1
|
Benarroch E. What Is the Role of Inner Membrane Metalloproteases in Mitochondrial Quality Control and Disease? Neurology 2025; 104:e213532. [PMID: 40184575 DOI: 10.1212/wnl.0000000000213532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 04/06/2025] Open
|
2
|
Dinkel L, Hummel S, Zenatti V, Malara M, Tillmann Y, Colombo A, Monasor LS, Suh JH, Logan T, Roth S, Paeger L, Hoffelner P, Bludau O, Schmidt A, Müller SA, Schifferer M, Nuscher B, Njavro JR, Prestel M, Bartos LM, Wind-Mark K, Slemann L, Hoermann L, Kunte ST, Gnörich J, Lindner S, Simons M, Herms J, Paquet D, Lichtenthaler SF, Bartenstein P, Franzmeier N, Liesz A, Grosche A, Bremova-Ertl T, Catarino C, Beblo S, Bergner C, Schneider SA, Strupp M, Di Paolo G, Brendel M, Tahirovic S. Myeloid cell-specific loss of NPC1 in mice recapitulates microgliosis and neurodegeneration in patients with Niemann-Pick type C disease. Sci Transl Med 2024; 16:eadl4616. [PMID: 39630885 DOI: 10.1126/scitranslmed.adl4616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Niemann-Pick type C (NPC) disease is an inherited lysosomal storage disorder mainly driven by mutations in the NPC1 gene, causing lipid accumulation within late endosomes/lysosomes and resulting in progressive neurodegeneration. Although microglial activation precedes neuronal loss, it remains elusive whether loss of the membrane protein NPC1 in microglia actively contributes to NPC pathology. In a mouse model with depletion of NPC1 in myeloid cells, we report severe alterations in microglial lipidomic profiles, including the enrichment of bis(monoacylglycero)phosphate, increased cholesterol, and a decrease in cholesteryl esters. Lipid dyshomeostasis was associated with microglial hyperactivity, marked by an increase in translocator protein 18 kDa (TSPO). These hyperactive microglia initiated a pathological cascade resembling NPC-like phenotypes, including a shortened life span, motor impairments, astrogliosis, neuroaxonal pathology, and increased neurofilament light chain (NF-L), a neuronal injury biomarker. As observed in the mouse model, patients with NPC showed increased NF-L in the blood and microglial hyperactivity, as visualized by TSPO-PET imaging. Reduced TSPO expression in blood-derived macrophages of patients with NPC was measured after N-acetyl-l-leucine treatment, which has been recently shown to have beneficial effects in patients with NPC, suggesting that TSPO is a potential marker to monitor therapeutic interventions for NPC. Conclusively, these results demonstrate that myeloid dysfunction, driven by the loss of NPC1, contributes to NPC disease and should be further investigated for therapeutic targeting and disease monitoring.
Collapse
Affiliation(s)
- Lina Dinkel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Selina Hummel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Valerio Zenatti
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Mariagiovanna Malara
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Yannik Tillmann
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | | | - Jung H Suh
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Todd Logan
- Denali Therapeutics Inc., South San Francisco, CA 94080, USA
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lars Paeger
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Patricia Hoffelner
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Planegg-Martinsried, Germany
| | - Oliver Bludau
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Andree Schmidt
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University, 82152 Planegg-Martinsried, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Brigitte Nuscher
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Jasenka Rudan Njavro
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Karin Wind-Mark
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Luna Slemann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Leonie Hoermann
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian T Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute of Neuronal Cell Biology (TUM-NZB), Technical University of Munich, 80802 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University München, 81377 Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Neuroproteomics School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Sahlgrenska Academy, Institute of Neuroscience and Physiology, SE-413 90 Mölndal and Gothenburg, Sweden
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatiana Bremova-Ertl
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Neurology, University Hospital Bern, 3010 Bern, Switzerland
| | - Claudia Catarino
- Friedrich Baur Institute, Department of Neurology, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Skadi Beblo
- Center for Pediatric Research Leipzig, Department of Women and Child Health, Hospital for Children and Adolescents, University Hospital Leipzig; Leipzig University Center for Rare Diseases, 04103 Leipzig, Germany
| | - Caroline Bergner
- Department of Neurology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Susanne A Schneider
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Michael Strupp
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | | | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| |
Collapse
|
3
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Koludarova L, Battersby BJ. Mitochondrial protein synthesis quality control. Hum Mol Genet 2024; 33:R53-R60. [PMID: 38280230 PMCID: PMC11112378 DOI: 10.1093/hmg/ddae012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/05/2023] [Indexed: 01/29/2024] Open
Abstract
Human mitochondrial DNA is one of the most simplified cellular genomes and facilitates compartmentalized gene expression. Within the organelle, there is no physical barrier to separate transcription and translation, nor is there evidence that quality control surveillance pathways are active to prevent translation on faulty mRNA transcripts. Mitochondrial ribosomes synthesize 13 hydrophobic proteins that require co-translational insertion into the inner membrane of the organelle. To maintain the integrity of the inner membrane, which is essential for organelle function, requires responsive quality control mechanisms to recognize aberrations in protein synthesis. In this review, we explore how defects in mitochondrial protein synthesis can arise due to the culmination of inherent mistakes that occur throughout the steps of gene expression. In turn, we examine the stepwise series of quality control processes that are needed to eliminate any mistakes that would perturb organelle homeostasis. We aim to provide an integrated view on the quality control mechanisms of mitochondrial protein synthesis and to identify promising avenues for future research.
Collapse
Affiliation(s)
- Lidiia Koludarova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Brendan J Battersby
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
5
|
Abstract
Mitochondria are multifunctional organelles that play a central role in a wide range of life-sustaining tasks in eukaryotic cells, including adenosine triphosphate (ATP) production, calcium storage and coenzyme generation pathways such as iron-sulfur cluster biosynthesis. The wide range of mitochondrial functions is carried out by a diverse array of proteins comprising approximately 1500 proteins or polypeptides. Degradation of these proteins is mainly performed by four AAA+ proteases localized in mitochondria. These AAA+ proteases play a quality control role in degrading damaged or misfolded proteins and perform various other functions. This chapter describes previously identified roles for these AAA+ proteases that are localized in the mitochondria of animal cells.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
6
|
Montoro-Gámez C, Nolte H, Molinié T, Evangelista G, Tröder SE, Barth E, Popovic M, Trifunovic A, Zevnik B, Langer T, Rugarli EI. SARM1 deletion delays cerebellar but not spinal cord degeneration in an enhanced mouse model of SPG7 deficiency. Brain 2023; 146:4117-4131. [PMID: 37086482 DOI: 10.1093/brain/awad136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023] Open
Abstract
Hereditary spastic paraplegia is a neurological condition characterized by predominant axonal degeneration in long spinal tracts, leading to weakness and spasticity in the lower limbs. The nicotinamide adenine dinucleotide (NAD+)-consuming enzyme SARM1 has emerged as a key executioner of axonal degeneration upon nerve transection and in some neuropathies. An increase in the nicotinamide mononucleotide/NAD+ ratio activates SARM1, causing catastrophic NAD+ depletion and axonal degeneration. However, the role of SARM1 in the pathogenesis of hereditary spastic paraplegia has not been investigated. Here, we report an enhanced mouse model for hereditary spastic paraplegia caused by mutations in SPG7. The eSpg7 knockout mouse carries a deletion in both Spg7 and Afg3l1, a redundant homologue expressed in mice but not in humans. The eSpg7 knockout mice recapitulate the phenotypic features of human patients, showing progressive symptoms of spastic-ataxia and degeneration of axons in the spinal cord as well as the cerebellum. We show that the lack of SPG7 rewires the mitochondrial proteome in both tissues, leading to an early onset decrease in mito-ribosomal subunits and a remodelling of mitochondrial solute carriers and transporters. To interrogate mechanisms leading to axonal degeneration in this mouse model, we explored the involvement of SARM1. Deletion of SARM1 delays the appearance of ataxic signs, rescues mitochondrial swelling and axonal degeneration of cerebellar granule cells and dampens neuroinflammation in the cerebellum. The loss of SARM1 also prevents endoplasmic reticulum abnormalities in long spinal cord axons, but does not halt the degeneration of these axons. Our data thus reveal a neuron-specific interplay between SARM1 and mitochondrial dysfunction caused by lack of SPG7 in hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Carolina Montoro-Gámez
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Thibaut Molinié
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Giovanna Evangelista
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Simon E Tröder
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Esther Barth
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Milica Popovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Aleksandra Trifunovic
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, University of Cologne, Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| | - Branko Zevnik
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- in vivo Research Facility, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Thomas Langer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
7
|
Jin T, Kuang Y, Luo S, Wang R, Chen K, Jiang M, Ren L, Sun Z, Duan L, Huang S. Novel compound heterozygous mutations in the AFG3L2 gene in a Chinese child with microcephaly, early-onset seizures, and cerebral atrophy. Heliyon 2023; 9:e14766. [PMID: 37025825 PMCID: PMC10070717 DOI: 10.1016/j.heliyon.2023.e14766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background The most common disease caused by biallelic AFG3L2 mutations is spastic ataxia type 5 (SPAX5). Identification of complex phenotypes resulting from biallelic AFG3L2 mutations has been increasing in recent years. Methods A retrospective analysis was performed on a child with microcephaly and recurrent seizures. The child underwent physical and neurological examinations, laboratory tests, electroencephalography (EEG), and brain magnetic resonance imaging (MRI). Trio-whole-exome sequencing (trio-WES) was performed to identify possible causative mutations. Results We described a child who exhibited early-onset and intractable epilepsy, developmental regression, microcephaly, and premature death. Neuroimaging revealed global cerebral atrophy (GCA) involving the cerebrum, cerebellum, corpus callosum, brainstem, cerebellar vermis, and basal ganglia. On trio-WES, two novel compound heterozygous mutations, c.1834G > T (p.E612*) and c.2176-6T > A in the AFG3L2 gene, were identified in this patient. Conclusions Our findings have expanded the mutation spectrum of the AFG3L2 gene and identified a severe neurodegenerative phenotype of global cerebral atrophy caused by biallelic AFG3L2 mutations.
