1
|
Sjövall D, Ghosh S, Fernandez-Fuentes N, Velasco-Hernandez T, Hogmalm A, Menendez P, Hansson J, Guibentif C, Jaako P. Defective ribosome assembly impairs leukemia progression in a murine model of acute myeloid leukemia. Cell Rep 2024; 43:114864. [PMID: 39412990 DOI: 10.1016/j.celrep.2024.114864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/15/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Despite an advanced understanding of disease mechanisms, the current therapeutic regimen fails to cure most patients with acute myeloid leukemia (AML). In the present study, we address the role of ribosome assembly in leukemia cell function. We apply patient datasets and murine models to demonstrate that immature leukemia cells in mixed-lineage leukemia-rearranged AML are characterized by relatively high ribosome biogenesis and protein synthesis rates. Using a model with inducible regulation of ribosomal subunit joining, we show that defective ribosome assembly extends survival in mice with AML. Single-cell RNA sequencing and proteomic analyses reveal that leukemia cell adaptation to defective ribosome assembly is associated with an increase in ribosome biogenesis and deregulation of the transcription factor landscape. Finally, we demonstrate that defective ribosome assembly shows antileukemia efficacy in p53-deficient AML. Our study unveils the critical requirement of a high protein synthesis rate for leukemia progression and highlights ribosome assembly as a therapeutic target in AML.
Collapse
Affiliation(s)
- Daniel Sjövall
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Sudip Ghosh
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Narcis Fernandez-Fuentes
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain
| | - Talia Velasco-Hernandez
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Anna Hogmalm
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pablo Menendez
- Josep Carreras Leukemia Research Hospital, Campus Clinic, Barcelona, Spain; Spanish Cell Therapy Network (TERAV), ISCIII, Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Spanish Cancer Research Network (CIBERONC), ISCIII, Barcelona, Spain
| | - Jenny Hansson
- Department of Experimental Medical Science, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carolina Guibentif
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Pekka Jaako
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
2
|
Tien FM, Hou HA. CEBPA mutations in acute myeloid leukemia: implications in risk stratification and treatment. Int J Hematol 2024; 120:541-547. [PMID: 38671183 DOI: 10.1007/s12185-024-03773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Mutations in CCAAT enhancer binding protein α (CEBPA) occur in approximately 10% of patients with de novo acute myeloid leukemia (AML). Emerging evidence supports that in-frame mutations in the basic leucine zipper domain of CEBPA (CEBPAbZIP-inf) confer a survival benefit, and CEBPAbZIP-inf replaced CEBPA double mutations (CEBPAdm) as a unique entity in the 2022 World Health Organization (WHO-2022) classification and International Consensus Classification (ICC). However, challenges remain in daily clinical practice since more than 30% patients with CEBPAbZIP-inf die of AML despite intensive treatment. This review aims to provide a comprehensive summary of the heterogeneities observed in AML with CEBPAdm and CEBPAbZIP-inf, and will discuss the prognostic implications of concurrent mutations and novel mechanistic targets that may inform future drug development. The ultimate goal is to optimize clinical management and to provide precision medicine for this category of patients.
Collapse
Affiliation(s)
- Feng-Ming Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Wang J, Huang W, Chai S, Gan J, Zeng Y, Long P, Pang L. A comprehensive analysis of CEBPA on prognosis and function in uterine corpus endometrial carcinoma. Sci Rep 2024; 14:23773. [PMID: 39390018 PMCID: PMC11467350 DOI: 10.1038/s41598-024-74242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common tumours of the female reproductive system. CCAAT enhancer-binding protein alpha (CEBPA) is a member of the transcription factor family involved in regulating processes such as cell proliferation, differentiation, metabolism, and the immune response. However, the role of CEBPA in UCEC has not been clarified. Here, we performed a comprehensive analysis to explore the expression level, prognostic value, immune infiltration and biological function of CEBPA in UCEC. In this study, we found that CEBPA expression was upregulated and associated with poor prognosis in UCEC patients. KEGG and GO analyses revealed that the genes positively correlated with CEBPA were enriched primarily in immune regulation and oxidative phosphorylation. Immune infiltration analysis revealed that CEBPA is strongly correlated with immune cell infiltration in UCEC. RT-qPCR indicated that CEBPA may regulate the OXPHOS level in Ishikawa cells. CCK-8, cell cycle, Transwell and scratch wound healing assays revealed that CEBPA promoted Ishikawa cell proliferation, invasion and migration. In addition, PPI and survival analyses suggested that CEBPG may be a potential target of CEBPA in UCEC. These results demonstrated that CEBPA may be a potential therapeutic target in UCEC.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China
- National Health Commission Key Laboratory of Thalassemia Medicine (Guangxi Medical University), Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Weiyu Huang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shiwei Chai
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Jiayi Gan
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Yulu Zeng
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Ping Long
- Department of Laboratory Medicine, Guizhou Qiannan People's Hospital, Duyun, Guizhou, China.
