1
|
Beri D, Rodriguez M, Singh M, McLaughlin D, Liu Y, Zhong H, Mendelson A, An X, Manwani D, Yazdanbakhsh K, Lobo CA. Babesiosis and sickle red blood cells: loss of deformability, altered osmotic fragility, and hypervesiculation. Blood 2025; 145:2202-2213. [PMID: 39869831 DOI: 10.1182/blood.2024027602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
ABSTRACT Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheologic parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild-type AA, sickle trait AS, and sickle SS RBCs. Our ektacytometry analysis demonstrates that the changes in the host RBC biomechanical properties, before and after Babesia infection, reside on a spectrum of severity, with wild-type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype, compared with infected AS RBCs that show median changes in deformability and infected SS RBCs that exhibit the most dramatic impact of infection on cellular rheology, including an increase in point of sickling values. Furthermore, using ImageStream cytometric technology to quantify changes in cellular shape and area along with a tunable resistive pulse sensor to measure release of extracellular vesicles from these host RBCs, before and after infection, we offer a potential mechanistic basis for this extreme SS RBC rheologic profile, which include enhanced sickling rates and altered osmotic fragility, loss of RBC surface area, and hypervesiculation in infected SS host RBCs. These results underline the importance of understanding the impact of intraerythrocytic parasitic infections of SCD RBCs, especially on their cellular membranes and studying the mechanisms that lead to hyperhemolysis and extreme anemia in patients with SCD.
Collapse
Affiliation(s)
- Divya Beri
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Marilis Rodriguez
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Manpreet Singh
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Daniel McLaughlin
- iPSC Project Operations, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Yunfeng Liu
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Hui Zhong
- Department of Immune Regulation, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Avital Mendelson
- Laboratory of Stem Cell Biology and Engineering Research, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Xiuli An
- Department of Membrane Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Deepa Manwani
- Division of Hematology, Department of Medicine, Montefiore Health Center, Albert Einstein College of Medicine, Bronx, NY
| | - Karina Yazdanbakhsh
- Department of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| | - Cheryl A Lobo
- Department of Blood-Borne Parasites, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY
| |
Collapse
|
2
|
Russo A, Patanè GT, Calderaro A, Barreca D, Tellone E, Putaggio S. Crosstalk Between Sickle Cell Disease and Ferroptosis. Int J Mol Sci 2025; 26:3675. [PMID: 40332185 PMCID: PMC12027360 DOI: 10.3390/ijms26083675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobin disorder that is widespread across the globe. It is characterized by a very complex pathogenesis, but at the basis of the disease is the mutation of the HBB gene, which determines the production of a mutated hemoglobin: sickle cell hemoglobin (HbS). The polymerization of HbS, which occurs when the protein is in a deoxygenated state, and the greater fragility of sickle cell red blood cells (sRBCs) determine the release of iron, free heme, and HbS in the blood, favoring oxidative stress and the production of reactive oxygen species (ROS). These features are common to the features of a new model of cell death known as ferroptosis, which is characterized by the increase of iron and ROS concentrations and by the inhibition of glutathione peroxidase 4 (GPx4) and the System Xc-. In this context, this review aims to discuss the potential molecular and biochemical pathways of ferroptosis involved in SCD, aiming to highlight possible tags involved in treating the disease and inhibiting ferroptosis.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (A.C.); (E.T.); (S.P.)
| | | | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (A.R.); (A.C.); (E.T.); (S.P.)
| | | | | |
Collapse
|
3
|
Bernardo VS, Torres FF, Zucão ACA, Chaves NA, Santana ILR, da Silva DGH. Disrupted homeostasis in sickle cells: Expanding the comprehension of metabolism adaptation and related therapeutic strategies. Tissue Cell 2025; 93:102717. [PMID: 39805212 DOI: 10.1016/j.tice.2024.102717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
Sickle cell disease (SCD) is a hereditary hemolytic anemia associated with the alteration of the membrane composition of the sickle erythrocytes, the loss of glycolysis, dysregulation of the pyruvate phosphatase pathway, and changes in nucleotide metabolism of the sickle red blood cell (RBC). This review provides a comprehensive overview of the impact of the presence of Hb S, which leads to the disruption of the normal RBC metabolism. The intricate interplay between the redox and energetic balance in erythrocytic cells, where the glycolysis, pentose phosphate pathway, and methemoglobin reductase pathways are all altered in sickle RBC, is a key focus. Moreover, this review summarizes the current knowledge about the disease-modifying agents and their action mechanisms based on the sickle RBC alterations previously mentioned (i.e., their association with beneficial effects on the sickle cells' membrane, to their RBCs' energy metabolism, and to their oxidative status). Therefore, providing a comprehensive understanding of how sickle cells cope with the disruption of metabolic homeostasis and the most promising therapeutic agents able to ameliorate the various consequences of abnormal sickle RBC alterations.
Collapse
Affiliation(s)
| | | | | | - Nayara Alves Chaves
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil
| | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Universidade Estadual Paulista (UNESP), São Paulo, Brazil; Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Mato Grosso do Sul, Brazil.
| |
Collapse
|
4
|
Garcia‐Hernandez A, de la Coba P, Martinez‐Triana RJ, Reyes del Paso GA. Pain sensitisation in patients with sickle cell disease: A preliminary study. J Eval Clin Pract 2025; 31:e14101. [PMID: 39023328 PMCID: PMC11664496 DOI: 10.1111/jep.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/12/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Responses to experimental pain have suggested central and peripheral sensitisation in adult patients with sickle cell disease (SCD). Recent studies have proposed an algometry-derived dynamic measure of pain sensitisation, slowly repeated evoked pain (SREP), which is useful in the discrimination of painful conditions related to central sensitisation. Pain and fatigue are two symptoms that affect the general functioning of patients with SCD most significantly, however, research about experimental dynamic pain measures and their relation to the main symptoms of SCD (pain and fatigue) is still scarce. OBJECTIVE This preliminary study aimed to test the utility of the SREP protocol for detecting pain sensitisation in patients with SCD, and to evaluate the associations of pain sensitisation, pain threshold, and pain tolerance with the main clinical symptoms of SCD, pain and fatigue. METHODS Twenty-two female outpatients with SCD and 20 healthy women participated. Pain threshold, pain tolerance, and pain sensitisation were assessed by algometry in the fingernail. Clinical pain, fatigue, anxiety, depression and pain catastrophizing were evaluated. RESULTS No group differences were found in pain threshold and tolerance. However, using the SREP protocol, pain sensitisation was greater in patients than in healthy participants, even after controlling for psychological variables and body mass index. Pain threshold and tolerance were inversely associated with fatigue levels in the SCD group, with pain tolerance being the main predictor. CONCLUSIONS Pain threshold and tolerance did not discriminate between patients and healthy individuals, but were useful for predicting fatigue severity in SCD. The SREP protocol provides a useful dynamic measure of pain for the discrimination and detection of enhanced pain sensitisation in patients with SCD, which could contribute to more personalised pain evaluations and treatment for these patients.
Collapse
Affiliation(s)
| | - Pablo de la Coba
- Department of Psychology and AnthropologyUniversity of Extremadura, Avenida de la UniversidadCáceresSpain
| | | | | |
Collapse
|
5
|
Blankenhorn K, Strumph K. Hemoglobinopathies in the Neonate. Neoreviews 2024; 25:e720-e728. [PMID: 39482242 DOI: 10.1542/neo.25-11-e720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024]
Abstract
Hemoglobinopathies in neonates constitute a group of disorders influenced by genetic mutations in the human globin genes. They are often broadly categorized into quantitative defects or qualitative defects, though they are not mutually exclusive. In quantitative defects, the mutation causes insufficient production of a normal globin chain, which can range from no production to mild deficiency. These are typically referred to as thalassemias. In qualitative defects, the structure of the hemoglobin is altered. The most common structural hemoglobinopathy is sickle cell disease. During fetal development, distinct globin chains are synthesized, which undergo a progressive switch to adult globin chains perinatally. This affects the timing of the clinical presentation of these disorders and thus, our ability to diagnose them. In this review, we focus on the epidemiology, genetic causes, clinical presentation, and general overview and management of common hemoglobin disorders that may be encountered in the neonatal period.
Collapse
Affiliation(s)
- Katrina Blankenhorn
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, New York, NY
| | - Kaitlin Strumph
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, New York, NY
| |
Collapse
|
6
|
Lessard S, Rimmelé P, Ling H, Moran K, Vieira B, Lin YD, Rajani GM, Hong V, Reik A, Boismenu R, Hsu B, Chen M, Cockroft BM, Uchida N, Tisdale J, Alavi A, Krishnamurti L, Abedi M, Galeon I, Reiner D, Wang L, Ramezi A, Rendo P, Walters MC, Levasseur D, Peters R, Harris T, Hicks A. Zinc finger nuclease-mediated gene editing in hematopoietic stem cells results in reactivation of fetal hemoglobin in sickle cell disease. Sci Rep 2024; 14:24298. [PMID: 39414860 PMCID: PMC11484757 DOI: 10.1038/s41598-024-74716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
BIVV003 is a gene-edited autologous cell therapy in clinical development for the potential treatment of sickle cell disease (SCD). Hematopoietic stem cells (HSC) are genetically modified with mRNA encoding zinc finger nucleases (ZFN) that target and disrupt a specific regulatory GATAA motif in the BCL11A erythroid enhancer to reactivate fetal hemoglobin (HbF). We characterized ZFN-edited HSC from healthy donors and donors with SCD. Results of preclinical studies show that ZFN-mediated editing is highly efficient, with enriched biallelic editing and high frequency of on-target indels, producing HSC capable of long-term multilineage engraftment in vivo, and express HbF in erythroid progeny. Interim results from the Phase 1/2 PRECIZN-1 study demonstrated that BIVV003 was well-tolerated in seven participants with SCD, of whom five of the six with more than 3 months of follow-up displayed increased total hemoglobin and HbF, and no severe vaso-occlusive crises. Our data suggest BIVV003 represents a compelling and novel cell therapy for the potential treatment of SCD.
Collapse
Affiliation(s)
- Samuel Lessard
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA.
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, 02141, USA.
| | | | - Hui Ling
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | - Kevin Moran
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | | | - Yi-Dong Lin
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | | | - Vu Hong
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | | | | | - Ben Hsu
- Sangamo Therapeutics, Richmond, CA, 94804, USA
| | | | | | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes/National Institute of Diabetes and Digestive and Kidney Diseases, National Heart, National Institutes of Health (NIH), Bethesda, MD, USA
| | - John Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institutes/National Institute of Diabetes and Digestive and Kidney Diseases, National Heart, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Asif Alavi
- Henry Ford Cancer Institute, Detroit, MI, USA
| | - Lakshmanan Krishnamurti
- Emory University, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Mehrdad Abedi
- University of California-Davis Medical Center, Sacramento, CA, USA
| | | | - David Reiner
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | - Lin Wang
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | - Anne Ramezi
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | - Pablo Rendo
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | - Mark C Walters
- University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA
| | | | - Robert Peters
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
| | | | - Alexandra Hicks
- Rare Blood Disorders, Sanofi, Waltham, MA, 02451, USA
- Immunology and Inflammation, Sanofi, Cambridge, MA, 02141, USA
| |
Collapse
|
7
|
Igbineweka NE, van Loon JJWA. Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease. NPJ Genom Med 2024; 9:44. [PMID: 39349487 PMCID: PMC11442622 DOI: 10.1038/s41525-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/09/2024] [Indexed: 10/02/2024] Open
Abstract
A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.
Collapse
Affiliation(s)
- Norris E Igbineweka
- Imperial College London, Centre for Haematology, Department of Immunology & Inflammation, Commonwealth Building, Hammersmith Campus, Du Cane, London, W12 0NN, UK.