Collapse
Affiliation(s)
- Tingting Jin
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Ying Kuang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Shulin Luo
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Rongpin Wang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Kun Chen
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Minmin Jiang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Lingyan Ren
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
| | - Zhaolin Sun
- School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- Corresponding author. School of Medicine, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Lifen Duan
- Epilepsy Center, Children's Hospital Affiliated of Kunming Medical University, Kunming, Yunnan 650000, China
- Corresponding author.
| | - Shengwen Huang
- Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China
- Corresponding author. Prenatal Diagnosis Center, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, China.
| |
Collapse
|
8
|
Synofzik M, Rugarli E, Reid E, Schüle R. Ataxia and spastic paraplegia in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:79-98. [PMID: 36813322 DOI: 10.1016/b978-0-12-821751-1.00009-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Degenerative ataxias and hereditary spastic paraplegias (HSPs) form a continuous, often overlapping disease spectrum sharing not only phenotypic features and underlying genes, but also cellular pathways and disease mechanisms. Mitochondrial metabolism presents a major molecular theme underlying both multiple ataxias and HSPs, thus indicating a heightened vulnerability of Purkinje cells, spinocerebellar tracts, and motor neurons to mitochondrial dysfunction, which is of particular interest for translational approaches. Mitochondrial dysfunction might be the primary (upstream) or secondary (downstream) result of a genetic defect, with underlying genetic defects in nuclear-encoded genes being much more frequent than in mtDNA genes in both, ataxias and HSPs. Here, we outline the substantial number of ataxias, spastic ataxias and HSPs caused by mutated genes implicated in (primary or secondary) mitochondrial dysfunction, highlighting several key "mitochondrial" ataxias and HSPs which are of particular interest for their frequency, pathogenesis and translational opportunities. We then showcase prototypic mitochondrial mechanisms by which disruption of these ataxia and HSP genes contributes to Purkinje cells or corticospinal neuron dysfunction, thus elucidating hypotheses on Purkinje cells and corticospinal neuron vulnerability to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Elena Rugarli
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Evan Reid
- Cambridge Institute for Medical Research and Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Center for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
| |
Collapse
|
9
|
Ahmad F, Ramamorthy S, Areeshi MY, Ashraf GM, Haque S. Isolated Mitochondrial Preparations and In organello Assays: A Powerful and Relevant Ex vivo Tool for Assessment of Brain (Patho)physiology. Curr Neuropharmacol 2023; 21:1433-1449. [PMID: 36872352 PMCID: PMC10324330 DOI: 10.2174/1570159x21666230303123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 03/07/2023] Open
Abstract
Mitochondria regulate multiple aspects of neuronal development, physiology, plasticity, and pathology through their regulatory roles in bioenergetic, calcium, redox, and cell survival/death signalling. While several reviews have addressed these different aspects, a comprehensive discussion focussing on the relevance of isolated brain mitochondria and their utilities in neuroscience research has been lacking. This is relevant because the employment of isolated mitochondria rather than their in situ functional evaluation, offers definitive evidence of organelle-specificity, negating the interference from extra mitochondrial cellular factors/signals. This mini-review was designed primarily to explore the commonly employed in organello analytical assays for the assessment of mitochondrial physiology and its dysfunction, with a particular focus on neuroscience research. The authors briefly discuss the methodologies for biochemical isolation of mitochondria, their quality assessment, and cryopreservation. Further, the review attempts to accumulate the key biochemical protocols for in organello assessment of a multitude of mitochondrial functions critical for neurophysiology, including assays for bioenergetic activity, calcium and redox homeostasis, and mitochondrial protein translation. The purpose of this review is not to examine each and every method or study related to the functional assessment of isolated brain mitochondria, but rather to assemble the commonly used protocols of in organello mitochondrial research in a single publication. The hope is that this review will provide a suitable platform aiding neuroscientists to choose and apply the required protocols and tools to address their particular mechanistic, diagnostic, or therapeutic question dealing within the confines of the research area of mitochondrial patho-physiology in the neuronal perspective.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Mohammed Y. Areeshi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
10
|
Pareek G. AAA+ proteases: the first line of defense against mitochondrial damage. PeerJ 2022; 10:e14350. [PMID: 36389399 PMCID: PMC9648348 DOI: 10.7717/peerj.14350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondria play essential cellular roles in Adenosine triphosphate (ATP) synthesis, calcium homeostasis, and metabolism, but these vital processes have potentially deadly side effects. The production of the reactive oxygen species (ROS) and the aggregation of misfolded mitochondrial proteins can lead to severe mitochondrial damage and even cell death. The accumulation of mitochondrial damage is strongly implicated in aging and several incurable diseases, including neurodegenerative disorders and cancer. To oppose this, metazoans utilize a variety of quality control strategies, including the degradation of the damaged mitochondrial proteins by the mitochondrial-resident proteases of the ATPase Associated with the diverse cellular Activities (AAA+) family. This mini-review focuses on the quality control mediated by the mitochondrial-resident proteases of the AAA+ family used to combat the accumulation of damaged mitochondria and on how the failure of this mitochondrial quality control contributes to diseases.
Collapse
|
11
|
Hindmarch CCT, Tian L, Xiong PY, Potus F, Bentley RET, Al-Qazazi R, Prins KW, Archer SL. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats. Front Physiol 2022; 13:966454. [PMID: 36388115 PMCID: PMC9664166 DOI: 10.3389/fphys.2022.966454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Aim: Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy that results in death from right ventricular failure (RVF). There is limited understanding of the molecular mechanisms of RVF in PAH. Methods: In a PAH-RVF model induced by injection of adult male rats with monocrotaline (MCT; 60 mg/kg), we performed mass spectrometry to identify proteins that change in the RV as a consequence of PAH induced RVF. Bioinformatic analysis was used to integrate our previously published RNA sequencing data from an independent cohort of PAH rats. Results: We identified 1,277 differentially regulated proteins in the RV of MCT rats compared to controls. Integration of MCT RV transcriptome and proteome data sets identified 410 targets that are concordantly regulated at the mRNA and protein levels. Functional analysis of these data revealed enriched functions, including mitochondrial metabolism, cellular respiration, and purine metabolism. We also prioritized 15 highly enriched protein:transcript pairs and confirmed their biological plausibility as contributors to RVF. We demonstrated an overlap of these differentially expressed pairs with data published by independent investigators using multiple PAH models, including the male SU5416-hypoxia model and several male rat strains. Conclusion: Multiomic integration provides a novel view of the molecular phenotype of RVF in PAH which includes dysregulation of pathways involving purine metabolism, mitochondrial function, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Charles Colin Thomas Hindmarch
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Quebec, Quebec City, QC, Canada
| | | | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Stephen L. Archer
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Stephen L. Archer,
| |
Collapse
|
12
|
Patron M, Tarasenko D, Nolte H, Kroczek L, Ghosh M, Ohba Y, Lasarzewski Y, Ahmadi ZA, Cabrera-Orefice A, Eyiama A, Kellermann T, Rugarli EI, Brandt U, Meinecke M, Langer T. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J 2022; 41:e110476. [PMID: 35912435 PMCID: PMC9379554 DOI: 10.15252/embj.2021110476] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Collapse
Affiliation(s)
- Maria Patron
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lara Kroczek
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yohsuke Ohba
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akinori Eyiama
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Tim Kellermann
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elena I Rugarli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Rumyantseva A, Popovic M, Trifunovic A. CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis. Brain 2022; 145:92-104. [PMID: 35240691 DOI: 10.1093/brain/awab303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 11/12/2022] Open
Abstract
Mitochondria are essential organelles found in every eukaryotic cell, required to convert food into usable energy. Therefore, it is not surprising that mutations in either mtDNA or nuclear DNA-encoded genes of mitochondrial proteins cause diseases affecting the oxidative phosphorylation system, which are heterogeneous from a clinical, genetic, biochemical and molecular perspective and can affect patients at any age. Despite all this, it is surprising that our understanding of the mechanisms governing mitochondrial gene expression and its associated pathologies remain superficial and therapeutic interventions largely unexplored. We recently showed that loss of the mitochondrial matrix protease caseinolytic protease proteolytic subunit (CLPP) ameliorates phenotypes in cells characterized by defects in oxidative phosphorylation maintenance. Here, we build upon this finding by showing that CLPP depletion is indeed beneficial in vivo for various types of neuronal populations, including Purkinje cells in the cerebellum and cortical and hippocampal neurons in the forebrain, as it strongly improves distinct phenotypes of mitochondria encephalopathy, driven by the deficiency of the mitochondrial aspartyl tRNA synthase DARS2. In the absence of CLPP, neurodegeneration of DARS2-deficient neurons is delayed as they present milder oxidative phosphorylation dysfunction. This in turn leads to a decreased neuroinflammatory response and significantly improved motor functions in both double-deficient models (Purkinje cell-specific or forebrain neuron-specific Dars2/Clpp double knockout mice). We propose that diminished turnover of respiratory complex I caused by the loss of CLPP is behind the improved phenotype in Dars2/Clpp double knockout animals, even though this intervention might not restore respiratory complex I activity but rather improve mitochondrial cristae morphology or help maintain the NAD+/NADH ratio inside mitochondria. These results also open the possibility of targeting CLPP activity in many other mitochondrial encephalopathies characterized by respiratory complex I instability.
