitsuhashi T, Kobayashi H, Kamoi C, Yamamoto A, Kondo T, Seike K, Fujiwara H, Asada N, Ennishi D, Matsuoka KI, Fujii N, Maeda Y. A randomized controlled trial of conventional GVHD prophylaxis with or without teprenone for the prevention of severe acute GVHD. Ann Hematol 2025; 104:1917-1929. [PMID: 39994018 PMCID: PMC12031882 DOI: 10.1007/s00277-025-06269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Therapies that effectively suppress graft-versus-host disease (GVHD) without compromising graft-versus-leukemia/lymphoma (GVL) effects is important in allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematopoietic malignancies. Geranylgeranylacetone (GGA) is a main component of teprenone, a gastric mucosal protectant commonly used in clinical practice. In preclinical models, GGA suppresses proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), which are associated with GVHD as well as induces thioredoxin-1 (Trx-1), which suppresses GVHD while maintaining GVL effects. Here, we investigated whether the addition of teprenone to standard GVHD prophylaxis could reduce the cumulative incidence of severe acute GVHD (aGVHD) without attenuating GVL effects. This open-label, randomized clinical trial enrolled 40 patients (21 control and 19 teprenone group) who received allo-HSCT between May 2022 and February 2023 in our institution. Patients in the teprenone group received 50 mg of teprenone orally thrice daily for 21 days from the initiation of the conditioning regimen. The cumulative incidence of severe aGVHD by day 100 after allo-HSCT was not significantly different in the two groups (27.9 vs. 16.1%, p = 0.25). The exploratory studies revealed no obvious changes in Trx-1 levels, but the alternations from baseline in IL-1β and TNF-α levels at day 28 after allo-HSCT tended to be lower in the teprenone group. In conclusion, we could not demonstrate that teprenone significantly prevented the development of severe aGVHD. Discrepancy with preclinical model suggests that appropriate dose of teprenone may be necessary to induce the expression of antioxidant enzymes that suppress severe aGVHD. Clinical Trial Registration number:jRCTs 061210072.
Collapse
Affiliation(s)
- Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Division of Transfusion and Cell Therapy, Okayama University Hospital, Okayama, Japan
| | - Keiko Fujii
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
- Division of Clinical Laboratory, Okayama University Hospital, Okayama, Japan.
| | - Mitsuru Tsuge
- Department of Pediatric Acute Diseases, Okayama University Academic Field of Medicine Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiroki Kobayashi
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Chihiro Kamoi
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Division of Transfusion and Cell Therapy, Okayama University Hospital, Okayama, Japan
| | - Akira Yamamoto
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Takumi Kondo
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Keisuke Seike
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Daisuke Ennishi
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Nobuharu Fujii
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
- Division of Transfusion and Cell Therapy, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
2
|
Yuan X, Rech JC, Ramaraju A, Patil AD, Rajanayake K, Yuan H, Kazemi Sabzvar M, Mandal M, Cho EB, Wen B, Jiang J, Leo MD, Singh UP, Sun D, Yang CY. Studies of Structure-Activity Relationship of 2-(Pyrrolidin-1ylmethyl)-1 H-pyrrole-Based ST2 Inhibitors and Their Inhibition of Mast Cells Activation. ACS Med Chem Lett 2024; 15:2053-2059. [PMID: 39563831 PMCID: PMC11571090 DOI: 10.1021/acsmedchemlett.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
ST2 belongs to the interleukin 1 receptor family and is expressed in immune cells including certain CD4+ T cells and mast cells. Binding of ST2 with interleukin 33 (IL-33) induces downstream signaling that activates NF-κB pathway. Although the ST2/IL-33 axis exerts immune tolerance via expansion of regulator T cells, the same axis also activates a subset of immune cells to produce proinflammatory cytokines in host defense or in tissue repair. Here, we reported the development of ST2 inhibitors with improved inhibitory activities against ST2 and metabolic stability based on a previous lead, iST2-14e. Using the human mast cell line (LAD2), we showed that ST2 inhibitors mitigated ST2 upregulation and reduced IL-1β released through degranulation, demonstrating that small-molecule ST2 inhibitors effectively attenuated the ST2/IL-33 signaling in human mast cells. Further optimization of the compounds may lay the foundation for developing ST2 inhibitors for the treatment of mast cells mediated diseases.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jason C. Rech
- Department
of Internal Medicine, Hematology and Oncology, Michigan Center for Therapeutic Innovation, Ann Arbor, Michigan 48109, United States
| | - Andhavaram Ramaraju
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Amol D. Patil
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Krishani Rajanayake
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hebao Yuan
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mona Kazemi Sabzvar
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Mousumi Mandal
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Eun Bee Cho
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Bo Wen
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianxiong Jiang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - M. Dennis Leo
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Udai P. Singh
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duxin Sun
- College
of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chao-Yie Yang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
3
|