- Department of Haematology, King's College Hospital NHS Foundation Trust Denmark Hill, SE5 9RS, London, UK.
| | - Jack J W A van Loon
- Dutch Experiment Support Center (DESC), Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam Bone Center (ABC), Amsterdam UMC Location VU University Medical Center (VUmc) & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081, LA Amsterdam, The Netherlands
- European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), TEC-MMG, Keplerlaan 1, 2201, AZ Noordwijk, The Netherlands
| |
Collapse
|
8
|
Salami B, Maduforo AN, Aiello O, Osman S, Omobhude OF, Price K, Henderson J, Hamilton HA, Kemei J, Mullings DV. Factors That Contribute to the Mental Health of Black Youth during COVID-19 Pandemic. Healthcare (Basel) 2024; 12:1174. [PMID: 38921289 PMCID: PMC11203374 DOI: 10.3390/healthcare12121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The mental health of Black youth during the COVID-19 pandemic is potentially influenced by various systemic factors, including racism, socioeconomic disparities, and access to culturally sensitive mental health support. Understanding these influences is essential for developing effective interventions to mitigate mental health disparities. METHODS Our project used a community-based participatory (CBP) research design with an intersectional theoretical perspective. An advisory committee consisting of fourteen Black youth supported all aspects of our project. The research team consisted of experienced Black researchers who also trained six Black youths as research assistants and co-researchers. The co-researchers conducted individual interviews, contributed to data analysis, and mobilized knowledge. Participants were recruited through the advisory committee members and networks of Black youth co-researchers and sent an email invitation to Black community organizations. Forty-eight Black identified were interviewed between the ages of 16 and 30 in Canada. The data was analyzed thematically. We kept a reflexive note throughout all aspects of the project. RESULTS Participants reported significant challenges with online schooling, including a lack of support and access to resources. Lockdowns exacerbated stress, particularly for those living in toxic living/home environments. Financial burdens, such as food insecurity and precarious employment, were prevalent and exacerbated mental health challenges. Additionally, experiences of anti-Black racism and police brutality during the pandemic heightened stress and anxiety among participants. CONCLUSIONS The findings underscore the complex interplay of systemic factors in shaping the mental health of Black youth during the COVID-19 pandemic. Addressing these disparities requires targeted interventions that address structural inequities and provide culturally competent support to mitigate the impact on mental well-being.
Collapse
Affiliation(s)
- Bukola Salami
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Olivia Aiello
- Faculty of Nursing, University of Alberta, Edmonton, AB T6G 1C9, Canada; (O.A.); (S.O.); (O.F.O.); (K.P.)
| | - Samah Osman
- Faculty of Nursing, University of Alberta, Edmonton, AB T6G 1C9, Canada; (O.A.); (S.O.); (O.F.O.); (K.P.)
| | | | - Kimberly Price
- Faculty of Nursing, University of Alberta, Edmonton, AB T6G 1C9, Canada; (O.A.); (S.O.); (O.F.O.); (K.P.)
| | - Jo Henderson
- Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada;
| | - Hayley A. Hamilton
- Institute for Mental Health Policy Research, Centre for Addictions and Mental Health, Toronto, ON M6J 1H4, Canada;
| | - Janet Kemei
- Faculty of Nursing, Grant McEwan University, Edmonton, AB T5J 4S2, Canada;
| | - Delores V. Mullings
- Equity, Diversity, Inclusion and Anti-Racism, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| |
Collapse
|
9
|
Mboowa G, Sserwadda I, Kanyerezi S, Tukwasibwe S, Kidenya B. The dawn of a cure for sickle cell disease through CRISPR-based treatment: A critical test of equity in public health genomics. Ann Hum Genet 2024. [PMID: 38517013 DOI: 10.1111/ahg.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Equity in access to genomic technologies, resources, and products remains a great challenge. This was evident especially during the coronavirus disease 2019 (COVID-19) pandemic when the majority of lower middle-income countries were unable to achieve at least 10% population vaccination coverage during initial COVID-19 vaccine rollouts, despite the rapid development of those vaccines. Sickle cell disease (SCD) is an inherited monogenic red blood cell disorder that affects hemoglobin, the protein that carries oxygen through the body. Globally, the African continent carries the highest burden of SCD with at least 240,000 children born each year with the disease. SCD has evolved from a treatable to a curable disease. Recently, the UK medical regulator approved its cure through clustered regularly interspaced short palindromic repeat (CRISPR)-based treatment, whereas the US Food and Drug Administration has equally approved two SCD gene therapies. This presents a remarkable opportunity to demonstrate equity in public health genomics. This CRISPR-based treatment is expensive and therefore, a need for an ambitious action to ensure that they are affordable and accessible where they are needed most and stand to save millions of lives.
Collapse
Affiliation(s)
- Gerald Mboowa
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Africa Centres for Disease Control and Prevention, African Union Commission, Addis Ababa, Ethiopia
| | - Ivan Sserwadda
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Stephen Kanyerezi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Stephen Tukwasibwe
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Uganda Christian University, Mukono, Uganda
| | - Benson Kidenya
- Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
10
|
Qiang Y, Xu M, Patel Pochron M, Jupelli M, Dao M. A framework of computer vision-enhanced microfluidic approach for automated assessment of the transient sickling kinetics in sickle red blood cells. FRONTIERS IN PHYSICS 2024; 12:1331047. [PMID: 38605818 PMCID: PMC11008125 DOI: 10.3389/fphy.2024.1331047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The occurrence of vaso-occlusive crisis greatly depends on the competition between the sickling delay time and the transit time of individual sickle cells, i.e., red blood cells (RBCs) from sickle cell disease (SCD) patients, while they are traversing the circulatory system. Many drugs for treating SCD work by inhibiting the polymerization of sickle hemoglobin (HbS), effectively delaying the sickling process in sickle cells (SS RBCs). Most previous studies on screening anti-sickling drugs, such as voxelotor, rely on in vitro testing of sickling characteristics, often conducted under prolonged deoxygenation for up to 1 hour. However, since the microcirculation of RBCs typically takes less than 1 minute, the results of these studies may be less accurate and less relevant for in vitro-in vivo correlation. In our current study, we introduce a computer vision-enhanced microfluidic framework designed to automatically capture the transient sickling kinetics of SS RBCs within a 1-min timeframe. Our study has successfully detected differences in the transient sickling kinetics between vehicle control and voxelotor-treated SS RBCs. This approach has the potential for broader applications in screening anti-sickling therapies.
Collapse
Affiliation(s)
- Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mengjia Xu
- Department of Data Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, United States
- Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | | | | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
11
|
Domingos CB, Rios JDO, Orlandini LC, Pereira LR. Inheritance of Hb S and G6PD deficiency in a familiar group. Arch Med Sci 2024; 20:704-707. [PMID: 38757016 PMCID: PMC11094812 DOI: 10.5114/aoms/185325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/24/2024] [Indexed: 05/18/2024] Open
|
12
|
Kashyap Y, Wang ZJ. Gut microbiota dysbiosis alters chronic pain behaviors in a humanized transgenic mouse model of sickle cell disease. Pain 2024; 165:423-439. [PMID: 37733476 PMCID: PMC10843763 DOI: 10.1097/j.pain.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Pain is the most common symptom experienced by patients with sickle cell disease (SCD) throughout their lives and is the main cause of hospitalization. Despite the progress that has been made towards understanding the disease pathophysiology, major gaps remain in the knowledge of SCD pain, the transition to chronic pain, and effective pain management. Recent evidence has demonstrated a vital role of gut microbiota in pathophysiological features of SCD. However, the role of gut microbiota in SCD pain is yet to be explored. We sought to evaluate the compositional differences in the gut microbiota of transgenic mice with SCD and nonsickle control mice and investigate the role of gut microbiota in SCD pain by using antibiotic-mediated gut microbiota depletion and fecal material transplantation (FMT). The antibiotic-mediated gut microbiota depletion did not affect evoked pain but significantly attenuated ongoing spontaneous pain in mice with SCD. Fecal material transplantation from mice with SCD to wild-type mice resulted in tactile allodynia (0.95 ± 0.17 g vs 0.08 ± 0.02 g, von Frey test, P < 0.001), heat hyperalgesia (15.10 ± 0.79 seconds vs 8.68 ± 1.17 seconds, radiant heat, P < 0.01), cold allodynia (2.75 ± 0.26 seconds vs 1.68 ± 0.08 seconds, dry ice test, P < 0.01), and anxiety-like behaviors (Elevated Plus Maze Test, Open Field Test). On the contrary, reshaping gut microbiota of mice with SCD with FMT from WT mice resulted in reduced tactile allodynia (0.05 ± 0.01 g vs 0.25 ± 0.03 g, P < 0.001), heat hyperalgesia (5.89 ± 0.67 seconds vs 12.25 ± 0.76 seconds, P < 0.001), and anxiety-like behaviors. These findings provide insights into the relationship between gut microbiota dysbiosis and pain in SCD, highlighting the importance of gut microbial communities that may serve as potential targets for novel pain interventions.
Collapse
Affiliation(s)
- Yavnika Kashyap
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
| | - Zaijie Jim Wang
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
- Department of Neurology & Rehabilitation, and Sickle Cell Center, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
13
|
Nappi F. To Gain Insights into the Pathophysiological Mechanisms of the Thrombo-Inflammatory Process in the Atherosclerotic Plaque. Int J Mol Sci 2023; 25:47. [PMID: 38203218 PMCID: PMC10778759 DOI: 10.3390/ijms25010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Thromboinflammation, the interplay between thrombosis and inflammation, is a significant pathway that drives cardiovascular and autoimmune diseases, as well as COVID-19. SARS-CoV-2 causes inflammation and blood clotting issues. Innate immune cells have emerged as key modulators of this process. Neutrophils, the most predominant white blood cells in humans, are strategically positioned to promote thromboinflammation. By releasing decondensed chromatin structures called neutrophil extracellular traps (NETs), neutrophils can initiate an organised cell death pathway. These structures are adorned with histones, cytoplasmic and granular proteins, and have cytotoxic, immunogenic, and prothrombotic effects that can hasten disease progression. Protein arginine deiminase 4 (PAD4) catalyses the citrullination of histones and is involved in the release of extracellular DNA (NETosis). The neutrophil inflammasome is also required for this process. Understanding the link between the immunological function of neutrophils and the procoagulant and proinflammatory activities of monocytes and platelets is important in understanding thromboinflammation. This text discusses how vascular blockages occur in thromboinflammation due to the interaction between neutrophil extracellular traps and ultra-large VWF (von Willebrand Factor). The activity of PAD4 is important for understanding the processes that drive thromboinflammation by linking the immunological function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets. This article reviews how vaso-occlusive events in thrombo-inflammation occur through the interaction of neutrophil extracellular traps with von Willebrand factor. It highlights the relevance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thrombo-inflammatory diseases such as atherosclerosis and cardiovascular disease. Interaction between platelets, VWF, NETs and inflammasomes is critical for the progression of thromboinflammation in several diseases and was recently shown to be active in COVID-19.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
14
|
Williams DC, Wood DK. High-throughput quantification of red blood cell deformability and oxygen saturation to probe mechanisms of sickle cell disease. Proc Natl Acad Sci U S A 2023; 120:e2313755120. [PMID: 37983504 PMCID: PMC10691249 DOI: 10.1073/pnas.2313755120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
The complex, systemic pathology of sickle cell disease is driven by multiple mechanisms including red blood cells (RBCs) stiffened by polymerized fibers of deoxygenated sickle hemoglobin. A critical step toward understanding the pathologic role of polymer-containing RBCs is quantifying the biophysical changes in these cells in physiologically relevant oxygen environments. We have developed a microfluidic platform capable of simultaneously measuring single RBC deformability and oxygen saturation under controlled oxygen and shear stress. We found that RBCs with detectable amounts of polymer have decreased oxygen affinity and decreased deformability. Surprisingly, the deformability of the polymer-containing cells is oxygen-independent, while the fraction of these cells increases as oxygen decreases. We also find that some fraction of these cells is present at most physiologic oxygen tensions, suggesting a role for these cells in the systemic pathologies. Additionally, the ability to measure these pathological cells should provide clearer targets for evaluating therapies.