Collapse
Affiliation(s)
- Anastasia Rumyantseva
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany.,Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany
| | - Milica Popovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany.,Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Medical Faculty, University of Cologne, D-50931 Cologne, Germany.,Institute for Mitochondrial Diseases and Ageing, Medical Faculty and Center for Molecular Medicine Cologne (CMMC), D-50931 Cologne, Germany
| |
Collapse
|
14
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
15
|
Rumyantseva A, Motori E, Trifunovic A. DARS2 is indispensable for Purkinje cell survival and protects against cerebellar ataxia. Hum Mol Genet 2021; 29:2845-2854. [PMID: 32766765 DOI: 10.1093/hmg/ddaa176] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation disorder (LBSL) arises from mutations in mitochondrial aspartyl-tRNA synthetase (DARS2) gene. The disease has a childhood or juvenile-onset and is clinically characterized by cerebellar ataxia, cognitive decline and distinct morphological abnormalities upon magnetic resonance imaging. We previously demonstrated that neurons and not adult myelin-producing cells are specifically sensitive to DARS2 loss, hence likely the primary culprit in LBSL disorder. We used conditional Purkinje cell (PCs)-specific Dars2 deletion to elucidate further the cell-type-specific contribution of this class of neurons to the cerebellar impairment observed in LBSL. We show that DARS2 depletion causes a severe mitochondrial dysfunction concomitant with a massive loss of PCs by the age of 15 weeks, thereby rapidly deteriorating motor skills. Our findings conclusively show that DARS2 is indispensable for PC survival and highlights the central role of neuroinflammation in DARS2-related PC degeneration.
Collapse
Affiliation(s)
- Anastasia Rumyantseva
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, Cologne D-50931 , Germany
| | - Elisa Motori
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne D-50931, Germany
| | - Aleksandra Trifunovic
- Institute for Mitochondrial Diseases and Aging, Medical Faculty, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, Cologne D-50931 , Germany
| |
Collapse
|
16
|
Chiang HL, Fuh JL, Tsai YS, Soong BW, Liao YC, Lee YC. Expanding the phenotype of AFG3L2 mutations: Late-onset autosomal recessive spinocerebellar ataxia. J Neurol Sci 2021; 428:117600. [PMID: 34333379 DOI: 10.1016/j.jns.2021.117600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/28/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
The AFG3L2 gene encodes AFG3-like protein 2, which is a subunit of human mitochondrial ATPases associated with various cellular protease activities (m-AAA). The clinical spectrum of AFG3L2 mutations is broad. Dominant AFG3L2 mutations can cause autosomal dominant spinocerebellar ataxia type 28 (SCA28), whereas biallelic AFG3L2 mutations may lead to spastic ataxia 5 (SPAX5). However, the role of AFG3L2 mutations in autosomal recessive spinocerebellar ataxia (SCAR) remains elusive. The aim of this study is to delineate the clinical features and spectrum of AFG3L2 mutations in a Taiwanese cohort with cerebellar ataxia. Mutational analyses of AFG3L2 were carried out by targeted resequencing in a cohort of 133 unrelated patients with molecularly undetermined cerebellar ataxia. We identified one single patient carrying compound heterozygous mutations in AFG3L2, p.[R632*];[V723M] (c.[1894C > T];[2167G > A]). The patient has suffered from apparently sporadic and slowly progressive cerebellar ataxia, ptosis, and ophthalmoparesis since age 55 years. These findings expand the clinical spectrum of AFG3L2 mutations and suggest a new subtype of late-onset SCAR caused by biallelic AFG3L2 mutations.
Collapse
Affiliation(s)
- Han-Lin Chiang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, No.155, Sec.2, Linong Street, Taipei, Taiwan
| | - Jong-Ling Fuh
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, No.155, Sec.2, Linong Street, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University School of Medicine. No.155, Sec.2, Linong Street, Taipei, Taiwan
| | - Yu-Shuen Tsai
- Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong Street, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Rd., Beitou District, Taipei, Taiwan; Department of Neurology, Shuang Ho Hospital, Taipei Medical University, No.291, Zhongzheng Rd., Zhonghe District, New Taipei 23561, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, No.155, Sec.2, Linong Street, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University School of Medicine. No.155, Sec.2, Linong Street, Taipei, Taiwan
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No.201, Sec.2, Shipai Rd., Beitou District, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University College of Medicine, No.155, Sec.2, Linong Street, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University School of Medicine. No.155, Sec.2, Linong Street, Taipei, Taiwan.
| |
Collapse
|
17
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Feng Y, Nouri K, Schimmer AD. Mitochondrial ATP-Dependent Proteases-Biological Function and Potential Anti-Cancer Targets. Cancers (Basel) 2021; 13:2020. [PMID: 33922062 PMCID: PMC8122244 DOI: 10.3390/cancers13092020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Cells must eliminate excess or damaged proteins to maintain protein homeostasis. To ensure protein homeostasis in the cytoplasm, cells rely on the ubiquitin-proteasome system and autophagy. In the mitochondria, protein homeostasis is regulated by mitochondria proteases, including four core ATP-dependent proteases, m-AAA, i-AAA, LonP, and ClpXP, located in the mitochondrial membrane and matrix. This review will discuss the function of mitochondrial proteases, with a focus on ClpXP as a novel therapeutic target for the treatment of malignancy. ClpXP maintains the integrity of the mitochondrial respiratory chain and regulates metabolism by degrading damaged and misfolded mitochondrial proteins. Inhibiting ClpXP genetically or chemically impairs oxidative phosphorylation and is toxic to malignant cells with high ClpXP expression. Likewise, hyperactivating the protease leads to increased degradation of ClpXP substrates and kills cancer cells. Thus, targeting ClpXP through inhibition or hyperactivation may be novel approaches for patients with malignancy.
Collapse
Affiliation(s)
- Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Kazem Nouri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (Y.F.); (K.N.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
19
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Ferrari A, Del'Olio S, Barrientos A. The Diseased Mitoribosome. FEBS Lett 2020; 595:1025-1061. [PMID: 33314036 DOI: 10.1002/1873-3468.14024] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria control life and death in eukaryotic cells. Harboring a unique circular genome, a by-product of an ancient endosymbiotic event, mitochondria maintains a specialized and evolutionary divergent protein synthesis machinery, the mitoribosome. Mitoribosome biogenesis depends on elements encoded in both the mitochondrial genome (the RNA components) and the nuclear genome (all ribosomal proteins and assembly factors). Recent cryo-EM structures of mammalian mitoribosomes have illuminated their composition and provided hints regarding their assembly and elusive mitochondrial translation mechanisms. A growing body of literature involves the mitoribosome in inherited primary mitochondrial disorders. Mutations in genes encoding mitoribosomal RNAs, proteins, and assembly factors impede mitoribosome biogenesis, causing protein synthesis defects that lead to respiratory chain failure and mitochondrial disorders such as encephalo- and cardiomyopathy, deafness, neuropathy, and developmental delays. In this article, we review the current fundamental understanding of mitoribosome assembly and function, and the clinical landscape of mitochondrial disorders driven by mutations in mitoribosome components and assembly factors, to portray how basic and clinical studies combined help us better understand both mitochondrial biology and medicine.