Doherty CM, Patterson PR, Emeanuwa JA, Belmares Ortega J, Fox BA, Bzik DJ, Denkers EY. T lymphocyte-dependent IL-10 down-regulates a cytokine storm driven by Toxoplasma gondii GRA24. mBio 2024; 15:e0145524. [PMID: 39440975 PMCID: PMC11559025 DOI: 10.1128/mbio.01455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
As a model organism in the study of immunity to infection, Toxoplasma gondii has been instrumental in establishing key principles of host anti-microbial defense and its regulation. Here, we employed an attenuated uracil auxotroph strain of Type I Toxoplasma designated OMP to further untangle the early immune response to this parasitic pathogen. Experiments using αβ T cell-deficient Tcrb-/- mice unexpectedly revealed that an intact αβ T lymphocyte compartment was essential to survive infection with OMP. Subsequent antibody depletion and knockout mouse experiments demonstrated contributions from CD4+ T cells and most predominantly CD8+ T cells in resistance. Using transgenic knockout mice, we found only a partial requirement for IFN-γ and a lack of requirement for Toll-like receptor (TLR) adaptor MyD88 in resistance. In contrast to other studies on Toxoplasma, the ability to survive OMP infection did not require IL-12p40. Surprisingly, T cell-dependent IL-10 was found to be critical for survival, and deficiency of this cytokine triggered an abnormally high systemic inflammatory response. We also found that parasite molecule GRA24, a dense granule protein that triggers TLR-independent IL-12 production, acts as a virulence factor contributing to death of OMP-infected Tcrb-/- and IL-10-/- mice. Furthermore, resistance against OMP was restored in Tcrb-/- mice via monoclonal depletion of IL-12p40, suggesting that GRA24-induced IL-12 underlies the fatal immunopathology observed. Collectively, our studies provide insight into a novel and rapidly arising T lymphocyte-dependent anti-inflammatory response to T. gondii which operates independently of MyD88 and IL-12 and that depends on the function of parasite-dense granule protein GRA24.IMPORTANCEAs a model infectious microbe and an important human pathogen, the apicomplexan Toxoplasma gondii has provided many important insights into innate and adaptive immunity to infection. We show here that a low virulence uracil auxotrophic Toxoplasma strain emerges as a virulent parasite in the absence of an intact T cell compartment. Both CD4+ and CD8+ T lymphocytes are required for optimal protection, in line with previous findings in other models of Toxoplasma infection. Nevertheless, several novel aspects of the response were identified in our study. Protection occurs independently of IL-12 and MyD88 and only partially requires IFN-γ. This is noteworthy particularly because the cytokines IL-12 and IFN-γ have previously been regarded as essential for protective immunity to T. gondii. Instead, we identified the anti-inflammatory effects of T cell-dependent IL-10 as the critical factor enabling host survival. The parasite dense granule protein GRA24, a host-directed mitogen-activated protein kinase activator, was identified as a major virulence factor in T cell-deficient hosts. Collectively, our results provide new and unexpected insights into host resistance to Toxoplasma.
Collapse
Affiliation(s)
- Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Paige R. Patterson
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Julie A. Emeanuwa
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jessica Belmares Ortega
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Vijayan V, Yan H, Lohmeyer JK, Prentiss KA, Patil RV, Barbarito G, Lopez I, Elezaby A, Peterson K, Baker J, Ostberg NP, Bertaina A, Negrin RS, Mochly-Rosen D, Weinberg K, Haileselassie B. Extracellular release of damaged mitochondria induced by prehematopoietic stem cell transplant conditioning exacerbates GVHD. Blood Adv 2024; 8:3691-3704. [PMID: 38701354 PMCID: PMC11284707 DOI: 10.1182/bloodadvances.2023012328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Despite therapeutic advancements, graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HSCT). In current models of GVHD, tissue injury induced by cytotoxic conditioning regimens, along with translocation of microbes expressing pathogen-associated molecular patterns, result in activation of host antigen-presenting cells (APCs) to stimulate alloreactive donor T lymphocytes. Recent studies have demonstrated that in many pathologic states, tissue injury results in the release of mitochondria from the cytoplasm to the extracellular space. We hypothesized that extracellular mitochondria, which are related to archaebacteria, could also trigger GVHD by stimulation of host APCs. We found that clinically relevant doses of radiation or busulfan induced extracellular release of mitochondria by various cell types, including cultured intestinal epithelial cells. Conditioning-mediated mitochondrial release was associated with mitochondrial damage and impaired quality control but did not affect the viability of the cells. Extracellular mitochondria directly stimulated host APCs to express higher levels of major histocompatibility complex II (MHC-II), costimulatory CD86, and proinflammatory cytokines, resulting in increased donor T-cell activation, and proliferation in mixed lymphocyte reactions. Analyses of plasma from both experimental mice and a cohort of children undergoing HSCT demonstrated that conditioning induced extracellular mitochondrial release in vivo. In mice undergoing MHC-mismatched HSCT, administration of purified syngeneic extracellular mitochondria increased host APC activation and exacerbated GVHD. Our data suggest that pre-HSCT conditioning results in extracellular release of damaged mitochondria, which increase alloreactivity and exacerbate GVHD. Therefore, decreasing the extracellular release of damaged mitochondria after conditioning could serve as a novel strategy for GVHD prevention.
