1
|
McLeod K, Datta V, Fuller S. Adipokines as Cardioprotective Factors: BAT Steps Up to the Plate. Biomedicines 2025; 13:710. [PMID: 40149686 PMCID: PMC11940801 DOI: 10.3390/biomedicines13030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Cardiovascular disease is the leading cause of death throughout most of the industrialized world. Metabolic syndrome (MetS) and its associated pathologies are underlying factors in the etiology of cardiovascular disease, as well as a plethora of other maladies which cause excess morbidity and mortality. Adipose tissue (AT) has come to be regarded as a bona fide endocrine organ which secretes specific molecular entities constituting part of a complex web of inter-organ crosstalk that functions as a key determinant of whole-body metabolic phenotype. Brown adipose tissue (BAT) has classically been regarded as a thermogenic tissue exerting its metabolic effects primarily through its capacity to oxidize substrates decoupled from ATP resynthesis, thereby resulting in increased energy expenditure (EE) and heat production. However, in recent years, BAT has begun to receive attention as a secretory organ in its own right. The molecules secreted specifically by BAT have been termed "batokines", and currently available evidence supports the notion that batokines exert favorable metabolic effects on multiple organ systems. While maintenance of healthy body composition by conferring resistance to excessive adiposity is a rather obvious mechanism by which BAT operates via increased EE, effects on critical organs such as the heart remain unclear. This narrative review focuses on four types of batokines (FGF21, neuregulin 4, 12,13-diHOME, and BAT-derived microRNAs) for which evidence of modulation of cardiovascular function exists in the context of pathological states such as hypertension, atherosclerosis, and ischemia/reperfusion injury. Given the overwhelming burden of cardiometabolic disease, further study of the functions of BAT and its secretome is warranted and will intensify in the future.
Collapse
Affiliation(s)
- Keely McLeod
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Victoria Datta
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
| | - Scott Fuller
- School of Kinesiology, University of Louisiana at Lafayette, Lafayette, LA 70506, USA; (K.M.); (V.D.)
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| |
Collapse
|
2
|
Lecce E, Bellini A, Greco G, Martire F, Scotto di Palumbo A, Sacchetti M, Bazzucchi I. Physiological mechanisms of neuromuscular impairment in diabetes-related complications: Can physical exercise help prevent it? J Physiol 2025. [PMID: 39898972 DOI: 10.1113/jp287589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Diabetes mellitus is a chronic disorder that progressively induces complications, compromising daily independence. Among these, diabetic neuropathy is particularly prevalent and contributes to substantial neuromuscular impairments in both types 1 and 2 diabetes. This condition leads to structural damage affecting both the central and peripheral nervous systems, resulting in a significant decline in sensorimotor functions. Alongside neuropathy, diabetic myopathy also contributes to muscle impairment and reduced motor performance, intensifying the neuromuscular decline. Diabetic neuropathy typically implicates neurogenic muscle atrophy, motoneuron loss and clustering of muscle fibres as a result of aberrant denervation-reinervation processes. These complications are associated with compromised neuromuscular junctions, where alterations occur in pre-synaptic vesicles, mitochondrial content and post-synaptic signalling. Neural damage is intensified by chronic hyperglycaemia and oxidative stress, exacerbating vascular dysfunction and reducing oxygen delivery. These complications imply a severe decline in neuromuscular performance, evidenced by reductions in maximal force and power output, rate of force development and muscle endurance. Furthermore, diabetes-related complications are compounded by age-related degenerative changes in long-term patients. Aerobic and resistance training offer promising approaches for managing blood glucose levels and neuromuscular function. Aerobic exercise promotes mitochondrial biogenesis and angiogenesis, supporting metabolic and cardiovascular health. Resistance training primarily enhances neural plasticity, muscle strength and hypertrophy, which are crucial factors for mitigating sarcopenia and preserving functional independence. This topical review examines current evidence on the physiological mechanisms underlying diabetic neuropathy and the potential impact of physical activity in counteracting this decline.