Collapse
Affiliation(s)
- Alberto Ferrari
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA
| | - Samuel Del'Olio
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Molecular and Cellular Pharmacology Graduate Program, University of Miami Miller School of Medicine, FL, USA
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
21
|
Pareek G, Pallanck LJ. Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression. PLoS Genet 2020; 16:e1009118. [PMID: 33075064 PMCID: PMC7595625 DOI: 10.1371/journal.pgen.1009118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/29/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The m-AAA proteases play a critical role in the proteostasis of inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a critical component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi allowed survival to the late pupal and adult stages of development. Flies with partial inactivation of AFG3L2 exhibited behavioral defects, neurodegeneration, accumulation of unfolded mitochondrial proteins, and diminished respiratory chain (RC) activity. Further work revealed that the reduced RC activity was primarily a consequence of severely diminished mitochondrial transcription and translation. These defects were accompanied by activation of the mitochondrial unfolded protein response (mito-UPR) and autophagy. Overexpression of mito-UPR components partially rescued the AFG3L2-deficient phenotypes, indicating that protein aggregation partly accounts for the defects of AFG3L2-deficient animals. Our work suggests that strategies designed to activate mitochondrial stress pathways and mitochondrial gene expression could be therapeutic in the diseases caused by mutations in AFG3L2.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, United States of America
- * E-mail:
| |
Collapse
|
22
|
Motori E, Atanassov I, Kochan SMV, Folz-Donahue K, Sakthivelu V, Giavalisco P, Toni N, Puyal J, Larsson NG. Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. SCIENCE ADVANCES 2020; 6:eaba8271. [PMID: 32923630 PMCID: PMC7455195 DOI: 10.1126/sciadv.aba8271] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/15/2020] [Indexed: 05/03/2023]
Abstract
Neurodegeneration in mitochondrial disorders is considered irreversible because of limited metabolic plasticity in neurons, yet the cell-autonomous implications of mitochondrial dysfunction for neuronal metabolism in vivo are poorly understood. Here, we profiled the cell-specific proteome of Purkinje neurons undergoing progressive OXPHOS deficiency caused by disrupted mitochondrial fusion dynamics. We found that mitochondrial dysfunction triggers a profound rewiring of the proteomic landscape, culminating in the sequential activation of precise metabolic programs preceding cell death. Unexpectedly, we identified a marked induction of pyruvate carboxylase (PCx) and other anaplerotic enzymes involved in replenishing tricarboxylic acid cycle intermediates. Suppression of PCx aggravated oxidative stress and neurodegeneration, showing that anaplerosis is protective in OXPHOS-deficient neurons. Restoration of mitochondrial fusion in end-stage degenerating neurons fully reversed these metabolic hallmarks, thereby preventing cell death. Our findings identify a previously unappreciated pathway conferring resilience to mitochondrial dysfunction and show that neurodegeneration can be reversed even at advanced disease stages.
Collapse
Affiliation(s)
- E. Motori
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Corresponding author. , (E.M.); (N.-G.L.)
| | - I. Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - S. M. V. Kochan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - K. Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - V. Sakthivelu
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - P. Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - N. Toni
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - J. Puyal
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - N.-G. Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Max Planck Institute for Biology of Ageing–Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Corresponding author. , (E.M.); (N.-G.L.)
| |
Collapse
|
23
|
Levis NA, Reed EMX, Pfennig DW, Burford Reiskind MO. Identification of candidate loci for adaptive phenotypic plasticity in natural populations of spadefoot toads. Ecol Evol 2020; 10:8976-8988. [PMID: 32884672 PMCID: PMC7452772 DOI: 10.1002/ece3.6602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Phenotypic plasticity allows organisms to alter their phenotype in direct response to changes in the environment. Despite growing recognition of plasticity's role in ecology and evolution, few studies have probed plasticity's molecular bases-especially using natural populations. We investigated the genetic basis of phenotypic plasticity in natural populations of spadefoot toads (Spea multiplicata). Spea tadpoles normally develop into an "omnivore" morph that is favored in long-lasting, low-density ponds. However, if tadpoles consume freshwater shrimp or other tadpoles, they can alternatively develop (via plasticity) into a "carnivore" morph that is favored in ephemeral, high-density ponds. By combining natural variation in pond ecology and morph production with population genetic approaches, we identified candidate loci associated with each morph (carnivores vs. omnivores) and loci associated with adaptive phenotypic plasticity (adaptive vs. maladaptive morph choice). Our candidate morph loci mapped to two genes, whereas our candidate plasticity loci mapped to 14 genes. In both cases, the identified genes tended to have functions related to their putative role in spadefoot tadpole biology. Our results thereby form the basis for future studies into the molecular mechanisms that mediate plasticity in spadefoots. More generally, these results illustrate how diverse loci might mediate adaptive plasticity.
Collapse
Affiliation(s)
| | - Emily M. X. Reed
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - David W. Pfennig
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | | |
Collapse
|
24
|
Lee RG, Gao J, Siira SJ, Shearwood AM, Ermer JA, Hofferek V, Mathews JC, Zheng M, Reid GE, Rackham O, Filipovska A. Cardiolipin is required for membrane docking of mitochondrial ribosomes and protein synthesis. J Cell Sci 2020; 133:jcs240374. [PMID: 32576663 DOI: 10.1242/jcs.240374] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial inner membrane contains a unique phospholipid known as cardiolipin (CL), which stabilises the protein complexes embedded in the membrane and supports its overall structure. Recent evidence indicates that the mitochondrial ribosome may associate with the inner membrane to facilitate co-translational insertion of the hydrophobic oxidative phosphorylation (OXPHOS) proteins into the inner membrane. We generated three mutant knockout cell lines for the CL biosynthesis gene Crls1 to investigate the effects of CL loss on mitochondrial protein synthesis. Reduced CL levels caused altered mitochondrial morphology and transcriptome-wide changes that were accompanied by uncoordinated mitochondrial translation rates and impaired respiratory chain supercomplex formation. Aberrant protein synthesis was caused by impaired formation and distribution of mitochondrial ribosomes. Reduction or loss of CL resulted in divergent mitochondrial and endoplasmic reticulum stress responses. We show that CL is required to stabilise the interaction of the mitochondrial ribosome with the membrane via its association with OXA1 (also known as OXA1L) during active translation. This interaction facilitates insertion of newly synthesised mitochondrial proteins into the inner membrane and stabilises the respiratory supercomplexes.
Collapse
Affiliation(s)
- Richard G Lee
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Junjie Gao
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Anne-Marie Shearwood
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Judith A Ermer
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Vinzenz Hofferek
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James C Mathews
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Minghao Zheng
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Gavin E Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
25
|
Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci 2020; 14:707. [PMID: 32765211 PMCID: PMC7378801 DOI: 10.3389/fnins.2020.00707] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative diseases that share convergent disease features. A common symptom of these diseases is development of ataxia, involving impaired balance and motor coordination, usually stemming from cerebellar dysfunction and neurodegeneration. For most spinocerebellar ataxias, pathology can be attributed to an underlying gene mutation and the impaired function of the encoded protein through loss or gain-of-function effects. Strikingly, despite vast heterogeneity in the structure and function of disease-causing genes across the SCAs and the cellular processes affected, the downstream effects have considerable overlap, including alterations in cerebellar circuitry. Interestingly, aberrant function and degeneration of Purkinje cells, the major output neuronal population present within the cerebellum, precedes abnormalities in other neuronal populations within many SCAs, suggesting that Purkinje cells have increased vulnerability to cellular perturbations. Factors that are known to contribute to perturbed Purkinje cell function in spinocerebellar ataxias include altered gene expression resulting in altered expression or functionality of proteins and channels that modulate membrane potential, downstream impairments in intracellular calcium homeostasis and changes in glutamatergic input received from synapsing climbing or parallel fibers. This review will explore this enhanced vulnerability and the aberrant cerebellar circuitry linked with it in many forms of SCA. It is critical to understand why Purkinje cells are vulnerable to such insults and what overlapping pathogenic mechanisms are occurring across multiple SCAs, despite different underlying genetic mutations. Enhanced understanding of disease mechanisms will facilitate the development of treatments to prevent or slow progression of the underlying neurodegenerative processes, cerebellar atrophy and ataxic symptoms.