Collapse
Affiliation(s)
- Vijith Vijayan
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Hao Yan
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Kaylin A. Prentiss
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Rachna V. Patil
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Giulia Barbarito
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Ivan Lopez
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Aly Elezaby
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kolten Peterson
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nicolai P. Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA
| | - Kenneth Weinberg
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Bereketeab Haileselassie
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
5
|
Laurie SJ, Foster JP, Bruce DW, Bommiasamy H, Kolupaev OV, Yazdimamaghani M, Pattenden SG, Chao NJ, Sarantopoulos S, Parker JS, Davis IJ, Serody JS. Type II innate lymphoid cell plasticity contributes to impaired reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Commun 2024; 15:6000. [PMID: 39019846 PMCID: PMC11255294 DOI: 10.1038/s41467-024-50263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Type II innate lymphoid cells (ILC2s) maintain homeostasis and barrier integrity in mucosal tissues. In both mice and humans, ILC2s poorly reconstitute after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Determining the mechanisms involved in their impaired reconstitution could improve transplant outcomes. By integrating single-cell chromatin and transcriptomic analyses of transplanted ILC2s, we identify a previously unreported population of converted ILC1-like cells in the mouse small intestine post-transplant. Exposure of ILC2s to proinflammatory cytokines resulted in a mixed ILC1-ILC2 phenotype but was able to convert only a small population of ILC2s to ILC1s, which were found post-transplant. Whereas ILC2s protected against acute graft-versus-host disease (aGVHD) mediated mortality, infusion of proinflammatory cytokine-exposed ILC2s accelerated aGvHD. Interestingly, murine ILC2 reconstitution post-HSCT is decreased in the presence of alloreactive T cells. Finally, peripheral blood cells from human patients with aGvHD have an altered ILC2-associated chromatin landscape compared to transplanted controls. These data demonstrate that following transplantation ILC2s convert to a pro-pathogenic population with an ILC1-like chromatin state and provide insights into the contribution of ILC plasticity to the impaired reconstitution of ILC2 cells, which is one of several potential mechanisms for the poor reconstitution of these important cells after allo-HSCT.
Collapse
Affiliation(s)
- Sonia J Laurie
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joseph P Foster
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Danny W Bruce
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Hemamalini Bommiasamy
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Oleg V Kolupaev
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Duke Eye Center, Duke University, Durham, NC, USA
| | - Mostafa Yazdimamaghani
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Samantha G Pattenden
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Duke Cancer Institute, Durham, NC, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Ian J Davis
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Division of Hematology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Blinova VG, Zhdanov DD. Many Faces of Regulatory T Cells: Heterogeneity or Plasticity? Cells 2024; 13:959. [PMID: 38891091 PMCID: PMC11171907 DOI: 10.3390/cells13110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining the immune balance in normal and pathological conditions. In autoimmune diseases and transplantation, they restrain the loss of self-tolerance and promote engraftment, whereas in cancer, an increase in Treg numbers is mostly associated with tumor growth and poor prognosis. Numerous markers and their combinations have been used to identify Treg subsets, demonstrating the phenotypic diversity of Tregs. The complexity of Treg identification can be hampered by the unstable expression of some markers, the decrease in the expression of a specific marker over time or the emergence of a new marker. It remains unclear whether such phenotypic shifts are due to new conditions or whether the observed changes are due to initially different populations. In the first case, cellular plasticity is observed, whereas in the second, cellular heterogeneity is observed. The difference between these terms in relation to Tregs is rather blurred. Considering the promising perspectives of Tregs in regenerative cell-based therapy, the existing confusing data on Treg phenotypes require further investigation and analysis. In our review, we introduce criteria that allow us to distinguish between the heterogeneity and plasticity of Tregs normally and pathologically, taking a closer look at their diversity and drawing the line between two terms.