Collapse
Affiliation(s)
- Edoardo Lecce
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessio Bellini
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Giuseppe Greco
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Fiorella Martire
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Alessandro Scotto di Palumbo
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology, Department of Movement, Human, and Health Sciences, University of 'Foro Italico', Rome, Italy
| |
Collapse
|
3
|
He J, Zhang Y, Guo Y, Guo J, Chen X, Xu S, Xu X, Wu C, Liu C, Chen J, Ding Y, Fisher M, Jiang M, Liu G, Ji X, Wu D. Blood-derived factors to brain communication in brain diseases. Sci Bull (Beijing) 2024; 69:3618-3632. [PMID: 39353815 DOI: 10.1016/j.scib.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 10/04/2024]
Abstract
Brain diseases, mainly including acute brain injuries, neurodegenerative diseases, and mental disorders, have posed a significant threat to human health worldwide. Due to the limited regenerative capability and the existence of the blood-brain barrier, the brain was previously thought to be separated from the rest of the body. Currently, various cross-talks between the central nervous system and peripheral organs have been widely described, including the brain-gut axis, the brain-liver axis, the brain-skeletal muscle axis, and the brain-bone axis. Moreover, several lines of evidence indicate that leveraging systemic biology intervention approaches, including but not limited to lifestyle interventions, exercise, diet, blood administration, and peripheral immune responses, have demonstrated a significant influence on the progress and prognosis of brain diseases. The advancement of innovative proteomic and transcriptomic technologies has enriched our understanding of the nuanced interplay between peripheral organs and brain diseases. An array of novel or previously underappreciated blood-derived factors have been identified to play pivotal roles in mediating these communications. In this review, we provide a comprehensive summary of blood-to-brain communication following brain diseases. Special attention is given to the instrumental role of blood-derived signals, positing them as significant contributors to the complex process of brain diseases. The insights presented here aim to bridge the current knowledge gaps and inspire novel therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jiachen He
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Yanming Zhang
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Jiaqi Guo
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Shuaili Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Xiaohan Xu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Chuanjie Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Chen
- Department of Neurosurgery, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit MI 46801, USA
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02115, USA
| | - Miaowen Jiang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wuhu 241002, China; Brain Hospital, Shengli Oilfield Central Hospital, Dongying 257034, China.
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
4
|
Wu C, Chen X, Yang L, Sun H, Bao S, Li H, Zheng L, Zeng H, Li R, Peng Y. Exercise Mediates Noncoding RNAs in Cardiovascular Diseases: Pathophysiological Roles and Clinical Application. Expert Rev Mol Med 2024; 27:e2. [PMID: 39567354 PMCID: PMC11707833 DOI: 10.1017/erm.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/09/2023] [Accepted: 05/08/2024] [Indexed: 11/22/2024]
Abstract
Exercise-based cardiac rehabilitation is effective in improving cardiovascular disease risk factor management, cardiopulmonary function, and quality of life. However, the precise mechanisms underlying exercise-induced cardioprotection remain elusive. Recent studies have shed light on the beneficial functions of noncoding RNAs in either exercise or illness models, but only a limited number of noncoding RNAs have been studied in both contexts. Hence, the present study aimed to elucidate the pathophysiological implications and molecular mechanisms underlying the association among exercise, noncoding RNAs, and cardiovascular diseases. Additionally, the present study analysed the most effective and personalized exercise prescription, serving as a valuable reference for guiding the clinical implementation of cardiac rehabilitation in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Changyong Wu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaocui Chen
- Department of Gastroenterology, Affiliated Hospital of Panzhihua University, Panzhihua, Sichuan, China
| | - Lu Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Huang Sun
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Suli Bao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haojie Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lihui Zheng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Huiling Zeng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ruijie Li
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yunzhu Peng
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
6
|
Yan L, Wang WJ, Cheng T, Yang DR, Wang YJ, Wang YZ, Yang FZ, So KF, Zhang L. Hepatic kynurenic acid mediates phosphorylation of Nogo-A in the medial prefrontal cortex to regulate chronic stress-induced anxiety-like behaviors in mice. Acta Pharmacol Sin 2024; 45:2032-2044. [PMID: 38811774 PMCID: PMC11420350 DOI: 10.1038/s41401-024-01302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.