Collapse
Affiliation(s)
- Dillon C. Williams
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
15
|
Roy NB, Carpenter A, Dale-Harris I, Dorée C, Estcourt LJ. Interventions for chronic kidney disease in people with sickle cell disease. Cochrane Database Syst Rev 2023; 8:CD012380. [PMID: 37539955 PMCID: PMC10404133 DOI: 10.1002/14651858.cd012380.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
BACKGROUND Sickle cell disease (SCD), one of the commonest severe monogenic disorders, is caused by the inheritance of two abnormal haemoglobin (beta-globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Kidney disease is a frequent and potentially severe complication in people with SCD. Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or function present for more than three months. Sickle cell nephropathy refers to the spectrum of kidney complications in SCD. Glomerular damage is a cause of microalbuminuria and can develop at an early age in children with SCD, with increased prevalence in adulthood. In people with sickle cell nephropathy, outcomes are poor as a result of the progression to proteinuria and chronic kidney insufficiency. Up to 12% of people who develop sickle cell nephropathy will develop end-stage renal disease. This is an update of a review first published in 2017. OBJECTIVES To assess the effectiveness of any intervention for preventing or reducing kidney complications or chronic kidney disease in people with sickle cell disease. Possible interventions include red blood cell transfusions, hydroxyurea, and angiotensin-converting enzyme inhibitors (ACEIs), either alone or in combination. SEARCH METHODS We searched for relevant trials in the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register, CENTRAL, MEDLINE, Embase, seven other databases, and two other trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing interventions to prevent or reduce kidney complications or CKD in people with SCD. We applied no restrictions related to outcomes examined, language, or publication status. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial eligibility, extracted data, assessed the risk of bias, and assessed the certainty of the evidence (GRADE). MAIN RESULTS We included three RCTs with 385 participants. We rated the certainty of the evidence as low to very low across different outcomes according to GRADE methodology, downgrading for risk of bias concerns, indirectness, and imprecision. Hydroxyurea versus placebo One RCT published in 2011 compared hydroxyurea to placebo in 193 children aged nine to 18 months. We are unsure if hydroxyurea compared to placebo reduces or prevents progression of kidney disease assessed by change in glomerular filtration rate (mean difference (MD) 0.58 mL/min /1.73 m2, 95% confidence interval (CI) -14.60 to 15.76; 142 participants; very low certainty). Hydroxyurea compared to placebo may improve the ability to concentrate urine (MD 42.23 mOsm/kg, 95% CI 12.14 to 72.32; 178 participants; low certainty), and may make little or no difference to SCD-related serious adverse events, including acute chest syndrome (risk ratio (RR) 0.39, 99% CI 0.13 to 1.16; 193 participants; low certainty), painful crisis (RR 0.68, 99% CI 0.45 to 1.02; 193 participants; low certainty); and hospitalisations (RR 0.83, 99% CI 0.68 to 1.01; 193 participants; low certainty). No deaths occurred in either trial arm and the RCT did not report quality of life. Angiotensin-converting enzyme inhibitors versus placebo One RCT published in 1998 compared an ACEI (captopril) to placebo in 22 adults with normal blood pressure and microalbuminuria. We are unsure if captopril compared to placebo reduces proteinuria (MD -49.00 mg/day, 95% CI -124.10 to 26.10; 22 participants; very low certainty). We are unsure if captopril reduces or prevents kidney disease as measured by creatinine clearance; the trial authors stated that creatinine clearance remained constant over six months in both groups, but provided no comparative data (very low certainty). The RCT did not report serious adverse events, all-cause mortality, or quality of life. Angiotensin-converting enzyme inhibitors versus vitamin C One RCT published in 2020 compared an ACEI (lisinopril) with vitamin C in 170 children aged one to 18 years with normal blood pressure and microalbuminuria. It reported no data we could analyse. We are unsure if lisinopril compared to vitamin C reduces proteinuria in this population: the large drop in microalbuminuria in both arms of the trial after only one month on treatment may have been due to an overestimation of microalbuminuria at baseline rather than a true effect. The RCT did not report serious adverse events, all-cause mortality, or quality of life. AUTHORS' CONCLUSIONS We are unsure if hydroxyurea improves glomerular filtration rate or reduces hyperfiltration in children aged nine to 18 months, but it may improve their ability to concentrate urine and may make little or no difference to the incidence of acute chest syndrome, painful crises, and hospitalisations. We are unsure if ACEI compared to placebo has any effect on preventing or reducing kidney complications in adults with normal blood pressure and microalbuminuria. We are unsure if ACEI compared to vitamin C has any effect on preventing or reducing kidney complications in children with normal blood pressure and microalbuminuria. No RCTs assessed red blood cell transfusions or any combined interventions to prevent or reduce kidney complications. Due to lack of evidence, we cannot comment on the management of children aged over 18 months or adults with any known genotype of SCD. We have identified a lack of adequately designed and powered studies, although we found four ongoing trials since the last version of this review. Only one ongoing trial addresses renal function as a primary outcome in the short term, but such interventions have long-term effects. Trials of hydroxyurea, ACEIs or red blood cell transfusion in older children and adults are urgently needed to determine any effect on prevention or reduction of kidney complications in people with SCD.
Collapse
Affiliation(s)
- Noemi Ba Roy
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | - Carolyn Dorée
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| |
Collapse
|
16
|
Goreke U, Iram S, Singh G, Domínguez-Medina S, Man Y, Bode A, An R, Little JA, Wirth CL, Hinczewski M, Gurkan UA. Catch bonds in sickle cell disease: Shear-enhanced adhesion of red blood cells to laminin. Biophys J 2023; 122:2564-2576. [PMID: 37177783 PMCID: PMC10323024 DOI: 10.1016/j.bpj.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Shamreen Iram
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Gundeep Singh
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Sergio Domínguez-Medina
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jane A Little
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher L Wirth
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio.
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
17
|
Singh A, Bokade C, Tirpude B, Suryawanshi MM, Rohadkar LA. Clinical Profiles of Children With Sickle Cell Anaemia Presenting With Acute Clinical Events: A Single-Center Study. Cureus 2023; 15:e39008. [PMID: 37378258 PMCID: PMC10292220 DOI: 10.7759/cureus.39008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sickle cell disease is a common genetic disorder characterised by chronic haemolytic anaemia and vaso-occlusive crisis. Sickle cell anaemia (SCA) has both short-term effects in the form of acute clinical events and long-term repercussions seen with chronic multiorgan involvement. It is associated with significant morbidity and mortality. In India, the disease is largely undocumented. Thus, there is an urgent need to highlight the features of the disease so that locally appropriate models of care may be implemented. OBJECTIVE This study aims to evaluate acute clinical events in SCA and to provide data that may help to reduce the rate of morbidity and mortality associated with this disease by early interventions. MATERIALS AND METHODS A cross-sectional observational study was conducted between November 2020 and May 2022 at Indira Gandhi Government Medical College and Hospital, Nagpur, Central India. The inclusion criteria included previously diagnosed patients of SCA (homozygous sickle cell disease) on high-performance liquid chromatography (HPLC) between the age groups of six months and 12 years, presenting with acute clinical events. The exclusion criteria included patients younger than six months and older than 12 years of age, and all patients with other haemoglobinopathies and sickle cell trait. The study was approved by the Institutional Ethical Committee. All the data was entered into a well-designed Microsoft Office Excel spreadsheet (v 2019, Microsoft, Washington, USA). All the clinical, biochemical, and haematological data were tabulated and analysed. RESULTS A total of 100 children with sickle cell disease diagnosed by HPLC were enrolled during the study period. About 215 acute clinical events among the 100 cases were recorded, for which they were admitted to the paediatric ward or PICU. The majority (35%, n=35) were seen in the age group of six to nine years (school-going age). About 52% were male and 48% were female (male-to-female ratio= 1.08:1). Pain was the most common symptom. The highest incidence of 36.75% (n=79) was seen with acute painful crises and was the most common indication of hospitalisation, followed by acute febrile illness (AFI) (34.42%, n=74), aplastic crisis (10.23%, n=22), splenic sequestration crisis (9.77%, n=21), hepatobiliary involvement (3.72%, n=8), acute chest syndrome and haemolytic crisis (each 1.86%, n=4), and stroke (1.40%, n=3). In cases of having foetal haemoglobin (HbF) ≥20%, the incidence of acute painful crisis (p=0.0001), hand-foot syndrome (p=0.047), aplastic crisis (p=0.033), splenic sequestration crisis (p=0.039), and AFI (p=0.035) was low as compared to cases having HbF ≤20% which was statistically significant. The incidence of acute painful crisis, hand-foot syndrome, and an aplastic crisis was significantly low in patients receiving hydroxyurea therapy as compared to patients who were not on hydroxyurea. Out of 100 cases, four died during the study period, three died because of splenic sequestration crisis with septic shock, and one died due to hepatic encephalopathy due to haemolytic crisis with septic shock. CONCLUSION Acute clinical events in sickle cell disease can have significant morbidity and mortality in the paediatric age group. The nutritional status of sickle cell disease children must be given due importance. Early initiation of hydroxyurea must be encouraged to maintain higher HbF levels, which plays a significant role in reducing morbidity.
Collapse
Affiliation(s)
- Anwesha Singh
- Pediatrics and Neonatology, Indira Gandhi Government Medical College and Hospital, Nagpur, IND
| | - Chandrakant Bokade
- Pediatrics and Neonatology, Indira Gandhi Government Medical College and Hospital, Nagpur, IND
| | - Bhagyashree Tirpude
- Pediatrics and Neonatology, Indira Gandhi Government Medical College and Hospital, Nagpur, IND
| | - Milind M Suryawanshi
- Pediatrics and Neonatology, Indira Gandhi Government Medical College and Hospital, Nagpur, IND
| | - Lakshmikant A Rohadkar
- Pediatrics and Neonatology, Indira Gandhi Government Medical College and Hospital, Nagpur, IND
| |
Collapse
|
18
|
Bertozzo VDHE, da Silva Costa SM, Ito MT, da Cruz PRS, Souza BB, Rios VM, Viturino MGM, de Castro JNP, Rodrigues TAR, Lanaro C, de Albuquerque DM, Saez RC, Olalla Saad ST, Ozelo MC, Costa FF, de Melo MB. Comparative transcriptome analysis of endothelial progenitor cells of HbSS patients with and without proliferative retinopathy. Exp Biol Med (Maywood) 2023; 248:677-684. [PMID: 37012663 PMCID: PMC10408552 DOI: 10.1177/15353702231157927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/18/2023] [Indexed: 04/05/2023] Open
Abstract
Among sickle cell anemia (SCA) complications, proliferative sickle cell retinopathy (PSCR) is one of the most important, being responsible for visual impairment in 10-20% of affected eyes. The aim of this study was to identify differentially expressed genes (DEGs) present in pathways that may be implicated in the pathophysiology of PSCR from the transcriptome profile analysis of endothelial progenitor cells. RNA-Seq was used to compare gene expression profile of circulating endothelial colony-forming cells (ECFCs) from HbSS patients with and without PSCR. Furthermore, functional enrichment analysis and protein-protein interaction (PPI) networks were performed to gain further insights into biological functions. The differential expression analysis identified 501 DEGs, when comparing the groups with and without PSCR. Furthermore, functional enrichment analysis showed associations of the DEGs in 200 biological processes. Among these, regulation of mitogen-activated protein (MAP) kinase activity, positive regulation of phosphatidylinositol 3-kinase (PI3K), and positive regulation of Signal Transducer and Activator of Transcription (STAT) receptor signaling pathway were observed. These pathways are associated with angiogenesis, cell migration, adhesion, differentiation, and proliferation, important processes involved in PSCR pathophysiology. Moreover, our results showed an over-expression of VEGFC (vascular endothelial growth factor-C) and FLT1 (Fms-Related Receptor Tyrosine Kinase 1) genes, when comparing HbSS patients with and without PSCR. These results may indicate a possible association between VEGFC and FLT1 receptor, which may activate signaling pathways such as PI3K/AKT and MAPK/ERK and contribute to the mechanisms implicated in neovascularization. Thus, our findings contain preliminary results that may guide future studies in the field, since the molecular mechanisms of PSCR are still poorly understood.