Collapse
Affiliation(s)
- Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia;
- Department of Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| |
Collapse
|
7
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Brunner TM, Serve S, Marx AF, Fadejeva J, Saikali P, Dzamukova M, Durán-Hernández N, Kommer C, Heinrich F, Durek P, Heinz GA, Höfer T, Mashreghi MF, Kühn R, Pinschewer DD, Löhning M. A type 1 immunity-restricted promoter of the IL-33 receptor gene directs antiviral T-cell responses. Nat Immunol 2024; 25:256-267. [PMID: 38172258 PMCID: PMC10834369 DOI: 10.1038/s41590-023-01697-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
The pleiotropic alarmin interleukin-33 (IL-33) drives type 1, type 2 and regulatory T-cell responses via its receptor ST2. Subset-specific differences in ST2 expression intensity and dynamics suggest that transcriptional regulation is key in orchestrating the context-dependent activity of IL-33-ST2 signaling in T-cell immunity. Here, we identify a previously unrecognized alternative promoter in mice and humans that is located far upstream of the curated ST2-coding gene and drives ST2 expression in type 1 immunity. Mice lacking this promoter exhibit a selective loss of ST2 expression in type 1- but not type 2-biased T cells, resulting in impaired expansion of cytotoxic T cells (CTLs) and T-helper 1 cells upon viral infection. T-cell-intrinsic IL-33 signaling via type 1 promoter-driven ST2 is critical to generate a clonally diverse population of antiviral short-lived effector CTLs. Thus, lineage-specific alternative promoter usage directs alarmin responsiveness in T-cell subsets and offers opportunities for immune cell-specific targeting of the IL-33-ST2 axis in infections and inflammatory diseases.
Collapse
Affiliation(s)
- Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| | - Sebastian Serve
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Philippe Saikali
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Maria Dzamukova
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Nayar Durán-Hernández
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Christoph Kommer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Frederik Heinrich
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Gitta A Heinz
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel D Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany.
| |
Collapse
|
9
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
10
|
Cassano A, Chong AS, Alegre ML. Tregs in transplantation tolerance: role and therapeutic potential. FRONTIERS IN TRANSPLANTATION 2023; 2:1217065. [PMID: 38993904 PMCID: PMC11235334 DOI: 10.3389/frtra.2023.1217065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 07/13/2024]
Abstract
CD4+ Foxp3+ regulatory T cells (Tregs) are indispensable for preventing autoimmunity, and they play a role in cancer and transplantation settings by restraining immune responses. In this review, we describe evidence for the importance of Tregs in the induction versus maintenance of transplantation tolerance, discussing insights into mechanisms of Treg control of the alloimmune response. Further, we address the therapeutic potential of Tregs as a clinical intervention after transplantation, highlighting engineered CAR-Tregs as well as expansion of donor and host Tregs.
Collapse
Affiliation(s)
- Alexandra Cassano
- Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anita S. Chong
- Department of Surgery, University of Chicago, Chicago, IL, United States
| | - Maria-Luisa Alegre
- Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Hess NJ, Turicek DP, Riendeau J, McIlwain SJ, Contreras Guzman E, Nadiminti K, Hudson A, Callander NS, Skala MC, Gumperz JE, Hematti P, Capitini CM. Inflammatory CD4/CD8 double-positive human T cells arise from reactive CD8 T cells and are sufficient to mediate GVHD pathology. SCIENCE ADVANCES 2023; 9:eadf0567. [PMID: 36961891 PMCID: PMC10038349 DOI: 10.1126/sciadv.adf0567] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
An important paradigm in allogeneic hematopoietic cell transplantations (allo-HCTs) is the prevention of graft-versus-host disease (GVHD) while preserving the graft-versus-leukemia (GVL) activity of donor T cells. From an observational clinical study of adult allo-HCT recipients, we identified a CD4+/CD8+ double-positive T cell (DPT) population, not present in starting grafts, whose presence was predictive of ≥ grade 2 GVHD. Using an established xenogeneic transplant model, we reveal that the DPT population develops from antigen-stimulated CD8 T cells, which become transcriptionally, metabolically, and phenotypically distinct from single-positive CD4 and CD8 T cells. Isolated DPTs were sufficient to mediate xeno-GVHD pathology when retransplanted into naïve mice but provided no survival benefit when mice were challenged with a human B-ALL cell line. Overall, this study reveals human DPTs as a T cell population directly involved with GVHD pathology.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - David P. Turicek
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jeremiah Riendeau
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean J. McIlwain
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Emmanuel Contreras Guzman