Collapse
Affiliation(s)
| | | | - Angela S. Laird
- Centre for Motor Neuron Disease Research, Department of Biomedical Science, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
26
|
Xiao Y, Liu L, Zhang T, Zhou R, Ren Y, Li X, Shu H, Ye W, Zheng X, Zhang Z, Zhang H. Transcription factor MoMsn2 targets the putative 3-methylglutaconyl-CoA hydratase-encoding gene MoAUH1 to govern infectious growth via mitochondrial fusion/fission balance in Magnaporthe oryzae. Environ Microbiol 2020; 23:774-790. [PMID: 32431008 DOI: 10.1111/1462-2920.15088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023]
Abstract
Mitochondrial quality and quantity are essential for a cell to maintain normal cellular functions. Our previous study revealed that the transcription factor MoMsn2 plays important roles in the development and virulence of Magnaporthe oryzae. However, to date, no study has reported its underlying regulatory mechanism in phytopathogens. Here, we explored the downstream target genes of MoMsn2 using a chromatin immunoprecipitation sequencing (ChIP-Seq) approach. In total, 332 target genes and five putative MoMsn2-binding sites were identified. The 332 genes exhibited a diverse array of functions and the highly represented were genes involved in metabolic and catalytic processes. Based on the ChIP-Seq data, we found that MoMsn2 plays a role in maintaining mitochondrial morphology, likely by targeting a number of mitochondria-related genes. Further investigation revealed that MoMsn2 targets the putative 3-methylglutaconyl-CoA hydratase-encoding gene (MoAUH1) to control mitochondrial morphology and mitophagy, which are critical for the infectious growth of the pathogen. Meanwhile, the deletion of MoAUH1 resulted in phenotypes similar to the ΔMomsn2 mutant in mitochondrial morphology, mitophagy and virulence. Overall, our results provide evidence for the regulatory mechanisms of MoMsn2, which targets MoAUH1 to modulate its transcript levels, thereby disturbing the mitochondrial fusion/fission balance. This ultimately affects the development and virulence of M. oryzae.
Collapse
Affiliation(s)
- Yuhan Xiao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luping Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ting Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ruiwen Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuan Ren
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinrui Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
27
|
Caporali L, Magri S, Legati A, Del Dotto V, Tagliavini F, Balistreri F, Nasca A, La Morgia C, Carbonelli M, Valentino ML, Lamantea E, Baratta S, Schöls L, Schüle R, Barboni P, Cascavilla ML, Maresca A, Capristo M, Ardissone A, Pareyson D, Cammarata G, Melzi L, Zeviani M, Peverelli L, Lamperti C, Marzoli SB, Fang M, Synofzik M, Ghezzi D, Carelli V, Taroni F. ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy. Ann Neurol 2020; 88:18-32. [PMID: 32219868 PMCID: PMC7383914 DOI: 10.1002/ana.25723] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Del Dotto
- Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Francesca Balistreri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Maria L Valentino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eleonora Lamantea
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Piero Barboni
- Studio Oculistico D'Azeglio, Bologna, Italy.,IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Mariantonietta Capristo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Anna Ardissone
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriella Cammarata
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Lisa Melzi
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Massimo Zeviani
- Department of Neuroscience, University of Padua, Padua, Italy
| | - Lorenzo Peverelli
- Neurology Unit, Azienda Socio Sanitaria Territoriale Lodi, Ospedale Maggiore di Lodi, Lodi, Italy
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania B Marzoli
- Neuro-Ophthalmology Center and Ocular Electrophysiology Laboratory, IRCCS Istituto Auxologico Italiano, Capitanio Hospital, Milan, Italy
| | - Mingyan Fang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Neurology Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
28
|
Deshwal S, Fiedler KU, Langer T. Mitochondrial Proteases: Multifaceted Regulators of Mitochondrial Plasticity. Annu Rev Biochem 2020; 89:501-528. [PMID: 32075415 DOI: 10.1146/annurev-biochem-062917-012739] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are essential metabolic hubs that dynamically adapt to physiological demands. More than 40 proteases residing in different compartments of mitochondria, termed mitoproteases, preserve mitochondrial proteostasis and are emerging as central regulators of mitochondrial plasticity. These multifaceted enzymes limit the accumulation of short-lived, regulatory proteins within mitochondria, modulate the activity of mitochondrial proteins by protein processing, and mediate the degradation of damaged proteins. Various signaling cascades coordinate the activity of mitoproteases to preserve mitochondrial homeostasis and ensure cell survival. Loss of mitoproteases severely impairs the functional integrity of mitochondria, is associated with aging, and causes pleiotropic diseases. Understanding the dual function of mitoproteases as regulatory and quality control enzymes will help unravel the role of mitochondrial plasticity in aging and disease.
Collapse
Affiliation(s)
- Soni Deshwal
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Kai Uwe Fiedler
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany;
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
29
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
30
|
Battersby BJ, Richter U, Safronov O. Mitochondrial Nascent Chain Quality Control Determines Organelle Form and Function. ACS Chem Biol 2019; 14:2396-2405. [PMID: 31498990 DOI: 10.1021/acschembio.9b00518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteotoxicity has long been considered a key factor in mitochondrial dysfunction and human disease. The origin of the endogenous offending toxic substrates and the regulatory pathways to deal with these insults, however, have remained unclear. Mitochondria maintain a compartmentalized gene expression system that in animals is only responsible for synthesis of 1% of the organelle proteome. Because of the relatively small contribution of the mitochondrial genome to the overall proteome, the synthesis and quality control of these nascent chains to maintain organelle proteostasis has long been overlooked. However, recent research has uncovered mechanisms by which defects to the quality control of mitochondrial gene expression are linked to a novel cellular stress response that impinges upon organelle form and function and cell fitness. In this review, we discuss the mechanisms for a key event in the response: activation of the metalloprotease OMA1. This severs the membrane tether of the dynamin-related GTPase OPA1, which is a critical determinant for mitochondrial morphology and function. We also highlight the evolutionary conservation from bacteria of these quality-control mechanisms to maintain membrane integrity, gene expression, and cell fitness.
Collapse
Affiliation(s)
| | - Uwe Richter
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Omid Safronov
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
31
|
Puchades C, Ding B, Song A, Wiseman RL, Lander GC, Glynn SE. Unique Structural Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for Activity in Health and Disease. Mol Cell 2019; 75:1073-1085.e6. [PMID: 31327635 PMCID: PMC6731152 DOI: 10.1016/j.molcel.2019.06.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/24/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022]
Abstract
Mitochondrial AAA+ quality-control proteases regulate diverse aspects of mitochondrial biology through specialized protein degradation, but the underlying mechanisms of these enzymes remain poorly defined. The mitochondrial AAA+ protease AFG3L2 is of particular interest, as genetic mutations localized throughout AFG3L2 are linked to diverse neurodegenerative disorders. However, a lack of structural data has limited our understanding of how mutations impact enzymatic function. Here, we used cryoelectron microscopy (cryo-EM) to determine a substrate-bound structure of the catalytic core of human AFG3L2. This structure identifies multiple specialized structural features that integrate with conserved motifs required for ATP-dependent translocation to unfold and degrade targeted proteins. Many disease-relevant mutations localize to these unique structural features of AFG3L2 and distinctly influence its activity and stability. Our results provide a molecular basis for neurological phenotypes associated with different AFG3L2 mutations and establish a structural framework to understand how different members of the AAA+ superfamily achieve specialized biological functions.
Collapse
Affiliation(s)
- Cristina Puchades
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bojian Ding
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Albert Song
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
32
|
Sprenger HG, Wani G, Hesseling A, König T, Patron M, MacVicar T, Ahola S, Wai T, Barth E, Rugarli EI, Bergami M, Langer T. Loss of the mitochondrial i-AAA protease YME1L leads to ocular dysfunction and spinal axonopathy. EMBO Mol Med 2019; 11:emmm.201809288. [PMID: 30389680 PMCID: PMC6328943 DOI: 10.15252/emmm.201809288] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i‐AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin‐like GTPase OPA1. Mutations in YME1L cause a multi‐systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell‐type‐specific defects in mice lacking YME1L in the nervous system. YME1L‐deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects.
Collapse
Affiliation(s)
- Hans-Georg Sprenger
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Gulzar Wani
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Annika Hesseling
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim König
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Maria Patron
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas MacVicar
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sofia Ahola
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany.,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Timothy Wai
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Esther Barth
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Matteo Bergami
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Cologne, Germany .,Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Abstract
Mitochondria are metabolic hubs that use multiple proteases to maintain proteostasis and to preserve their overall quality. A decline of mitochondrial proteolysis promotes cellular stress and may contribute to the aging process. Mitochondrial proteases have also emerged as tightly regulated enzymes required to support the remarkable mitochondrial plasticity necessary for metabolic adaptation in a number of physiological scenarios. Indeed, the mutation and dysfunction of several mitochondrial proteases can cause specific human diseases with severe metabolic phenotypes. Here, we present an overview of the proteolytic regulation of key mitochondrial functions such as respiration, lipid biosynthesis, and mitochondrial dynamics, all of which are required for metabolic control. We also pay attention to how mitochondrial proteases are acutely regulated in response to cellular stressors or changes in growth conditions, a greater understanding of which may one day uncover their therapeutic potential.