Collapse
Affiliation(s)
- Lan Yan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Wen-Jing Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Tong Cheng
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Di-Ran Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ya-Jie Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yang-Ze Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Feng-Zhen Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
7
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Perry AS, Farber-Eger E, Gonzales T, Tanaka T, Robbins JM, Murthy VL, Stolze LK, Zhao S, Huang S, Colangelo LA, Deng S, Hou L, Lloyd-Jones DM, Walker KA, Ferrucci L, Watts EL, Barber JL, Rao P, Mi MY, Gabriel KP, Hornikel B, Sidney S, Houstis N, Lewis GD, Liu GY, Thyagarajan B, Khan SS, Choi B, Washko G, Kalhan R, Wareham N, Bouchard C, Sarzynski MA, Gerszten RE, Brage S, Wells QS, Nayor M, Shah RV. Proteomic analysis of cardiorespiratory fitness for prediction of mortality and multisystem disease risks. Nat Med 2024; 30:1711-1721. [PMID: 38834850 PMCID: PMC11186767 DOI: 10.1038/s41591-024-03039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric Farber-Eger
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomas Gonzales
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Toshiko Tanaka
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Jeremy M Robbins
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Lindsey K Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shi Huang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laura A Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shuliang Deng
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keenan A Walker
- Multimodal Imaging of Neurodegenerative Disease (MIND) Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longtidudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Eleanor L Watts
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jacob L Barber
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Prashant Rao
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael Y Mi
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kelley Pettee Gabriel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bjoern Hornikel
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Nicholas Houstis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory D Lewis
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Gabrielle Y Liu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California Davis, Sacramento, CA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, MN, USA
| | - Sadiya S Khan
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bina Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Claude Bouchard
- Human Genomic Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina Columbia, Columbia, SC, USA
| | - Robert E Gerszten
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Soren Brage
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Quinn S Wells
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
9
|
Zhou N, Gong L, Zhang E, Wang X. Exploring exercise-driven exerkines: unraveling the regulation of metabolism and inflammation. PeerJ 2024; 12:e17267. [PMID: 38699186 PMCID: PMC11064867 DOI: 10.7717/peerj.17267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Exercise has many beneficial effects that provide health and metabolic benefits. Signaling molecules are released from organs and tissues in response to exercise stimuli and are widely termed exerkines, which exert influence on a multitude of intricate multi-tissue processes, such as muscle, adipose tissue, pancreas, liver, cardiovascular tissue, kidney, and bone. For the metabolic effect, exerkines regulate the metabolic homeostasis of organisms by increasing glucose uptake and improving fat synthesis. For the anti-inflammatory effect, exerkines positively influence various chronic inflammation-related diseases, such as type 2 diabetes and atherosclerosis. This review highlights the prospective contribution of exerkines in regulating metabolism, augmenting the anti-inflammatory effects, and providing additional advantages associated with exercise. Moreover, a comprehensive overview and analysis of recent advancements are provided in this review, in addition to predicting future applications used as a potential biomarker or therapeutic target to benefit patients with chronic diseases.
Collapse
Affiliation(s)
- Nihong Zhou
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Lijing Gong
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- NanoLund Center for NanoScience, Lund University, Lund, Sweden
| | - Xintang Wang
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing Sport University, Beijing, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| |
Collapse
|
10
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Watkins BA, Smith BJ, Volpe SL, Shen CL. Exerkines, Nutrition, and Systemic Metabolism. Nutrients 2024; 16:410. [PMID: 38337694 PMCID: PMC10857119 DOI: 10.3390/nu16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The cornerstones of good health are exercise, proper food, and sound nutrition. Physical exercise should be a lifelong routine, supported by proper food selections to satisfy nutrient requirements based on energy needs, energy management, and variety to achieve optimal metabolism and physiology. The human body is sustained by intermediary and systemic metabolism integrating the physiologic processes for cells, tissues, organs, and systems. Recently, interest in specific metabolites, growth factors, cytokines, and hormones called exerkines has emerged to explain cooperation between nutrient supply organs and the brain during exercise. Exerkines consist of different compounds described as signaling moiety released during and after exercise. Examples of exerkines include oxylipin 12, 13 diHOME, lipid hormone adiponectin, growth factor BDNF, metabolite lactate, reactive oxygen species (ROS), including products of fatty acid oxidation, and cytokines such as interleukin-6. At this point, it is believed that exerkines are immediate, fast, and long-lasting factors resulting from exercise to support body energy needs with an emphasis on the brain. Although exerkines that are directly a product of macronutrient metabolism such as lactate, and result from catabolism is not surprising. Furthermore, other metabolites of macronutrient metabolism seem to be candidate exerkines. The exerkines originate from muscle, adipose, and liver and support brain metabolism, energy, and physiology. The purpose of this review is to integrate the actions of exerkines with respect to metabolism that occurs during exercise and propose other participating factors of exercise and brain physiology. The role of diet and macronutrients that influence metabolism and, consequently, the impact of exercise will be discussed. This review will also describe the evidence for PUFA, their metabolic and physiologic derivatives endocannabinoids, and oxylipins that validate them being exerkines. The intent is to present additional insights to better understand exerkines with respect to systemic metabolism.