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kalyan Nadiminti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Amy Hudson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Natalie S. Callander
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenny E. Gumperz
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peiman Hematti
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
12
|
Abstract
When discovered in the early 2000s, interleukin-33 (IL-33) was characterized as a potent driver of type 2 immunity and implicated in parasite clearance, as well as asthma, allergy, and lung fibrosis. Yet research in other models has since revealed that IL-33 is a highly pleiotropic molecule with diverse functions. These activities are supported by elusive release mechanisms and diverse expression of the IL-33 receptor, STimulation 2 (ST2), on both immune and stromal cells. Interestingly, IL-33 also supports type 1 immune responses during viral and tumor immunity and after allogeneic hematopoietic stem cell transplantation. Yet the IL-33-ST2 axis is also critical to the establishment of systemic homeostasis and tissue repair and regeneration. Despite these recent findings, the mechanisms by which IL-33 governs the balance between immunity and homeostasis or can support both effective repair and pathogenic fibrosis are poorly understood. As such, ongoing research is trying to understand the potential reparative and regulatory versus pro-inflammatory and pro-fibrotic roles for IL-33 in transplantation. This review provides an overview of the emerging regenerative role of IL-33 in organ homeostasis and tissue repair as it relates to transplantation immunology. It also outlines the known impacts of IL-33 in commonly transplanted solid organs and covers the envisioned roles for IL-33 in ischemia-reperfusion injury, rejection, and tolerance. Finally, we give a comprehensive summary of its effects on different cell populations involved in these processes, including ST2 + regulatory T cells, innate lymphoid cell type 2, as well as significant myeloid cell populations.
Collapse
|
13
|
Guo H, Bossila EA, Ma X, Zhao C, Zhao Y. Dual Immune Regulatory Roles of Interleukin-33 in Pathological Conditions. Cells 2022; 11:cells11203237. [PMID: 36291105 PMCID: PMC9600220 DOI: 10.3390/cells11203237] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family and a multifunctional cytokine, plays critical roles in maintaining host homeostasis and in pathological conditions, such as allergy, infectious diseases, and cancer, by acting on multiple types of immune cells and promoting type 1 and 2 immune responses. IL-33 is rapidly released by immune and non-immune cells upon stimulation by stress, acting as an “alarmin” by binding to its receptor, suppression of tumorigenicity 2 (ST2), to trigger downstream signaling pathways and activate inflammatory and immune responses. It has been recognized that IL-33 displays dual-functioning immune regulatory effects in many diseases and has both pro- and anti-tumorigenic effects, likely depending on its primary target cells, IL-33/sST2 expression levels, cellular context, and the cytokine microenvironment. Herein, we summarize our current understanding of the biological functions of IL-33 and its roles in the pathogenesis of various conditions, including inflammatory and autoimmune diseases, infections, cancers, and cases of organ transplantation. We emphasize the nature of context-dependent dual immune regulatory functions of IL-33 in many cells and diseases and review systemic studies to understand the distinct roles of IL-33 in different cells, which is essential to the development of more effective diagnoses and therapeutic approaches for IL-33-related diseases.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo 11311, Egypt
| | - Xinran Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Chenxu Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101499, China
- Beijing Institute for Stem Cell and Regeneration, Beijing 100101, China
- Correspondence: ; Tel.: +86-10-64807302; Fax: +86-10-64807313
| |
Collapse
|
14
|
Ferrara J, Prado-Acosta M. Graft-versus-host disease: establishing IL-33 as an important costimulatory molecule. J Clin Invest 2022; 132:160692. [PMID: 35703182 PMCID: PMC9197507 DOI: 10.1172/jci160692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Approximately half of patients with hematologic malignancy who are treated with allogeneic hematopoietic stem cell transplantation (alloHCT) experience graft-versus-host disease (GVHD), which has high mortality rates despite immunosuppressive therapy. IL-12 is known to drive donor T cells toward an inflammatory Th1 lineage in GVHD, but other mechanisms also promote pathological Th1 alloimmune responses. In this issue of the JCI, Dwyer et al. report on their use of transgenic mice and alloHCT models of GVHD to demonstrate that IL-33 acts directly on donor T cells to increase Tbet expression independently of IL-12. Notably, IL-33 amplified T cell receptor–signaling pathways and inhibited production of regulatory molecules. These findings firmly establish IL-33 as an important costimulatory molecule for Th1 cells during GVHD and provide a target for reducing GVHD, especially in the gastrointestinal (GI) tract, where damage drives mortality.
Collapse
|