Collapse
Affiliation(s)
- Victor de Haidar e Bertozzo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Sueli Matilde da Silva Costa
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Mirta Tomie Ito
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Pedro Rodrigues Sousa da Cruz
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Bruno Batista Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Vinicius Mandolesi Rios
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | | | | | - Thiago Adalton Rosa Rodrigues
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| | - Carolina Lanaro
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | | | - Roberta Casagrande Saez
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Margareth Castro Ozelo
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-970, São Paulo, Brazil
| | - Mônica Barbosa de Melo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas 13083-875, São Paulo, Brazil
| |
Collapse
|
19
|
A randomized clinical trial of the efficacy and safety of rivipansel for sickle cell vaso-occlusive crisis. Blood 2023; 141:168-179. [PMID: 35981565 DOI: 10.1182/blood.2022015797] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 01/17/2023] Open
Abstract
The efficacy and safety of rivipansel, a predominantly E-selectin antagonist, were studied in a phase 3, randomized, controlled trial for vaso-occlusive crisis (VOC) requiring hospitalization (RESET). A total of 345 subjects (204 adults and 141 children) were randomized and 320 were treated (162 with rivipansel, 158 with placebo) with an IV loading dose, followed by up to 14 additional 12-hourly maintenance doses of rivipansel or placebo, in addition to standard care. Rivipansel was similarly administered during subsequent VOCs in the Open-label Extension (OLE) study. In the full analysis population, the median time to readiness for discharge (TTRFD), the primary end point, was not different between rivipansel and placebo (-5.7 hours, P = .79; hazard ratio, 0.97), nor were differences seen in secondary end points of time to discharge (TTD), time to discontinuation of IV opioids (TTDIVO), and cumulative IV opioid use. Mean soluble E-selectin decreased 61% from baseline after the loading dose in the rivipansel group, while remaining unchanged in the placebo group. In a post hoc analysis, early rivipansel treatment within 26.4 hours of VOC pain onset (earliest quartile of time from VOC onset to treatment) reduced median TTRFD by 56.3 hours, reduced median TTD by 41.5 hours, and reduced median TTDIVO by 50.5 hours, compared with placebo (all P < .05). A similar subgroup analysis comparing OLE early-treatment with early-treatment RESET placebo showed a reduction in TTD of 23.1 hours (P = .062) and in TTDIVO of 30.1 hours (P = .087). Timing of rivipansel administration after pain onset may be critical to achieving accelerated resolution of acute VOC. Trial Registration: Clinicaltrials.gov, NCT02187003 (RESET), NCT02433158 (OLE).
Collapse
|
20
|
Rizvi MB, Kessler DO, Rabiner JE. Role of regional anesthesia in patients with acute sickle cell pain: A scoping review. Pediatr Blood Cancer 2023; 70:e30063. [PMID: 36308736 DOI: 10.1002/pbc.30063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 12/25/2022]
Abstract
Sickle cell disease is the most prevalent inherited blood disorder in the world, with significant morbidity and mortality. Patients often have recurrent painful vaso-occlusive episodes, and the American Society of Hematology gives a conditional recommendation for the use of regional anesthesia for acute sickle cell pain management. This scoping review summarizes the current evidence and identifies gaps for future research. Our screening process is outlined, and articles that mentioned the use of regional anesthesia for acute sickle cell crises were included. We present and interpret our results and highlight opportunities for future investigation.
Collapse
Affiliation(s)
- Munaza B Rizvi
- Department of Emergency Medicine, Division of Pediatric Emergency Medicine, Columbia University Irving Medical Center, New York, USA
| | - David O Kessler
- Department of Emergency Medicine, Division of Pediatric Emergency Medicine, Columbia University Irving Medical Center, New York, USA
| | - Joni E Rabiner
- Department of Emergency Medicine, Division of Pediatric Emergency Medicine, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
21
|
Muacevic A, Adler JR, Fontenot A, Khan MW. Rare Combinational Hemoglobinopathies. Cureus 2022; 14:e32327. [PMID: 36628031 PMCID: PMC9825142 DOI: 10.7759/cureus.32327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Hemoglobinopathies are genetic defects that result in the abnormal formation and composition of globin chains in the hemoglobin molecule. Sickle cell disease is one of the more common forms of genetic malformation, while Hemoglobin (Hb) Arab, Lepore, Korle-Bu, Kansas, D-Punjab, and Hasharon are uncommon presentations. Herein, we describe the case of a young patient who presented with a low hemoglobin level and was subsequently diagnosed with a rare combination of Hemoglobin Korle-Bu, D-Punjab, and sickle cell trait.
Collapse
|
22
|
Hansen S, Wood DK. Simultaneous quantification of blood rheology and oxygen saturation to evaluate affinity-modifying therapies in sickle cell disease. LAB ON A CHIP 2022; 22:4141-4150. [PMID: 36134535 PMCID: PMC10165883 DOI: 10.1039/d2lc00623e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Sickle cell blood demonstrates oxygen-dependent flow behavior as a result of HbS polymerization during hypoxia, and these rheological changes provide a biophysical metric that can be used to quantify the pathological behavior of the blood. Relating these rheological changes directly to hemoglobin oxygen saturation would improve our understanding of SCD pathogenesis and the potential effects of therapeutic drugs. Towards this end, we have developed a microfluidic platform capable of spectrophotometric quantification of Hb-O2 saturation and simultaneous evaluation of the accompanying rheological changes in SCD blood flow. We demonstrated the ability to measure changes in Hb-O2 affinity and a restoration of oxygen-independent blood flow behavior after incubation with voxelotor, an oxygen affinity modifying drug approved for use in SCD. We also identified regimes in Hb-O2 saturation where the effects of HbS polymerization begin to take effect in contributing to pathological flow behavior, independent of voxelotor treatment. In contrast, incubation with voxelotor recovered oxygen-dependent blood flow over a range of PO2, providing a framework for understanding voxelotor's therapeutic effect in lowering the PO2 at which the requisite Hb-O2 saturation is reached to observe pathological blood flow. These results help explain the mechanistic effects of voxelotor and show the potential of this platform to identify affinity-modifying compounds and evaluate their therapeutic effect on blood flow.
Collapse
Affiliation(s)
- Scott Hansen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55409, USA.
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis 55409, USA.
| |
Collapse
|
23
|
Abstract
The activating interplay of thrombosis and inflammation (thromboinflammation) has been established as a major underlying pathway, driving not only cardiovascular disease but also autoimmune disease and most recently, COVID-19. Throughout the years, innate immune cells have emerged as important modulators of this process. As the most abundant white blood cell in humans, neutrophils are well-positioned to propel thromboinflammation. This includes their ability to trigger an organized cell death pathway with the release of decondensed chromatin structures called neutrophil extracellular traps. Decorated with histones and cytoplasmic and granular proteins, neutrophil extracellular traps exert cytotoxic, immunogenic, and prothrombotic effects accelerating disease progression. Distinct steps leading to extracellular DNA release (NETosis) require the activities of PAD4 (protein arginine deiminase 4) catalyzing citrullination of histones and are supported by neutrophil inflammasome. By linking the immunologic function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets, PAD4 activity holds important implications for understanding the processes that fuel thromboinflammation. We will also discuss mechanisms whereby vascular occlusion in thromboinflammation depends on the interaction of neutrophil extracellular traps with ultra-large VWF (von Willebrand Factor) and speculate on the importance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thromboinflammatory diseases including atherosclerosis and COVID-19.
Collapse
Affiliation(s)
- Denisa D Wagner
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital/Harvard Medical School, MA (D.D.W., L.A.H.)
| | - Lukas A Heger
- Program in Cellular and Molecular Medicine, Division of Hematology and Oncology, Boston Children's Hospital/Harvard Medical School, MA (D.D.W., L.A.H.)
| |
Collapse
|
24
|
Elucidating parasite and host-cell factors enabling Babesia infection in sickle red cells under hypoxic/hyperoxic conditions. Blood Adv 2022; 7:649-663. [PMID: 35977077 PMCID: PMC9979759 DOI: 10.1182/bloodadvances.2022008159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Sickle red blood cells (RBCs) represent a naturally existing host-cell resistance mechanism to hemoparasite infections. We investigate the basis of this resistance using Babesia divergens grown in sickle (SS) and sickle trait (AS) cells. We found that oxygenation and its corresponding effect on RBC sickling, frequency of fetal hemoglobin positive (HbF+) cells, cellular redox environment, and parasite proliferation dynamics, all played a role in supporting or inhibiting Babesia proliferation. To identify cellular determinants that supported infection, an image flow cytometric tool was developed that could identify sickled cells and constituent Hb. We showed that hypoxic conditions impaired parasite growth in both SS and AS cells. Furthermore, cell sickling was alleviated by oxygenation (hyperoxic conditions), which decreased inhibition of parasite proliferation in SS cells. Interestingly, our tool identified HbF+-SS as host-cells of choice under both hypoxic and hyperoxic conditions, which was confirmed using cord RBCs containing high amounts of HbF+ cells. Uninfected SS cells showed a higher reactive oxygen species-containing environment, than AA or AS cells, which was further perturbed on infection. In hostile SS cells we found that Babesia alters its subpopulation structure, with 1N dominance under hypoxic conditions yielding to equivalent ratios of all parasite forms at hyperoxic conditions, favorable for growth. Multiple factors, including oxygenation and its impact on cell shape, HbF positivity, redox status, and parasite pleiotropy allow Babesia propagation in sickle RBCs. Our studies provide a cellular and molecular basis of natural resistance to Babesia, which will aid in defining novel therapies against human babesiosis.
Collapse
|
25
|
Chung HY, Bian Y, Lim KM, Kim BS, Choi SH. MARTX toxin of Vibrio vulnificus induces RBC phosphatidylserine exposure that can contribute to thrombosis. Nat Commun 2022; 13:4846. [PMID: 35978022 PMCID: PMC9385741 DOI: 10.1038/s41467-022-32599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
V. vulnificus-infected patients suffer from hemolytic anemia and circulatory lesions, often accompanied by venous thrombosis. However, the pathophysiological mechanism of venous thrombosis associated with V. vulnificus infection remains largely unknown. Herein, V. vulnificus infection at the sub-hemolytic level induced shape change of human red blood cells (RBCs) accompanied by phosphatidylserine exposure, and microvesicle generation, leading to the procoagulant activation of RBCs and ultimately, acquisition of prothrombotic activity. Of note, V. vulnificus exposed to RBCs substantially upregulated the rtxA gene encoding multifunctional autoprocessing repeats-in-toxin (MARTX) toxin. Mutant studies showed that V. vulnificus-induced RBC procoagulant activity was due to the pore forming region of the MARTX toxin causing intracellular Ca2+ influx in RBCs. In a rat venous thrombosis model triggered by tissue factor and stasis, the V. vulnificus wild type increased thrombosis while the ΔrtxA mutant failed to increase thrombosis, confirming that V. vulnificus induces thrombosis through the procoagulant activation of RBCs via the mediation of the MARTX toxin. The pathophysiological mechanism of venous thrombosis associated with Vibrio vulnificus infection remains largely unknown. In this work, the authors investigate this association, focusing on effects of the pore-forming MARTX toxin of V. vulnificus on red blood cells, and the utilisation of a rat venous thrombosis model.
Collapse
Affiliation(s)
- Han Young Chung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yiying Bian
- School of Public Health, China Medical University, Shenyang, 110122, People's Republic of China
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Byoung Sik Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
26
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
27
|
Amarapurkar P, Roberts L, Navarrete J, El Rassi F. Sickle Cell Disease and Kidney. Adv Chronic Kidney Dis 2022; 29:141-148.e1. [PMID: 35817521 DOI: 10.1053/j.ackd.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 11/11/2022]
Abstract
Sickle cell disease causes several kidney manifestations. They include defects in urine concentration, impaired handling of potassium and hydrogen ion, albuminuria, acute kidney injury, and chronic kidney disease to name a few. Glomerular hyperfiltration, tubular hyperfunctioning, endothelial damage from repeated sickling and vaso-occlusive episodes, and iron-induced proinflammatory changes in the glomerular mesangium and tubulointerstitium are some of the mechanisms of kidney damage. Albuminuria is one of the most and common clinical features of kidney disease and progresses with age. Kidney disease in patients with sickle cell is associated with increased mortality. Annual screening for proteinuria starting at age 10 years and limiting the use of nonsteroidal anti-inflammatory agents and the use of angiotensin-converting enzyme inhibitors may help in early detection and delaying the progression of kidney disease. Adequate hydration, angiotensin-converting enzyme inhibitors, and adequate control of sickle cell are the main stay of treatment for albuminuria. The hemoglobin goal for patients with sickle cell nephropathy is lesser (10 g/dL) than that for patients with chronic kidney disease due to other causes given that a higher hemoglobin level increases viscosity and the risk of precipitating vaso-occlusive episodes. A multidisciplinary approach is recommended for managing patients with sickle cell and kidney diseases.