Collapse
|
34
|
Spinocerebellar Ataxia Type 28—Phenotypic and Molecular Characterization of a Family with Heterozygous and Compound-Heterozygous Mutations in AFG3L2. THE CEREBELLUM 2019; 18:817-822. [DOI: 10.1007/s12311-019-01036-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Chen X, Glytsou C, Zhou H, Narang S, Reyna DE, Lopez A, Sakellaropoulos T, Gong Y, Kloetgen A, Yap YS, Wang E, Gavathiotis E, Tsirigos A, Tibes R, Aifantis I. Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment. Cancer Discov 2019; 9:890-909. [PMID: 31048321 DOI: 10.1158/2159-8290.cd-19-0117] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
The BCL2 family plays important roles in acute myeloid leukemia (AML). Venetoclax, a selective BCL2 inhibitor, has received FDA approval for the treatment of AML. However, drug resistance ensues after prolonged treatment, highlighting the need for a greater understanding of the underlying mechanisms. Using a genome-wide CRISPR/Cas9 screen in human AML, we identified genes whose inactivation sensitizes AML blasts to venetoclax. Genes involved in mitochondrial organization and function were significantly depleted throughout our screen, including the mitochondrial chaperonin CLPB. We demonstrated that CLPB is upregulated in human AML, it is further induced upon acquisition of venetoclax resistance, and its ablation sensitizes AML to venetoclax. Mechanistically, CLPB maintains the mitochondrial cristae structure via its interaction with the cristae-shaping protein OPA1, whereas its loss promotes apoptosis by inducing cristae remodeling and mitochondrial stress responses. Overall, our data suggest that targeting mitochondrial architecture may provide a promising approach to circumvent venetoclax resistance. SIGNIFICANCE: A genome-wide CRISPR/Cas9 screen reveals genes involved in mitochondrial biological processes participate in the acquisition of venetoclax resistance. Loss of the mitochondrial protein CLPB leads to structural and functional defects of mitochondria, hence sensitizing AML cells to apoptosis. Targeting CLPB synergizes with venetoclax and the venetoclax/azacitidine combination in AML in a p53-independent manner.See related commentary by Savona and Rathmell, p. 831.This article is highlighted in the In This Issue feature, p. 813.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Christina Glytsou
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - Sonali Narang
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Denis E Reyna
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Andrea Lopez
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Theodore Sakellaropoulos
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Yixiao Gong
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andreas Kloetgen
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Yoon Sing Yap
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Eric Wang
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York.,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, New York
| | - Raoul Tibes
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York.
| | - Iannis Aifantis
- Department of Pathology, NYU Langone Health and NYU School of Medicine, New York, New York. .,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health and NYU School of Medicine, New York, New York
| |
Collapse
|
36
|
Murru S, Hess S, Barth E, Almajan ER, Schatton D, Hermans S, Brodesser S, Langer T, Kloppenburg P, Rugarli EI. Astrocyte-specific deletion of the mitochondrial m-AAA protease reveals glial contribution to neurodegeneration. Glia 2019; 67:1526-1541. [PMID: 30989755 PMCID: PMC6618114 DOI: 10.1002/glia.23626] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction causes neurodegeneration but whether impairment of mitochondrial homeostasis in astrocytes contributes to this pathological process remains largely unknown. The m‐AAA protease exerts quality control and regulatory functions crucial for mitochondrial homeostasis. AFG3L2, which encodes one of the subunits of the m‐AAA protease, is mutated in spinocerebellar ataxia SCA28 and in infantile syndromes characterized by spastic‐ataxia, epilepsy and premature death. Here, we investigate the role of Afg3l2 and its redundant homologue Afg3l1 in the Bergmann glia (BG), radial astrocytes of the cerebellum that have functional connections with Purkinje cells (PC) and regulate glutamate homeostasis. We show that astrocyte‐specific deletion of Afg3l2 in the mouse leads to late‐onset motor impairment and to degeneration of BG, which display aberrant morphology, altered expression of the glutamate transporter EAAT2, and a reactive inflammatory signature. The neurological and glial phenotypes are drastically exacerbated when astrocytes lack both Afg31l and Afg3l2, and therefore, are totally depleted of the m‐AAA protease. Moreover, mitochondrial stress responses and necroptotic markers are induced in the cerebellum. In both mouse models, targeted BG show a fragmented mitochondrial network and loss of mitochondrial cristae, but no signs of respiratory dysfunction. Importantly, astrocyte‐specific deficiency of Afg3l1 and Afg3l2 triggers secondary morphological degeneration and electrophysiological changes in PCs, thus demonstrating a non‐cell‐autonomous role of glia in neurodegeneration. We propose that astrocyte dysfunction amplifies both neuroinflammation and glutamate excitotoxicity in patients carrying mutations in AFG3L2, leading to a vicious circle that contributes to neuronal death.
Collapse
Affiliation(s)
- Sara Murru
- Department of Biology, Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Simon Hess
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Department of Biology, Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Esther Barth
- Department of Biology, Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eva R Almajan
- Department of Biology, Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Désirée Schatton
- Department of Biology, Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Steffen Hermans
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thomas Langer
- Department of Mitochondrial Proteostasis, Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Peter Kloppenburg
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Department of Biology, Institute for Zoology, Biocenter, University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Department of Biology, Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Gennaro VJ, Wedegaertner H, McMahon SB. Interaction between the BAG1S isoform and HSP70 mediates the stability of anti-apoptotic proteins and the survival of osteosarcoma cells expressing oncogenic MYC. BMC Cancer 2019; 19:258. [PMID: 30902071 PMCID: PMC6429775 DOI: 10.1186/s12885-019-5454-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Background The oncoprotein MYC has the dual capacity to drive cell cycle progression or induce apoptosis, depending on the cellular context. BAG1 was previously identified as a transcriptional target of MYC that functions as a critical determinant of this cell fate decision. The BAG1 protein is expressed as multiple isoforms, each having an array of distinct biochemical functions; however, the specific effector function of BAG1 that directs MYC-dependent cell survival has not been defined. Methods In our studies the human osteosarcoma line U2OS expressing a conditional MYC-ER allele was used to induce oncogenic levels of MYC. We interrogated MYC-driven survival processes by modifying BAG1 protein expression. The function of the separate BAG1 isoforms was investigated by depleting cells of endogenous BAG1 and reintroducing the distinct isoforms. Flow cytometry and immunoblot assays were performed to analyze the effect of specific BAG1 isoforms on MYC-dependent apoptosis. These experiments were repeated to determine the role of the HSP70 chaperone complex in BAG1 survival processes. Finally, a proteomic approach was used to identify a set of specific pro-survival proteins controlled by the HSP70/BAG1 complex. Results Loss of BAG1 resulted in robust MYC-induced apoptosis. Expression of the larger isoforms of BAG1, BAG1L and BAG1M, were insufficient to rescue survival in cells with oncogenic levels of MYC. Alternatively, reintroduction of BAG1S significantly reduced the level of apoptosis. Manipulation of the BAG1S interaction with HSP70 revealed that BAG1S provides its pro-survival function by serving as a cofactor for the HSP70 chaperone complex. Via a proteomic approach we identified and classified a set of pro-survival proteins controlled by this HSP70/BAG1 chaperone complex that contribute to the BAG1 anti-apoptotic phenotype. Conclusions The small isoform of BAG1, BAG1S, in cooperation with the HSP70 chaperone complex, selectively mediates cell survival in MYC overexpressing tumor cells. We identified a set of specific pro-survival clients controlled by the HSP70/BAG1S chaperone complex. These clients define new nodes that could be therapeutically targeted to disrupt the survival of tumor cells driven by MYC activation. With MYC overexpression occurring in most human cancers, this introduces new strategies for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5454-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victoria J Gennaro
- Department of Biochemistry and Molecular Biology Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Helen Wedegaertner
- Department of Biochemistry and Molecular Biology Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Steven B McMahon
- Department of Biochemistry and Molecular Biology Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Richter U, Ng KY, Suomi F, Marttinen P, Turunen T, Jackson C, Suomalainen A, Vihinen H, Jokitalo E, Nyman TA, Isokallio MA, Stewart JB, Mancini C, Brusco A, Seneca S, Lombès A, Taylor RW, Battersby BJ. Mitochondrial stress response triggered by defects in protein synthesis quality control. Life Sci Alliance 2019; 2:2/1/e201800219. [PMID: 30683687 PMCID: PMC6348486 DOI: 10.26508/lsa.201800219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Quality control defects of mitochondrial nascent chain synthesis trigger a sequential stress response characterized by OMA1 activation and ribosome decay, determining mitochondrial form and function. Mitochondria have a compartmentalized gene expression system dedicated to the synthesis of membrane proteins essential for oxidative phosphorylation. Responsive quality control mechanisms are needed to ensure that aberrant protein synthesis does not disrupt mitochondrial function. Pathogenic mutations that impede the function of the mitochondrial matrix quality control protease complex composed of AFG3L2 and paraplegin cause a multifaceted clinical syndrome. At the cell and molecular level, defects to this quality control complex are defined by impairment to mitochondrial form and function. Here, we establish the etiology of these phenotypes. We show how disruptions to the quality control of mitochondrial protein synthesis trigger a sequential stress response characterized first by OMA1 activation followed by loss of mitochondrial ribosomes and by remodelling of mitochondrial inner membrane ultrastructure. Inhibiting mitochondrial protein synthesis with chloramphenicol completely blocks this stress response. Together, our data establish a mechanism linking major cell biological phenotypes of AFG3L2 pathogenesis and show how modulation of mitochondrial protein synthesis can exert a beneficial effect on organelle homeostasis.