Collapse
Affiliation(s)
- Bruce A. Watkins
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Stella Lucia Volpe
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA;
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
12
|
Safonicheva O, Kryuchkova K, Lazareva I, Chekulaev P, Ovchinnikova M, Kurshev V, Budanova E, Gameeva V, Gavrilov V, Epishev V, Zaborova V. Study of Morpho-Functional Characteristics of the Cardiovascular System According to Electrocardiography, Phonocardiography, Echocardiography in Masters Athletics. Clin Interv Aging 2023; 18:2079-2092. [PMID: 38107188 PMCID: PMC10725634 DOI: 10.2147/cia.s432202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Background Many authors have noted the lack of knowledge on the causal relationship between the degree of physical activity, the dynamics, and outcomes of diseases, as well as the influence of sports history on the rehabilitation potential of former athletes. Purpose Assessment of the functional state of the cardiovascular system according to the indicators of electrocardiography, polycardiography, echocardiography and the level of physical performance in masters athletes. Patients and Methods The study included a main group consisting of 100 athletes, who had undergone electrocardiography, poly-electrocardiography, ultrasound echocardiography, heart rate and blood pressure measurement to determine their level of physical performance. The subjects were then divided into 2 groups. The first group included 75 people who continue to be active in regular sports activities. The second group consisted of 25 people who completely stopped training or had only occasional, unsystematic physical activities. A control group of 31 people, consisting of people of the same age who had not been involved in sports earlier, was examined according to the same program. Results The data obtained by us show that sports activities do contribute to the increasing stability of the body and maximize the deployment of the capabilities of the circulatory system, including their long-term preservation in masters athletic. Athletes who have stopped training have signs of age-related changes in the heart and blood vessels, which seem to be more frequent and earlier than those who continue training. A higher degree of myocardial contractility (in 90.67% of cases) can also be seen in the main group. Conclusion Masters athletes and those who stopped training after completing their sports career, should have notably thorough medical supervision and undergo regular annual in-depth examination.
Collapse
Affiliation(s)
- Olga Safonicheva
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Kira Kryuchkova
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Irina Lazareva
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Pavel Chekulaev
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina Ovchinnikova
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Vladislav Kurshev
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Elena Budanova
- Institute of Public Health, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Victor Gavrilov
- Moscow Institute of Physics and Technology (National Research University), Moscow Region, Russia
| | - Vitaly Epishev
- Research Center for Sports Science, South Ural State University, Chelyabinsk, Russia
| | - Victoria Zaborova
- Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
13
|
Jia S, Yu Z, Bai L. Exerkines and osteoarthritis. Front Physiol 2023; 14:1302769. [PMID: 38107476 PMCID: PMC10722202 DOI: 10.3389/fphys.2023.1302769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease, with physical exercise being a widely endorsed strategy in its management guidelines. Exerkines, defined as cytokines secreted in response to acute and chronic exercise, function through endocrine, paracrine, and/or autocrine pathways. Various tissue-specific exerkines, encompassing exercise-induced myokines (muscle), cardiokines (heart), and adipokines (adipose tissue), have been linked to exercise therapy in OA. Exerkines are derived from these kines, but unlike them, only kines regulated by exercise can be called exerkines. Some of these exerkines serve a therapeutic role in OA, such as irisin, metrnl, lactate, secreted frizzled-related protein (SFRP), neuregulin, and adiponectin. While others may exacerbate the condition, such as IL-6, IL-7, IL-15, IL-33, myostatin, fractalkine, follistatin-like 1 (FSTL1), visfatin, activin A, migration inhibitory factor (MIF), apelin and growth differentiation factor (GDF)-15. They exerts anti-/pro-apoptosis/pyroptosis/inflammation, chondrogenic differentiation and cell senescence effect in chondrocyte, synoviocyte and mesenchymal stem cell. The modulation of adipokine effects on diverse cell types within the intra-articular joint emerges as a promising avenue for future OA interventions. This paper reviews recent findings that underscore the significant role of tissue-specific exerkines in OA, delving into the underlying cellular and molecular mechanisms involved.
Collapse
Affiliation(s)
- Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyao Yu
- Imaging Department, Dalian Medical University, Dalian, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|