Collapse
Affiliation(s)
- Pooja Amarapurkar
- Division of Renal Medicine, Emory University School of Medicine, Atlanta, GA.
| | - Levard Roberts
- Division of Renal Medicine, Emory University School of Medicine, Atlanta, GA
| | - Jose Navarrete
- Division of Renal Medicine, Emory University School of Medicine, Atlanta, GA
| | - Fuad El Rassi
- Associate Professor of Hematology and Medical Oncology, Emory University School of Medicine, Director of Sickle Cell Research, Georgia Comprehensive Sickle Cell Center at Grady Health System, Winship Cancer Institute of Emory University, Atlanta, GA
| |
Collapse
|
28
|
Sickle cell disorder—it’s time to level up. MED 2022; 3:83-84. [DOI: 10.1016/j.medj.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Escobar Alvarez SN, Myers ER. Impact of a grant program to spur advances in sickle cell disease research. Blood Adv 2021; 5:3855-3861. [PMID: 34570224 PMCID: PMC8679676 DOI: 10.1182/bloodadvances.2021005709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022] Open
Abstract
More than 20 years ago, clinical trials and federal grant support for sickle cell disease (SCD) research were not on par with support for other genetic diseases. Faced with the opportunity to spur research and advance treatments for SCD, and at the recommendation of advisors, the Doris Duke Charitable Foundation (DDCF) offered an SCD research funding opportunity starting in 2009 through its Innovations in Clinical Research Awards (ICRA) program. Twenty-eight new grants of $450 000 for direct costs over 3 years and 7 renewals were awarded, for a total investment of $17 million. Only about half the research teams garnered follow-on funding directly related to their ICRA projects, but the financial return on the research investment was substantial (∼4 times the original $17 million or 300%). All but 1 of the ICRA investigative teams published original research reports that acknowledged DDCF as a source of funding; the median number of publications per team was 3. Major innovations in the diagnosis and treatment of SCD included but were not limited to a demonstration that genetic modification of BCL11A enhancer is a potentially important treatment modality, establishment that plerixafor mobilization is safe and effective for those with SCD, development and validation of a new diagnostic called SCD BioChip, and evidence that hydroxyurea treatment is safe and efficacious in African children. These outcomes show that relatively small research grants can have a substantial return on investment and result in significant advances for a disease such as SCD.
Collapse
|
30
|
Soliman AT, Alaaraj N, Yassin M. The Effects of Treatment with Blood Transfusion, Iron Chelation and Hydroxyurea on Puberty, Growth and Spermatogenesis in Sickle Cell Disease (SCD): A short update. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021386. [PMID: 34487059 PMCID: PMC8477091 DOI: 10.23750/abm.v92i4.11917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/23/2022]
Abstract
Sickle cell disease (SCD) is traditionally associated with growth failure and delayed puberty. Wasting and stunting are still prevalent in children and adolescents with SCD, especially in developing countries. In addition, sperm abnormalities are frequent in males with SCD, with high rates of low sperm density, low sperm counts, poor motility, and increased abnormal morphology. Severe anaemia, vaso-occlusive attacks with ischemic injury to different organs including the pituitary gland and testis, and nutritional factors are incriminated in the pathogenesis of defective growth, puberty, and spermatogenesis. There is great phenotypic variability among patients with SCD. The variability in the clinical severity of SCD can partly be explained by genetic modifiers, including HbF level and co-inheritance of α-thalassaemia. In the past, severe disease led to early mortality. Advancements in treatment have allowed patients with SCD to have a longer and better quality of life. For most patients, the mainstays of treatment are preventive and supportive. For those with severe SCD, three major therapeutic options are currently available: erythrocyte transfusion or exchange, hydroxyurea and hematopoietic stem cell transplantation. In this mini review the authors tried to recognize, delineate, and update knowledge on abnormalities due to SCD from those created by the use of different treatment modalities. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Ashraf T Soliman
- Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar; Department of Hematology and Oncology, National Centre for Cancer Care and Research, Hamad Medical Corporation, Weill Cornell Medicine- Qatar (WCMCQ).
| | - Nada Alaaraj
- Department of Pediatrics, Hamad General Hospital, Doha, Qatar.
| | - Mohamed Yassin
- Department of Hematology and Oncology, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
31
|
Resolving thromboinflammation. Blood 2021; 137:1444-1446. [PMID: 33734338 DOI: 10.1182/blood.2020010627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Taylor CM, Kasztan M, Sedaka R, Molina PA, Dunaway LS, Pollock JS, Pollock DM. Hydroxyurea improves nitric oxide bioavailability in humanized sickle cell mice. Am J Physiol Regul Integr Comp Physiol 2021; 320:R630-R640. [PMID: 33624556 PMCID: PMC8163606 DOI: 10.1152/ajpregu.00205.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
Despite advancements in disease management, sickle cell nephropathy, a major contributor to mortality and morbidity in patients, has limited therapeutic options. Previous studies indicate hydroxyurea, a commonly prescribed therapy for sickle cell disease (SCD), can reduce renal injury in SCD but the mechanisms are uncertain. Because SCD is associated with reduced nitric oxide (NO) bioavailability, we hypothesized that hydroxyurea treatment would improve NO bioavailability in the humanized sickle cell mouse. Humanized male 12-wk-old sickle (HbSS) and genetic control (HbAA) mice were treated with hydroxyurea or regular tap water for 2 wk before renal and systemic NO bioavailability as well as renal injury were assessed. Untreated HbSS mice exhibited increased proteinuria, elevated plasma endothelin-1 (ET-1), and reduced urine concentrating ability compared with HbAA mice. Hydroxyurea reduced proteinuria and plasma ET-1 levels in HbSS mice. Untreated HbSS mice had reduced plasma nitrite and elevated plasma arginase concentrations compared with HbAA mice. Hydroxyurea treatment augmented plasma nitrite and attenuated plasma arginase in HbSS mice. Renal vessels isolated from HbSS mice also had elevated nitric oxide synthase 3 (NOS3) and arginase 2 expression compared with untreated HbAA mice. Hydroxyurea treatment did not alter renal vascular NOS3, however, renal vascular arginase 2 expression was significantly reduced. These data support the hypothesis that hydroxyurea treatment augments renal and systemic NO bioavailability by reducing arginase activity as a potential mechanism for the improvement on renal injury seen in SCD mice.
Collapse
Affiliation(s)
- Crystal M Taylor
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Malgorzata Kasztan
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Randee Sedaka
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patrick A Molina
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Luke S Dunaway
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer S Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - David M Pollock
- Section of Cardio-renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
33
|
Morikis VA, Hernandez AA, Magnani JL, Sperandio M, Simon SI. Targeting Neutrophil Adhesive Events to Address Vaso-Occlusive Crisis in Sickle Cell Patients. Front Immunol 2021; 12:663886. [PMID: 33995392 PMCID: PMC8113856 DOI: 10.3389/fimmu.2021.663886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are essential to protect the host against invading pathogens but can promote disease progression in sickle cell disease (SCD) by becoming adherent to inflamed microvascular networks in peripheral tissue throughout the body. During the inflammatory response, leukocytes extravasate from the bloodstream using selectin adhesion molecules and migrate to sites of tissue insult through activation of integrins that are essential for combating pathogens. However, during vaso-occlusion associated with SCD, neutrophils are activated during tethering and rolling on selectins upregulated on activated endothelium that line blood vessels. Recently, we reported that recognition of sLex on L-selectin by E-selectin during neutrophil rolling initiates shear force resistant catch-bonds that facilitate tethering to endothelium and activation of integrin bond clusters that anchor cells to the vessel wall. Evidence indicates that blocking this important signaling cascade prevents the congestion and ischemia in microvasculature that occurs from neutrophil capture of sickled red blood cells, which are normally deformable ellipses that flow easily through small blood vessels. Two recently completed clinical trials of therapies targeting selectins and their effect on neutrophil activation in small blood vessels reveal the importance of mechanoregulation that in health is an immune adaption facilitating rapid and proportional leukocyte adhesion, while sustaining tissue perfusion. We provide a timely perspective on the mechanism underlying vaso-occlusive crisis (VOC) with a focus on new drugs that target selectin mediated integrin adhesive bond formation.
Collapse
Affiliation(s)
- Vasilios A. Morikis
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | - Alfredo A. Hernandez
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | | | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center, Ludwig Maximilians University, Walter Brendel Center, Munich, Germany
| | - Scott I. Simon
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| |
Collapse
|
34
|
Plasma microparticles of sickle patients during crisis or taking hydroxyurea modify endothelium inflammatory properties. Blood 2021; 136:247-256. [PMID: 32285120 DOI: 10.1182/blood.2020004853] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022] Open
Abstract
Microparticles (MPs) are submicron extracellular vesicles exposing phosphatidylserine (PS), detected at high concentration in the circulation of sickle cell anemia (SS) patients. Several groups studied the biological effects of MPs generated ex vivo. Here, we analyzed for the first time the impact of circulating MPs on endothelial cells (ECs) from 60 sickle cell disease (SCD) patients. MPs were collected from SCD patients and compared with MPs isolated from healthy individuals (AA). Other plasma MPs were purified from SS patients before and 2 years after the onset of hydroxyurea (HU) treatment or during a vaso-occlusive crisis and at steady-state. Compared with AA MPs, SS MPs increased EC ICAM-1 messenger RNA and protein levels, as well as neutrophil adhesion. We showed that ICAM-1 overexpression was primarily caused by MPs derived from erythrocytes, rather than from platelets, and that it was abolished by MP PS capping using annexin V. MPs from SS patients treated with HU were less efficient to induce a proinflammatory phenotype in ECs compared with MPs collected before therapy. In contrast, MPs released during crisis increased ICAM-1 and neutrophil adhesion levels, in a PS-dependent manner, compared with MPs collected at steady-state. Furthermore, neutrophil adhesion was abolished by a blocking anti-ICAM-1 antibody. Our study provides evidence that MPs play a key role in SCD pathophysiology by triggering a proinflammatory phenotype of ECs. We also uncover a new mode of action for HU and identify potential therapeutics: annexin V and anti-ICAM-1 antibodies.
Collapse
|
35
|
Lei J, Paul J, Wang Y, Gupta M, Vang D, Thompson S, Jha R, Nguyen J, Valverde Y, Lamarre Y, Jones MK, Gupta K. Heme Causes Pain in Sickle Mice via Toll-Like Receptor 4-Mediated Reactive Oxygen Species- and Endoplasmic Reticulum Stress-Induced Glial Activation. Antioxid Redox Signal 2021; 34:279-293. [PMID: 32729340 PMCID: PMC7821434 DOI: 10.1089/ars.2019.7913] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Lifelong pain is a hallmark feature of sickle cell disease (SCD). How sickle pathobiology evokes pain remains unknown. We hypothesize that increased cell-free heme due to ongoing hemolysis activates toll-like receptor 4 (TLR4), leading to the formation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Together, these processes lead to spinal microglial activation and neuroinflammation, culminating in acute and chronic pain. Results: Spinal heme levels, TLR4 transcripts, oxidative stress, and ER stress were significantly higher in sickle mice than controls. In vitro, TLR4 inhibition in spinal cord microglial cells attenuated heme-induced ROS and ER stress. Heme treatment led to a time-dependent increase in the characteristic features of sickle pain (mechanical and thermal hyperalgesia) in both sickle and control mice; this effect was absent in TLR4-knockout sickle and control mice. TLR4 deletion in sickle mice attenuated chronic and hypoxia/reoxygenation (H/R)-evoked acute hyperalgesia. Sickle mice treated with the TLR4 inhibitor resatorvid; selective small-molecule inhibitor of TLR4 (TAK242) had significantly reduced chronic hyperalgesia and had less severe H/R-evoked acute pain with quicker recovery. Notably, reducing ER stress with salubrinal ameliorated chronic hyperalgesia in sickle mice. Innovation: Our findings demonstrate the causal role of free heme in the genesis of acute and chronic sickle pain and suggest that TLR4 and/or ER stress are novel therapeutic targets for treating pain in SCD. Conclusion: Heme-induced microglial activation via TLR4 in the central nervous system contributes to the initiation and maintenance of sickle pain via ER stress in SCD. Antioxid. Redox Signal. 34, 279-293.