Collapse
Affiliation(s)
- Uwe Richter
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kah Ying Ng
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Fumi Suomi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Paula Marttinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Taina Turunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christopher Jackson
- Research Programs Unit-Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit-Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Sara Seneca
- Center for Medical Genetics/Research Center Reproduction and Genetics, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anne Lombès
- Faculté de médecine Cochin, Institut Cochin Institut national de la santé et de la recherche médicale U1016, Centre national de la recherche scientifique Unités Mixtes de Recherche 8104, Université Paris 5, Paris, France
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
39
|
Wong KS, Houry WA. Recent Advances in Targeting Human Mitochondrial AAA+ Proteases to Develop Novel Cancer Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:119-142. [PMID: 31452139 DOI: 10.1007/978-981-13-8367-0_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mitochondrion is a vital organelle that performs diverse cellular functions. In this regard, the cell has evolved various mechanisms dedicated to the maintenance of the mitochondrial proteome. Among them, AAA+ ATPase-associated proteases (AAA+ proteases) such as the Lon protease (LonP1), ClpXP complex, and the membrane-bound i-AAA, m-AAA and paraplegin facilitate the clearance of misfolded mitochondrial proteins to prevent the accumulation of cytotoxic protein aggregates. Furthermore, these proteases have additional regulatory functions in multiple biological processes that include amino acid metabolism, mitochondria DNA transcription, metabolite and cofactor biosynthesis, maturation and turnover of specific respiratory and metabolic proteins, and modulation of apoptosis, among others. In cancer cells, the increase in intracellular ROS levels promotes tumorigenic phenotypes and increases the frequency of protein oxidation and misfolding, which is compensated by the increased expression of specific AAA+ proteases as part of the adaptation mechanism. The targeting of AAA+ proteases has led to the discovery and development of novel anti-cancer compounds. Here, we provide an overview of the molecular characteristics and functions of the major mitochondrial AAA+ proteases and summarize recent research efforts in the development of compounds that target these proteases.
Collapse
Affiliation(s)
- Keith S Wong
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Department of Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Mancini C, Hoxha E, Iommarini L, Brussino A, Richter U, Montarolo F, Cagnoli C, Parolisi R, Gondor Morosini DI, Nicolò V, Maltecca F, Muratori L, Ronchi G, Geuna S, Arnaboldi F, Donetti E, Giorgio E, Cavalieri S, Di Gregorio E, Pozzi E, Ferrero M, Riberi E, Casari G, Altruda F, Turco E, Gasparre G, Battersby BJ, Porcelli AM, Ferrero E, Brusco A, Tempia F. Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity. Neurobiol Dis 2018; 124:14-28. [PMID: 30389403 DOI: 10.1016/j.nbd.2018.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/05/2018] [Accepted: 10/28/2018] [Indexed: 12/20/2022] Open
Abstract
Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.
Collapse
Affiliation(s)
- Cecilia Mancini
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Eriola Hoxha
- Department of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnologies (FABIT), University of Bologna, Bologna, Italy
| | | | - Uwe Richter
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Francesca Montarolo
- Department of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Claudia Cagnoli
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Roberta Parolisi
- Department of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Diana Iulia Gondor Morosini
- Department of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Valentina Nicolò
- Department of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Francesca Maltecca
- Università Vita-Salute San Raffaele, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Muratori
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy; Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Giulia Ronchi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy; Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Stefano Geuna
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy; Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Elena Donetti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Marta Ferrero
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Evelise Riberi
- Department of Public Health and Pediatrics, University of Torino, Torino, Italy
| | - Giorgio Casari
- Università Vita-Salute San Raffaele, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Emilia Turco
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giuseppe Gasparre
- Department Medical and Surgical Sciences, Medical Genetics, University of Bologna, Bologna, Italy
| | | | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnologies (FABIT), University of Bologna, Bologna, Italy
| | - Enza Ferrero
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy.
| | - Filippo Tempia
- Department of Neuroscience, University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| |
Collapse
|
41
|
AAA Proteases: Guardians of Mitochondrial Function and Homeostasis. Cells 2018; 7:cells7100163. [PMID: 30314276 PMCID: PMC6210556 DOI: 10.3390/cells7100163] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are dynamic, semi-autonomous organelles that execute numerous life-sustaining tasks in eukaryotic cells. Functioning of mitochondria depends on the adequate action of versatile proteinaceous machineries. Fine-tuning of mitochondrial activity in response to cellular needs involves continuous remodeling of organellar proteome. This process not only includes modulation of various biogenetic pathways, but also the removal of superfluous proteins by adenosine triphosphate (ATP)-driven proteolytic machineries. Accordingly, all mitochondrial sub-compartments are under persistent surveillance of ATP-dependent proteases. Particularly important are highly conserved two inner mitochondrial membrane-bound metalloproteases known as m-AAA and i-AAA (ATPases associated with diverse cellular activities), whose mis-functioning may lead to impaired organellar function and consequently to development of severe diseases. Herein, we discuss the current knowledge of yeast, mammalian, and plant AAA proteases and their implications in mitochondrial function and homeostasis maintenance.
Collapse
|
42
|
Impaired Mitochondrial Fatty Acid Synthesis Leads to Neurodegeneration in Mice. J Neurosci 2018; 38:9781-9800. [PMID: 30266742 DOI: 10.1523/jneurosci.3514-17.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 08/31/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
There has been a growing interest toward mitochondrial fatty acid synthesis (mtFAS) since the recent discovery of a neurodegenerative human disorder termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration), which is caused by mutations in the mitochondrial enoyl-CoA/ACP (acyl carrier protein) reductase (MECR) carrying out the last step of mtFAS. We show here that MECR protein is highly expressed in mouse Purkinje cells (PCs). To elucidate mtFAS function in neural tissue, here, we generated a mouse line with a PC-specific knock-out (KO) of Mecr, leading to inactivation of mtFAS confined to this cell type. Both sexes were studied. The mitochondria in KO PCs displayed abnormal morphology, loss of protein lipoylation, and reduced respiratory chain enzymatic activities by the time these mice were 6 months of age, followed by nearly complete loss of PCs by 9 months of age. These animals exhibited balancing difficulties ∼7 months of age and ataxic symptoms were evident from 8-9 months of age on. Our data show that impairment of mtFAS results in functional and ultrastructural changes in mitochondria followed by death of PCs, mimicking aspects of the clinical phenotype. This KO mouse represents a new model for impaired mitochondrial lipid metabolism and cerebellar ataxia with a distinct and well trackable cellular phenotype. This mouse model will allow the future investigation of the feasibility of metabolite supplementation approaches toward the prevention of neurodegeneration due to dysfunctional mtFAS.SIGNIFICANCE STATEMENT We have recently reported a novel neurodegenerative disorder in humans termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration) (Heimer et al., 2016). The cause of neuron degeneration in MEPAN patients is the dysfunction of the highly conserved mitochondrial fatty acid synthesis (mtFAS) pathway due to mutations in MECR, encoding mitochondrial 2-enoyl-CoA/ACP reductase. The report presented here describes the analysis of the first mouse model suffering from mtFAS-defect-induced neurodegenerative changes due to specific disruption of the Mecr gene in Purkinje cells. Our work sheds a light on the mechanisms of neurodegeneration caused by mtFAS deficiency and provides a test bed for future treatment approaches.
Collapse
|
43
|
Ding B, Martin DW, Rampello AJ, Glynn SE. Dissecting Substrate Specificities of the Mitochondrial AFG3L2 Protease. Biochemistry 2018; 57:4225-4235. [PMID: 29932645 DOI: 10.1021/acs.biochem.8b00565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human AFG3L2 is a compartmental AAA+ protease that performs ATP-fueled degradation at the matrix face of the inner mitochondrial membrane. Identifying how AFG3L2 selects substrates from the diverse complement of matrix-localized proteins is essential for understanding mitochondrial protein biogenesis and quality control. Here, we create solubilized forms of AFG3L2 to examine the enzyme's substrate specificity mechanisms. We show that conserved residues within the presequence of the mitochondrial ribosomal protein, MrpL32, target the subunit to the protease for processing into a mature form. Moreover, these residues can act as a degron, delivering diverse model proteins to AFG3L2 for degradation. By determining the sequence of degradation products from multiple substrates using mass spectrometry, we construct a peptidase specificity profile that displays constrained product lengths and is dominated by the identity of the residue at the P1' position, with a strong preference for hydrophobic and small polar residues. This specificity profile is validated by examining the cleavage of both fluorogenic reporter peptides and full polypeptide substrates bearing different P1' residues. Together, these results demonstrate that AFG3L2 contains multiple modes of specificity, discriminating between potential substrates by recognizing accessible degron sequences and performing peptide bond cleavage at preferred patterns of residues within the compartmental chamber.
Collapse
|
44
|
Lebeau J, Rainbolt TK, Wiseman RL. Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:79-128. [PMID: 30072094 PMCID: PMC6402875 DOI: 10.1016/bs.ircmb.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteases are localized throughout mitochondria and function as critical regulators of all aspects of mitochondrial biology. As such, the activities of these proteases are sensitively regulated through transcriptional and post-translational mechanisms to adapt mitochondrial function to specific cellular demands. Here, we discuss the stress-responsive mechanisms responsible for regulating mitochondrial protease activity and the implications of this regulation on mitochondrial function. Furthermore, we describe how imbalances in the activity or regulation of mitochondrial proteases induced by genetic, environmental, or aging-related factors influence mitochondria in the context of disease. Understanding the molecular mechanisms by which cells regulate mitochondrial function through alterations in protease activity provide insights into the contributions of these proteases in pathologic mitochondrial dysfunction and reveals new therapeutic opportunities to ameliorate this dysfunction in the context of diverse classes of human disease.
Collapse
Affiliation(s)
- Justine Lebeau
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - T Kelly Rainbolt
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
45
|
Kolodziejczak M, Skibior-Blaszczyk R, Janska H. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation. PLANT & CELL PHYSIOLOGY 2018; 59:1006-1016. [PMID: 29462458 DOI: 10.1093/pcp/pcy041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/09/2018] [Indexed: 05/17/2023]
Abstract
For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.
Collapse
Affiliation(s)
- Marta Kolodziejczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| | - Renata Skibior-Blaszczyk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw 50-383, Poland
| |
Collapse
|
46
|
Callegari S, Dennerlein S. Sensing the Stress: A Role for the UPR mt and UPR am in the Quality Control of Mitochondria. Front Cell Dev Biol 2018; 6:31. [PMID: 29644217 PMCID: PMC5882792 DOI: 10.3389/fcell.2018.00031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023] Open
Abstract
Mitochondria exist as compartmentalized units, surrounded by a selectively permeable double membrane. Within is contained the mitochondrial genome and protein synthesis machinery, required for the synthesis of OXPHOS components and ultimately, ATP production. Despite their physical barrier, mitochondria are tightly integrated into the cellular environment. A constant flow of information must be maintained to and from the mitochondria and the nucleus, to ensure mitochondria are amenable to cell metabolic requirements and also to feedback on their functional state. This review highlights the pathways by which mitochondrial stress is signaled to the nucleus, with a particular focus on the mitochondrial unfolded protein response (UPRmt) and the unfolded protein response activated by the mistargeting of proteins (UPRam). Although these pathways were originally discovered to alleviate proteotoxic stress from the accumulation of mitochondrial-targeted proteins that are misfolded or unimported, we review recent findings indicating that the UPRmt can also sense defects in mitochondrial translation. We further discuss the regulation of OXPHOS assembly and speculate on a possible role for mitochondrial stress pathways in sensing OXPHOS biogenesis.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
47
|
Patron M, Sprenger HG, Langer T. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration. Cell Res 2018; 28:296-306. [PMID: 29451229 PMCID: PMC5835776 DOI: 10.1038/cr.2018.17] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Maria Patron
- Max Planck Institute for Biology of Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Disease (CECAD), and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hans-Georg Sprenger
- Max Planck Institute for Biology of Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Disease (CECAD), and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Disease (CECAD), and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
48
|
Defects in the mitochondrial-tRNA modification enzymes MTO1 and GTPBP3 promote different metabolic reprogramming through a HIF-PPARγ-UCP2-AMPK axis. Sci Rep 2018; 8:1163. [PMID: 29348686 PMCID: PMC5773609 DOI: 10.1038/s41598-018-19587-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Human proteins MTO1 and GTPBP3 are thought to jointly catalyze the modification of the wobble uridine in mitochondrial tRNAs. Defects in each protein cause infantile hypertrophic cardiomyopathy with lactic acidosis. However, the underlying mechanisms are mostly unknown. Using fibroblasts from an MTO1 patient and MTO1 silenced cells, we found that the MTO1 deficiency is associated with a metabolic reprogramming mediated by inactivation of AMPK, down regulation of the uncoupling protein 2 (UCP2) and transcription factor PPARγ, and activation of the hypoxia inducible factor 1 (HIF-1). As a result, glycolysis and oxidative phosphorylation are uncoupled, while fatty acid metabolism is altered, leading to accumulation of lipid droplets in MTO1 fibroblasts. Unexpectedly, this response is different from that triggered by the GTPBP3 defect, as GTPBP3-depleted cells exhibit AMPK activation, increased levels of UCP2 and PPARγ, and inactivation of HIF-1. In addition, fatty acid oxidation and respiration are stimulated in these cells. Therefore, the HIF-PPARγ-UCP2-AMPK axis is operating differently in MTO1- and GTPBP3-defective cells, which strongly suggests that one of these proteins has an additional role, besides mitochondrial-tRNA modification. This work provides new and useful information on the molecular basis of the MTO1 and GTPBP3 defects and on putative targets for therapeutic intervention.
Collapse
|
49
|
Volonte D, Liu Z, Shiva S, Galbiati F. Caveolin-1 controls mitochondrial function through regulation of m-AAA mitochondrial protease. Aging (Albany NY) 2017; 8:2355-2369. [PMID: 27705926 PMCID: PMC5115893 DOI: 10.18632/aging.101051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
Abstract
Mitochondrial proteases ensure mitochondrial integrity and function after oxidative stress by providing mitochondrial protein quality control. However, the molecular mechanisms that regulate this basic biological function in eukaryotic cells remain largely unknown. Caveolin-1 is a scaffolding protein involved in signal transduction. We find that AFG3L2, a m-AAA type of mitochondrial protease, is a novel caveolin-1-interacting protein in vitro. We show that oxidative stress promotes the translocation of both caveolin-1 and AFG3L2 to mitochondria, enhances the interaction of caveolin-1 with AFG3L2 in mitochondria and stimulates mitochondrial protease activity in wild-type fibroblasts. Localization of AFG3L2 to mitochondria after oxidative stress is inhibited in fibroblasts lacking caveolin-1, which results in impaired mitochondrial protein quality control, an oxidative phosphorylation to aerobic glycolysis switch and reduced ATP production. Mechanistically, we demonstrate that a lack of caveolin-1 does not alter either mitochondrial number or morphology but leads to the cytoplasmic and proteasome-dependent degradation of complexes I, III, IV and V upon oxidant stimulation. Restoration of mitochondrial respiratory chain complexes in caveolin-1 null fibroblasts reverts the enhanced glycolysis observed in these cells. Expression of a mutant form of AFG3L2, which has reduced affinity for caveolin-1, fails to localize to mitochondria and promotes degradation of complex IV after oxidative stress. Thus, caveolin-1 maintains mitochondrial integrity and function when cells are challenged with free radicals by promoting the mitochondrial localization of m-AAA protease and its quality control functions.
Collapse
Affiliation(s)
- Daniela Volonte
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zhongmin Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Vascular Medicine Institute and Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ferruccio Galbiati
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
50
|
Levytskyy RM, Bohovych I, Khalimonchuk O. Metalloproteases of the Inner Mitochondrial Membrane. Biochemistry 2017; 56:4737-4746. [PMID: 28806058 DOI: 10.1021/acs.biochem.7b00663] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The inner mitochondrial membrane (IM) is among the most protein-rich cellular compartments. The metastable IM subproteome where the concentration of proteins is approaching oversaturation creates a challenging protein folding environment with a high probability of protein malfunction or aggregation. Failure to maintain protein homeostasis in such a setting can impair the functional integrity of the mitochondria and drive clinical manifestations. The IM is equipped with a series of highly conserved, proteolytic complexes dedicated to the maintenance of normal protein homeostasis within this mitochondrial subcompartment. Particularly important is a group of membrane-anchored metallopeptidases commonly known as m-AAA and i-AAA proteases, and the ATP-independent Oma1 protease. Herein, we will summarize the current biochemical knowledge of these proteolytic machines and discuss recent advances in our understanding of mechanistic aspects of their functioning.
Collapse
Affiliation(s)
- Roman M Levytskyy
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0664, United States.,Nebraska Redox Biology Center, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0662, United States.,Fred & Pamela Buffett Cancer Center , Omaha, Nebraska 68106, United States
| |
Collapse
|