Collapse
Affiliation(s)
- Jianxun Lei
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinny Paul
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ying Wang
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| | - Derek Vang
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan Thompson
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ritu Jha
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yessenia Valverde
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yann Lamarre
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael K Jones
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Southern California Institute for Research and Education, Long Beach, California, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Southern California Institute for Research and Education, Long Beach, California, USA
| |
Collapse
|
36
|
Cortabarria ASDV, Makhoul L, Strouboulis J, Lombardi G, Oteng-Ntim E, Shangaris P. In utero Therapy for the Treatment of Sickle Cell Disease: Taking Advantage of the Fetal Immune System. Front Cell Dev Biol 2021; 8:624477. [PMID: 33553164 PMCID: PMC7862553 DOI: 10.3389/fcell.2020.624477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Sickle Cell Disease (SCD) is an autosomal recessive disorder resulting from a β-globin gene missense mutation and is among the most prevalent severe monogenic disorders worldwide. Haematopoietic stem cell transplantation remains the only curative option for the disease, as most management options focus solely on symptom control. Progress in prenatal diagnosis and fetal therapeutic intervention raises the possibility of in utero treatment. SCD can be diagnosed prenatally in high-risk patients using chorionic villus sampling. Among the possible prenatal treatments, in utero stem cell transplantation (IUSCT) shows the most promise. IUSCT is a non-myeloablative, non-immunosuppressive alternative conferring various unique advantages and may also offer safer postnatal management. Fetal immunologic immaturity could allow engraftment of allogeneic cells before fetal immune system maturation, donor-specific tolerance and lifelong chimerism. In this review, we will discuss SCD, screening and current treatments. We will present the therapeutic rationale for IUSCT, examine the early experimental work and initial human experience, as well as consider primary barriers of clinically implementing IUSCT and the promising approaches to address them.
Collapse
Affiliation(s)
| | - Laura Makhoul
- GKT School of Medical Education, King's College London, London, United Kingdom
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Kings College London, London, United Kingdom
| | - Giovanna Lombardi
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Eugene Oteng-Ntim
- School of Life Course Sciences, Kings College London, London, United Kingdom
| | - Panicos Shangaris
- School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- School of Life Course Sciences, Kings College London, London, United Kingdom
| |
Collapse
|
37
|
Huang X, Li Y, Xu X, Wang R, Yao J, Han W, Wei M, Chen J, Xuan W, Sun L. High-Precision Lensless Microscope on a Chip Based on In-Line Holographic Imaging. SENSORS 2021; 21:s21030720. [PMID: 33494493 PMCID: PMC7865896 DOI: 10.3390/s21030720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/26/2023]
Abstract
The lensless on-chip microscope is an emerging technology in the recent decade that can realize the imaging and analysis of biological samples with a wide field-of-view without huge optical devices and any lenses. Because of its small size, low cost, and being easy to hold and operate, it can be used as an alternative tool for large microscopes in resource-poor or remote areas, which is of great significance for the diagnosis, treatment, and prevention of diseases. To improve the low-resolution characteristics of the existing lensless shadow imaging systems and to meet the high-resolution needs of point-of-care testing, here, we propose a high-precision on-chip microscope based on in-line holographic technology. We demonstrated the ability of the iterative phase recovery algorithm to recover sample information and evaluated it with image quality evaluation algorithms with or without reference. The results showed that the resolution of the holographic image after iterative phase recovery is 1.41 times that of traditional shadow imaging. Moreover, we used machine learning tools to identify and count the mixed samples of mouse ascites tumor cells and micro-particles that were iterative phase recovered. The results showed that the on-chip cell counter had high-precision counting characteristics as compared with manual counting of the microscope reference image. Therefore, the proposed high-precision lensless microscope on a chip based on in-line holographic imaging provides one promising solution for future point-of-care testing (POCT).
Collapse
|
38
|
Abstract
Sickle hepatopathy is an umbrella term describing various pattern of liver injury seen in patients with sickle cell disease. The disease is not uncommon in India; in terms of prevalence, India is second only to Sub-Saharan Africa where sickle cell disease is most prevalent. Hepatic involvement in sickle cell disease is not uncommon. Liver disease may result from viral hepatitis and iron overload due to multiple transfusions of blood products or due to disease activity causing varying changes in vasculature. The clinical spectrum of disease ranges from ischemic injury due to sickling of red blood cells in hepatic sinusoids, pigment gall stones, and acute/chronic sequestration syndromes. The sequestration syndromes are usually episodic and self-limiting requiring conservative management such as antibiotics and intravenous fluids or packed red cell transfusions. However, rarely these episodes may present with coagulopathy and encephalopathy like acute liver failure, which are life-threatening, requiring exchange transfusions or even liver transplantation. However, evidence for their benefits, optimal indications, and threshold to start exchange transfusion is limited. Similarly, there is paucity of the literature regarding the end point of exchange transfusion in this scenario. Liver transplantation may also be beneficial in end-stage liver disease. Hydroxyurea, the antitumor agent, which is popularly used to prevent life-threatening complications such as acute chest syndrome or stroke in these patients, has been used only sparingly in hepatic sequestrations. The purpose of this review is to provide insights into epidemiology of sickle cell disease in India and pathogenesis and classification of hepatobiliary involvement in sickle cell disease. Finally, various management options including exchange transfusion, liver transplantation, and hydroxyurea in hepatic sequestration syndromes will be discussed in brief.
Collapse
Key Words
- AASLD, American Association for the Study of Liver Diseases
- ACLF, Acute on chronic liver failure
- ALF, Acute liver failure
- ALT, Alanine transaminase
- AST, Aspartate transaminase
- FFP, Fresh frozen plasma
- GIT, Gastrointestinal tract
- HAV, Hepatitis A virus
- HBV, Hepatitis B virus
- HCV, Hepatitis C virus
- HEV, Hepatitis E virus
- HIC, Hepatic iron content
- HbS, Sickle hemoglobin
- HbSS, Sickle cell disease homozygous
- INR, International normalized ratio
- PT, Prothrombin time
- RUQ, Right upper quadrant
- SC, Scheduled caste
- SCD, Sickle cell disease
- SCIC, Sickle cell intrahepatic cholestasis
- ST, Scheduled tribe
- TJLB, Transjugular liver biopsy
- UDCA, Ursodeoxycholic acid
- cholelithiasis
- intrahepatic cholestasis
- sickle cell hepatopathy
- sickle cholangiopathy
- sickle hepatic crisis
Collapse
Affiliation(s)
| | - Anil C. Anand
- Address for correspondence. Anil C Anand, Professor and Head, Department of Gastroenterology & Hepatology, Kalinga Institute of Medical Sciences, Bhubneshwar, India.
| |
Collapse
|
39
|
Okoroiwu HU, López-Muñoz F, Povedano-Montero FJ. Bibliometric analysis of global sickle cell disease research from 1997 to 2017. Hematol Transfus Cell Ther 2020; 44:186-196. [PMID: 33423980 PMCID: PMC9123586 DOI: 10.1016/j.htct.2020.09.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/13/2020] [Accepted: 09/30/2020] [Indexed: 02/02/2023] Open
Abstract
Introduction Sickle cell disease is an autosomal recessive genetic disease caused by a single point mutation in the β-globin chain of the hemoglobin. It has been recognized by the World Health Organization as a public health priority since 2006. Methods The Scopus database was used in this study with the search descriptors: “sickle cell” and “sickle cell disease”. We applied common bibliometric indicators to evaluate the trend in scientific literature in sickle cell disease research. Results We retrieved a total of 19,921 pieces of scientific literature in the repertoire from 1997 to 2017. The Price law was fulfilled in the trend of production of scientific literature on SCD as the growth of scientific literature was more exponential (r = 0.9751; r2 = 0.9509) than linear (r = 0.9721; r2 = 0.9449). We observed a duplication time of 4.52 years. The Bradford core was made up of 69 journals with Blood at the top, publishing the greatest number of articles. The most productive institutions were mostly United States agencies and hospitals. The United States was the most productive country. The National Institute of Health was the most productive institution and also had the highest number of citations. Vichinsky E was the most productive author, while the most cited article was published by Circulation. Conclusion The growth of scientific literature in Sickle cell disease was found to be high. However, the exponential growth trend shows a “yet-to-be-explored” area of research. This study will be useful for physicians, researchers, research funders and policy-cum-decision makers.
Collapse
Affiliation(s)
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, Madrid, Spain; Hospital 12 de Octubre Research Institute (i+12), Madrid, Spain; Portucalense Institute of Neuropsychology and Cognitive and Behavioral Neurosciences (INPP), Portucalense University, Porto, Portugal; Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | - F Javier Povedano-Montero
- Hospital 12 de Octubre Research Institute (i+12), Madrid, Spain; School of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain; Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
40
|
Vats R, Liu S, Zhu J, Mukhi D, Tutuncuoglu E, Cardenes N, Singh S, Brzoska T, Kosar K, Bamne M, Jonassaint J, Michael AA, Watkins SC, Hillery C, Ma X, Nejak-Bowen K, Rojas M, Gladwin MT, Kato GJ, Ramakrishnan S, Sundd P, Monga SP, Pradhan-Sundd T. Impaired Bile Secretion Promotes Hepatobiliary Injury in Sickle Cell Disease. Hepatology 2020; 72:2165-2181. [PMID: 32190913 PMCID: PMC7923682 DOI: 10.1002/hep.31239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Hepatic crisis is an emergent complication affecting patients with sickle cell disease (SCD); however, the molecular mechanism of sickle cell hepatobiliary injury remains poorly understood. Using the knock-in humanized mouse model of SCD and SCD patient blood, we sought to mechanistically characterize SCD-associated hepato-pathophysiology applying our recently developed quantitative liver intravital imaging, RNA sequence analysis, and biochemical approaches. APPROACH AND RESULTS SCD mice manifested sinusoidal ischemia, progressive hepatomegaly, liver injury, hyperbilirubinemia, and increased ductular reaction under basal conditions. Nuclear factor kappa B (NF-κB) activation in the liver of SCD mice inhibited farnesoid X receptor (FXR) signaling and its downstream targets, leading to loss of canalicular bile transport and altered bile acid pool. Intravital imaging revealed impaired bile secretion into the bile canaliculi, which was secondary to loss of canalicular bile transport and bile acid metabolism, leading to intrahepatic bile accumulation in SCD mouse liver. Blocking NF-κB activation rescued FXR signaling and partially ameliorated liver injury and sinusoidal ischemia in SCD mice. CONCLUSIONS These findings identify that NF-κB/FXR-dependent impaired bile secretion promotes intrahepatic bile accumulation, which contributes to hepatobiliary injury of SCD. Improved understanding of these processes could potentially benefit the development of therapies to treat sickle cell hepatic crisis.
Collapse
Affiliation(s)
- Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Silvia Liu
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
| | - Dhanunjay Mukhi
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Egemen Tutuncuoglu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Nayra Cardenes
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sucha Singh
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Karis Kosar
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mikhil Bamne
- Sickle Cell Center for Excellence, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Jude Jonassaint
- Sickle Cell Center for Excellence, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Simon C. Watkins
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Cheryl Hillery
- Sickle Cell Center for Excellence, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kari Nejak-Bowen
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Mauricio Rojas
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Sickle Cell Center for Excellence, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Gregory J Kato
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Sickle Cell Center for Excellence, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sadeesh Ramakrishnan
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Sickle Cell Center for Excellence, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Satdarshan Pal Monga
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Sickle Cell Center for Excellence, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
41
|
Salama K, Rady R, Hashem RH, El-Ghamrawy M. Transcranial Doppler Velocities among Sickle Cell Disease Patients in Steady State. Hemoglobin 2020; 44:418-422. [PMID: 33164583 DOI: 10.1080/03630269.2020.1843483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transcranial Doppler (TCD) screening is an established tool to identify children with sickle cell disease at high risk of stroke. Our objective was to study TCD velocities among sickle cell disease patients while in a steady state. This cross-sectional study included 78 steady state sickle cell disease patients [31 Hb SS (βS/βS) (sickle cell anemia), 47 Hb S/β-thalassemia (HBB: c.20A>T/β-thal)], attending the Pediatric Hematology Clinic at Cairo University Children's Hospital, Cairo, Egypt. All patients underwent TCD velocity assessment as per the Stroke Prevention Trial in Sickle Cell Anemia (STOP) protocol. In our cohort, TCD velocities were comparable among Hb S/β-thal vs. SS patients. Hemolysis indicators correlated significantly to TCD velocities in Hb S/β-thal patients; positive correlation was found between total bilirubin level and right middle cerebral artery (MCA) and right distal internal carotid artery (dICA) TCD velocities (r = 0.428, p = 0.00, r = 0.360, p = 0.01), respectively as well as between reticulocyte count and right MCA, right dICA and right anterior cerebral artery (ACA) TCD velocities (r = 0.424, p = 0.01), (r = 0.40, p = 0.00), (r = 0.303, p = 0.04), respectively. On the other hand, statistically significant negative correlations were found between hemoglobin (Hb) level and right ACA, right dICA TCD velocities (r = -0.290, p = 0.05), (r = -0.324, p = 0.03). Although Hb F is considered an ameliorating factor for disease severity; hemolysis stands as an indicator of risk for TCD velocity elevation, and in turn, risk for stroke among sickle cell disease patients.
Collapse
Affiliation(s)
- Khaled Salama
- Department of Pediatrics, Pediatric Hematology & Bone Marrow Transplantation (BMT) Unit, Cairo University, Cairo, Egypt
| | - Rasha Rady
- Department of Pediatrics, Pediatric Hematology & Bone Marrow Transplantation (BMT) Unit, Cairo University, Cairo, Egypt
| | - Rania H Hashem
- Department of Diagnostic and Interventional Radiology, Cairo University, Cairo, Egypt
| | - Mona El-Ghamrawy
- Department of Pediatrics, Pediatric Hematology & Bone Marrow Transplantation (BMT) Unit, Cairo University, Cairo, Egypt
| |
Collapse
|
42
|
Role of the coagulation system in the pathogenesis of sickle cell disease. Blood Adv 2020; 3:3170-3180. [PMID: 31648337 DOI: 10.1182/bloodadvances.2019000193] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic red blood cell disorder affecting millions worldwide. SCD causes vascular occlusions, chronic hemolytic anemia, and cumulative organ damage such as nephropathy, pulmonary hypertension, pathologic heart remodeling, and liver necrosis. Coagulation system activation, a conspicuous feature of SCD that causes chronic inflammation, is an important component of SCD pathophysiology. The key coagulation factor, thrombin (factor IIa [FIIa]), is both a central protease in hemostasis and thrombosis and a key modifier of inflammation. Pharmacologic or genetic reduction of circulating prothrombin in Berkeley sickle mice significantly improves survival, ameliorates vascular inflammation, and results in markedly reduced end-organ damage. Accordingly, factors both upstream and downstream of thrombin, such as the tissue factor-FX complex, fibrinogen, platelets, von Willebrand factor, FXII, high-molecular-weight kininogen, etc, also play important roles in SCD pathogenesis. In this review, we discuss the various aspects of coagulation system activation and their roles in the pathophysiology of SCD.
Collapse
|
43
|
Estcourt LJ, Kimber C, Trivella M, Doree C, Hopewell S. Preoperative blood transfusions for sickle cell disease. Cochrane Database Syst Rev 2020; 7:CD003149. [PMID: 32614473 PMCID: PMC7389247 DOI: 10.1002/14651858.cd003149.pub4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Surgical interventions are more common in people with SCD, and occur at much younger ages than in the general population. Blood transfusions are frequently used prior to surgery and several regimens are used but there is no consensus over the best method or the necessity of transfusion in specific surgical cases. This is an update of a Cochrane Review. OBJECTIVES To determine whether there is evidence that preoperative blood transfusion in people with SCD undergoing elective or emergency surgery reduces mortality and perioperative or sickle cell-related serious adverse events. To compare the effectiveness of different transfusion regimens (aggressive or conservative) if preoperative transfusions are indicated in people with SCD. SEARCH METHODS We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 28 January 2020 We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 19 September 2019. SELECTION CRITERIA All randomised controlled trials and quasi-randomised controlled trials comparing preoperative blood transfusion regimens to different regimens or no transfusion in people with SCD undergoing elective or emergency surgery. There was no restriction by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility and the risk of bias and extracted data. MAIN RESULTS Three trials with 990 participants were eligible for inclusion in the review. There were no ongoing trials identified. These trials were conducted between 1988 and 2011. The majority of people included had haemoglobin (Hb) SS SCD. The majority of surgical procedures were considered low or intermediate risk for developing sickle cell-related complications. Aggressive versus simple red blood cell transfusions One trial (551 participants) compared an aggressive transfusion regimen (decreasing sickle haemoglobin to less than 30%) to a simple transfusion regimen (increasing haemoglobin to 100 g/L). This trial re-randomised participants and therefore quantitative analysis was only possible on two subsets of data: participants undergoing cholecystectomy (230 participants); and participants undergoing tonsillectomy or adenoidectomy surgeries (107 participants). Data were not combined as we do not know if any participant received both surgeries. Overall, the quality of the evidence was very low across different outcomes according to GRADE methodology. This was due to the trial being at high risk of bias primarily due to lack of blinding, indirectness and the outcome estimates being imprecise. Cholecystectomy subgroup results are reported in the abstract. Results for both subgroups were similar. There was no difference in all-cause mortality between people receiving aggressive transfusions and those receiving conservative transfusions. No deaths occurred in either subgroup. There were no differences between the aggressive transfusion group and conservative transfusion group in the number of people developing: • an acute chest syndrome, risk ratio (RR) 0.84 (95% confidence interval (CI) 0.38 to 1.84) (one trial, 230 participants, very low-quality evidence); • vaso-occlusive crisis, risk ratio 0.30 (95% CI 0.09 to 1.04) (one trial, 230 participants, very low quality evidence); • serious infection, risk ratio 1.75 (95% CI 0.59 to 5.18) (one trial, 230 participants, very low-quality evidence); • any perioperative complications, RR 0.75 (95% CI 0.36 to 1.55) (one trial, 230 participants, very low-quality evidence); • a transfusion-related complication, RR 1.85 (95% CI 0.89 to 3.88) (one trial, 230 participants, very low-quality evidence). Preoperative transfusion versus no preoperative transfusion Two trials (434 participants) compared a preoperative transfusion plus standard care to a group receiving standard care. Overall, the quality of the evidence was low to very low across different outcomes according to GRADE methodology. This was due to the trials being at high risk of bias due to lack of blinding, and outcome estimates being imprecise. One trial was stopped early because more people in the no transfusion arm developed an acute chest syndrome. There was no difference in all-cause mortality between people receiving preoperative transfusions and those receiving no preoperative transfusions (two trials, 434 participants, no deaths occurred). There was significant heterogeneity between the two trials in the number of people developing an acute chest syndrome, a meta-analysis was therefore not performed. One trial showed a reduced number of people developing acute chest syndrome between people receiving preoperative transfusions and those receiving no preoperative transfusions, risk ratio 0.11 (95% confidence interval 0.01 to 0.80) (65 participants), whereas the other trial did not, RR 4.81 (95% CI 0.23 to 99.61) (369 participants). There were no differences between the preoperative transfusion groups and the groups without preoperative transfusion in the number of people developing: • a vaso-occlusive crisis, Peto odds ratio (OR) 1.91 (95% confidence interval 0.61 to 6.04) (two trials, 434 participants, very low-quality evidence). • a serious infection, Peto OR 1.29 (95% CI 0.29 to 5.71) (two trials, 434 participants, very low-quality evidence); • any perioperative complications, RR 0.24 (95% CI 0.03 to 2.05) (one trial, 65 participants, low-quality evidence). There was an increase in the number of people developing circulatory overload in those receiving preoperative transfusions compared to those not receiving preoperative transfusions in one of the two trials, and no events were seen in the other trial (no meta-analysis performed). AUTHORS' CONCLUSIONS There is insufficient evidence from randomised trials to determine whether conservative preoperative blood transfusion is as effective as aggressive preoperative blood transfusion in preventing sickle-related or surgery-related complications in people with HbSS disease. There is very low quality evidence that preoperative blood transfusion may prevent development of acute chest syndrome. Due to lack of evidence this review cannot comment on management for people with HbSC or HbSβ+ disease or for those with high baseline haemoglobin concentrations.
Collapse
Affiliation(s)
- Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | | | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Sally Hopewell
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Biochemical and therapeutic effects of Omega-3 fatty acids in sickle cell disease. Complement Ther Med 2020; 52:102482. [PMID: 32951732 DOI: 10.1016/j.ctim.2020.102482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 01/29/2023] Open
Abstract
Sickle cell disease (SCD) is a hematologic disorder with complex pathophysiology that includes chronic hemolysis, vaso-occlusion and inflammation. Increased leukocyte-erythrocyte-endothelial interactions, due to upregulated expression of adhesion molecules and activated endothelium, are thought to play a primary role in initiation and progression of SCD vaso-occlusive crisis and end-organ damage. Several new pathophysiology-based therapeutic options for SCD are being developed, chiefly targeting the inflammatory pathways. Omega-3 fatty acids are polyunsaturated fatty acids that are known to have effects on diverse physiological processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are the principal biologically active omega-3 fatty acids. The therapeutic effects of DHA and EPA on chronic inflammatory disorders and cardiovascular diseases are well recognized. The therapeutic effects of omega-3 fatty acids are attributed to their anti-inflammatory and anti-thrombotic eicosanoids, and the novel class of EPA and DHA derived lipid mediators: resolvins, protectins and maresins. Blood cell membranes of patients with SCD have abnormal fatty acids composition characterized by high ratio of pro-inflammatory arachidonic acid (AA) to anti-inflammatory DHA and EPA (high omega-6/omega-3 ratio). In addition, experimental and clinical studies provide evidence that treatment with DHA does confer improvement in rheological properties of sickle RBC, inflammation and hemolysis. The clinical studies have shown improvements in VOC rate, markers of inflammation, adhesion, and hemolysis. In toto, the results of studies on the therapeutic effects of omega-3 fatty acids in SCD provide good body of evidence that omega-3 fatty acids could be a safe and effective treatment for SCD.
Collapse
|
45
|
Saha S, Chowdhury J. Understanding the structure and conformation of bovine hemoglobin in presence of the drug hydroxyurea: multi-spectroscopic studies supported by docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:3533-3547. [PMID: 32397828 DOI: 10.1080/07391102.2020.1766568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binding interaction between the small antitumor drug Hydroxyurea (HU) and Bovine Hemoglobin (BHb) has been explored in details from multi-spectroscopic and computational studies. The formation of ground state complex between BHb and HU has been suggested from the electronic UV-Vis and steady-state fluorescence spectroscopic studies. The quenching in fluorescence of BHb in presence of HU at varied concentrations has been analyzed from the SV plots. Static type of quenching has been suggested from time-resolved fluorescence spectroscopic studies. Binding parameters associated with the BHb-HU complex have also been estimated from the temperature dependent fluorescence spectroscopic studies. Alterations in the micro-environment of the Tyr and Trp residues of BHb in presence of HU have been observed from the synchronous fluorescence measurement. The result obtained from CD spectroscopic measurements signify partial unfolding in the secondary structure of BHb due to binding with HU molecule. The experimental observations are supported by theoretical studies. Molecular docking and molecular dynamics simulations have been performed to investigate the structural stability and compactness of BHb in the binding interaction between BHb and HU. The interaction of BHb with HU is expected to provide fundamental insights towards understanding the therapeutic effectiveness of HU upon interaction with BHb used in chemo-, radio therpeutic procedures and also in the treatment of SCD.
Collapse
Affiliation(s)
- Saumen Saha
- Department of Physics, Jadavpur University, Kolkata, India
| | | |
Collapse
|
46
|
de Azevedo JTC, Malmegrim KCR. Immune mechanisms involved in sickle cell disease pathogenesis: current knowledge and perspectives. Immunol Lett 2020; 224:1-11. [PMID: 32437728 DOI: 10.1016/j.imlet.2020.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the β-chain of the hemoglobin gene that results in the replacement of glutamic acid with valine in the hemoglobin protein. However, recent studies have demonstrated that alterations in several other genes, especially immune related genes, may be associated with complications of SCD. In fact, higher chronic inflammatory status is related to more severe clinical symptoms in SCD patients, suggesting crucial roles of the immune system in SCD physiopathology. Nevertheless, although participation of innate immune cells in SCD pathogenesis has been broadly and extensively described, little is known about the roles of the adaptive immune system in this disease. In addition, the influence of treatments on the immune system of SCD patients and their complications (such as alloimmunization) are not yet completely understood. Thus, we reviewed the current knowledge about the immune mechanisms involved in SCD pathogenesis. We suggest recommendations for future studies to allow for a broader understanding of SCD pathogenesis, helping in the development of new therapies and improvement in the life quality and expectancy of patients.
Collapse
Affiliation(s)
- Júlia Teixeira Cottas de Azevedo
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
47
|
Kalkan BM, Kala EY, Yuce M, Karadag Alpaslan M, Kocabas F. Development of gene editing strategies for human β-globin (HBB) gene mutations. Gene 2020; 734:144398. [PMID: 31987908 DOI: 10.1016/j.gene.2020.144398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
Recent developments in gene editing technology have enabled scientists to modify DNA sequence by using engineered endonucleases. These gene editing tools are promising candidates for clinical applications, especially for treatment of inherited disorders like sickle cell disease (SCD). SCD is caused by a point mutation in human β-globin gene (HBB). Clinical strategies have demonstrated substantial success, however there is not any permanent cure for SCD available. CRISPR/Cas9 platform uses a single endonuclease and a single guide RNA (gRNA) to induce sequence-specific DNA double strand break (DSB). When this accompanies a repair template, it allows repairing the mutated gene. In this study, it was aimed to target HBB gene via CRISPR/Cas9 genome editing tool to introduce nucleotide alterations for efficient genome editing and correction of point mutations causing SCD in human cell line, by Homology Directed Repair (HDR). We have achieved to induce target specific nucleotide changes on HBB gene in the locus of mutation causing SCD. The effect of on-target activity of bone fide standard gRNA and newly developed longer gRNA were examined. It is observed that longer gRNA has higher affinity to target DNA while having the same performance for targeting and Cas9 induced DSBs. HDR mechanism was triggered by co-delivery of donor DNA repair templates in circular plasmid form. In conclusion, we have suggested methodological pipeline for efficient targeting with higher affinity to target DNA and generating desired modifications on HBB gene.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Koc University, Istanbul, Turkey
| | - Ezgi Yagmur Kala
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Koc University, Istanbul, Turkey
| | - Melek Yuce
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Medine Karadag Alpaslan
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
48
|
Estcourt LJ, Kimber C, Hopewell S, Trivella M, Doree C, Abboud MR, Cochrane Cystic Fibrosis and Genetic Disorders Group. Interventions for preventing silent cerebral infarcts in people with sickle cell disease. Cochrane Database Syst Rev 2020; 4:CD012389. [PMID: 32250453 PMCID: PMC7134371 DOI: 10.1002/14651858.cd012389.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Silent cerebral infarcts are the commonest neurological complication in children and probably adults with SCD. Silent cerebral infarcts also affect academic performance, increase cognitive deficits and may lower intelligence quotient. OBJECTIVES To assess the effectiveness of interventions to reduce or prevent silent cerebral infarcts in people with SCD. SEARCH METHODS We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 14 November 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 07 October 2019. SELECTION CRITERIA Randomised controlled trials comparing interventions to prevent silent cerebral infarcts in people with SCD. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodological procedures. MAIN RESULTS We included five trials (660 children or adolescents) published between 1998 and 2016. Four of the five trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of SCD. One trial focused on preventing silent cerebral infarcts or stroke; three trials were for primary stroke prevention and one trial dealt with secondary stroke prevention. Three trials compared the use of regular long-term red blood cell transfusions to standard care. Two of these trials included children with no previous long-term transfusions: one in children with normal transcranial doppler (TCD) velocities; and one in children with abnormal TCD velocities. The third trial included children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children), and one in secondary prevention (children and adolescents). The quality of the evidence was moderate to very low across different outcomes according to GRADE methodology. This was due to trials being at high risk of bias because they were unblinded; indirectness (available evidence was only for children with HbSS); and imprecise outcome estimates. Long-term red blood cell transfusions versus standard care Children with no previous long-term transfusions and higher risk of stroke (abnormal TCD velocities or previous history of silent cerebral infarcts) Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, risk ratio (RR) 0.11 (95% confidence interval (CI) 0.02 to 0.86) (one trial, 124 participants, low-quality evidence); but make little or no difference to the incidence of silent cerebral infarcts in children with previous silent cerebral infarcts on magnetic resonance imaging and normal or conditional TCDs, RR 0.70 (95% CI 0.23 to 2.13) (one trial, 196 participants, low-quality evidence). No deaths were reported in either trial. Long-term red blood cell transfusions may reduce the incidence of: acute chest syndrome, RR 0.24 (95% CI 0.12 to 0.49) (two trials, 326 participants, low-quality evidence); and painful crisis, RR 0.63 (95% CI 0.42 to 0.95) (two trials, 326 participants, low-quality evidence); and probably reduces the incidence of clinical stroke, RR 0.12 (95% CI 0.03 to 0.49) (two trials, 326 participants, moderate-quality evidence). Long-term red blood cell transfusions may improve quality of life in children with previous silent cerebral infarcts (difference estimate -0.54; 95% confidence interval -0.92 to -0.17; one trial; 166 participants), but may have no effect on cognitive function (least squares means: 1.7, 95% CI -1.1 to 4.4) (one trial, 166 participants, low-quality evidence). Transfusions continued versus transfusions halted: children and adolescents with normalised TCD velocities (79 participants; one trial) Continuing red blood cell transfusions may reduce the incidence of silent cerebral infarcts, RR 0.29 (95% CI 0.09 to 0.97 (low-quality evidence). We are very uncertain whether continuing red blood cell transfusions has any effect on all-cause mortality, Peto odds ratio (OR) 8.00 (95% CI 0.16 to 404.12); or clinical stroke, RR 0.22 (95% CI 0.01 to 4.35) (very low-quality evidence). The trial did not report: comparative numbers for SCD-related adverse events; quality of life; or cognitive function. Hydroxyurea and phlebotomy versus transfusions and chelation Primary prevention, children (121 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts (no infarcts); all-cause mortality (no deaths); risk of stroke (no strokes); or SCD-related complications, RR 1.52 (95% CI 0.58 to 4.02) (very low-quality evidence). Secondary prevention, children and adolescents with a history of stroke (133 participants; one trial) We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts, Peto OR 7.28 (95% CI 0.14 to 366.91); all-cause mortality, Peto OR 1.02 (95%CI 0.06 to 16.41); or clinical stroke, RR 14.78 (95% CI 0.86 to 253.66) (very low-quality evidence). Switching to hydroxyurea and phlebotomy may increase the risk of SCD-related complications, RR 3.10 (95% CI 1.42 to 6.75) (low-quality evidence). Neither trial reported on quality of life or cognitive function. AUTHORS' CONCLUSIONS We identified no trials for preventing silent cerebral infarcts in adults, or in children who do not have HbSS SCD. Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, but may have little or no effect on children with normal TCD velocities. In children who are at higher risk of stroke and have not had previous long-term transfusions, long-term red blood cell transfusions probably reduce the risk of stroke, and other SCD-related complications (acute chest syndrome and painful crises). In children and adolescents at high risk of stroke whose TCD velocities have normalised, continuing red blood cell transfusions may reduce the risk of silent cerebral infarcts. No treatment duration threshold has been established for stopping transfusions. Switching to hydroxyurea with phlebotomy may increase the risk of silent cerebral infarcts and SCD-related serious adverse events in secondary stroke prevention. All other evidence in this review is of very low-quality.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | | | - Sally Hopewell
- University of OxfordNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS)Botnar Research Centre, Windmill RoadOxfordOxfordshireUKOX3 7LD
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Miguel R Abboud
- American University of Beirut Medical CenterDepartment of Pediatrics and Adolescent MedicineBeirutLebanon
| | | |
Collapse
|
49
|
Ito MT, da Silva Costa SM, Baptista LC, Carvalho-Siqueira GQ, Albuquerque DM, Rios VM, Ospina-Prieto S, Saez RC, Vieira KP, Cendes F, Ozelo MC, Saad STO, Costa FF, Melo MB. Angiogenesis-Related Genes in Endothelial Progenitor Cells May Be Involved in Sickle Cell Stroke. J Am Heart Assoc 2020; 9:e014143. [PMID: 32009522 PMCID: PMC7033889 DOI: 10.1161/jaha.119.014143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background The clinical aspects of sickle cell anemia (SCA) are heterogeneous, and different patients may present significantly different clinical evolutions. Almost all organs can be affected, particularly the central nervous system. Transient ischemic events, infarcts, and cerebral hemorrhage can be observed and affect ≈25% of the patients with SCA. Differences in the expression of molecules produced by endothelial cells may be associated with the clinical heterogeneity of patients affected by vascular diseases. In this study, we investigated the differential expression of genes involved in endothelial cell biology in SCA patients with and without stroke. Methods and Results Endothelial progenitor cells from 4 SCA patients with stroke and 6 SCA patients without stroke were evaluated through the polymerase chain reaction array technique. The analysis of gene expression profiling identified 29 differentially expressed genes. Eleven of these genes were upregulated, and most were associated with angiogenesis (55%), inflammatory response (18%), and coagulation (18%) pathways. Downregulated expression was observed in 18 genes, with the majority associated with angiogenesis (28%), apoptosis (28%), and cell adhesion (22%) pathways. Remarkable overexpression of the MMP1 (matrix metalloproteinase 1) gene in the endothelial progenitor cells of all SCA patients with stroke (fold change: 204.64; P=0.0004) was observed. Conclusions Our results strongly suggest that angiogenesis is an important process in sickle cell stroke, and differences in the gene expression profile of endothelial cell biology, especially MMP1, may be related to stroke in SCA patients.
Collapse
Affiliation(s)
- Mirta T Ito
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Sueli M da Silva Costa
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Letícia C Baptista
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | | | | | - Vinicius M Rios
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| | | | - Roberta C Saez
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Karla P Vieira
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory Department of Neurology University of Campinas, UNICAMP Campinas São Paulo Brazil
| | - Margareth C Ozelo
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Sara Teresinha O Saad
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Fernando F Costa
- Hematology and Hemotherapy Center University of Campinas-UNICAMP Campinas São Paulo Brazil
| | - Mônica B Melo
- Center for Molecular Biology and Genetic Engineering University of Campinas-UNICAMP Campinas São Paulo Brazil
| |
Collapse
|
50
|
Behera A, Kumar G, Sain A. Confined filaments in soft vesicles - the case of sickle red blood cells. SOFT MATTER 2020; 16:421-427. [PMID: 31799559 DOI: 10.1039/c9sm01872g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Abnormal shapes of red blood cells (RBC) have been associated with various diseases. Diverse RBC shapes have also been intriguing for membrane biophysics. Here we focus on sickle shaped RBC which form due to abnormal growth of semi-rigid hemoglobin (HbS) fibers confined in RBC. Using the area difference elasticity (ADE) model for RBC and worm-like chain model for the confined HbS fibers, we explore shape deformations at equilibrium using Monte-Carlo simulations. We show that while a single HbS fiber is not rigid enough to produce sickle like deformation, a fiber bundle can do so. We also consider multiple disjoint filaments and find that confinement can generate multipolar RBC shapes and can even promote helical filament conformations which have not been discussed before. We show that the same model, when applied to microtubules confined in phospholipid vesicles, predicts vesicle tubulation. In addition we reproduce the tube collapse transition and tennis racket type vesicle shapes, as reported in experiments. We conclude that with a decrease in the surface area to volume ratio, and membrane rigidity, the vesicles prefer tubulation over sickling. The highlight of this work is several important non-axisymmetric RBC and vesicle shapes, which have never been explored in simulations.
Collapse
Affiliation(s)
- Arabinda Behera
- Indian Institute Of Technology Bombay, Powai-400076, Mumbai, India.
| | | | | |
Collapse
|