| | - Lihong Pang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China.
- National Health Commission Key Laboratory of Thalassemia Medicine (Guangxi Medical University), Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Yamazaki T, Iwasaki K, Tomono S, Imai M, Miwa Y, Shizuku M, Ashimine S, Ishiyama K, Inui M, Okuzaki D, Okada M, Kobayashi T, Akashi-Takamura S. Human RP105 monoclonal antibody enhances antigen-specific antibody production in unique culture conditions. iScience 2024; 27:110649. [PMID: 39246445 PMCID: PMC11380396 DOI: 10.1016/j.isci.2024.110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Detecting antibodies, particularly those targeting donor human leukocyte antigens in organ transplantation and self-antigens in autoimmune diseases, is crucial for diagnosis and therapy. Radioprotective 105 (RP105), a Toll-like receptor family protein, is expressed in immune-competent cells, such as B cells. Studies in mice have shown that the anti-mouse RP105 antibody strongly activates B cells and triggers an adjuvant effect against viral infections. However, the anti-human RP105 antibody (ɑhRP105) weakly activates human B cells. This study established new culture conditions under, which human B cells are strongly activated by the ɑhRP105. When combined with CpGDNA, specific antibody production against blood group carbohydrates, ɑGal, and SARS-CoV-2 was successfully detected in human B cell cultures. Furthermore, comprehensive analysis using liquid chromatography-electrospray ionization tandem mass spectrometry, single-cell RNA sequencing, and quantitative real-time PCR revealed that ɑhRP105 triggered a different activation stimulus compared to CpGDNA. These findings could help identify antibody-producing B cells in cases of transplant rejection and autoimmune diseases.
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kenta Iwasaki
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masaki Imai
- Department of Medical Technology and Sciences, Kyoto Tachibana University, Kyoto, Kyoto, Japan
| | - Yuko Miwa
- Department of Kidney Diseases and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masato Shizuku
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Satoshi Ashimine
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kohei Ishiyama
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Suita, Osaka, Japan
| | - Manabu Okada
- Department of Transplant and Endocrine Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, Aichi, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
5
|
Du M, Wang M, Liu M, Fu S, Lin Y, Huo Y, Yu J, Yu X, Wang C, Xiao H, Wang L. C/EBPα-p30 confers AML cell susceptibility to the terminal unfolded protein response and resistance to Venetoclax by activating DDIT3 transcription. J Exp Clin Cancer Res 2024; 43:79. [PMID: 38475919 DOI: 10.1186/s13046-024-02975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.
Collapse
Affiliation(s)
- Mengbao Du
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Meng Liu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yankun Huo
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaohong Yu
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Chong Wang
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China.
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Limengmeng Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
6
|
Wang D, Sun T, Xia Y, Zhao Z, Sheng X, Li S, Ma Y, Li M, Su X, Zhang F, Li P, Ma D, Ye J, Lu F, Ji C. Homodimer-mediated phosphorylation of C/EBPα-p42 S16 modulates acute myeloid leukaemia differentiation through liquid-liquid phase separation. Nat Commun 2023; 14:6907. [PMID: 37903757 PMCID: PMC10616288 DOI: 10.1038/s41467-023-42650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/09/2023] [Indexed: 11/01/2023] Open
Abstract
CCAAT/enhancer binding protein α (C/EBPα) regulates myeloid differentiation, and its dysregulation contributes to acute myeloid leukaemia (AML) progress. Clarifying its functional implementation mechanism is of great significance for its further clinical application. Here, we show that C/EBPα regulates AML cell differentiation through liquid-liquid phase separation (LLPS), which can be disrupted by C/EBPα-p30. Considering that C/EBPα-p30 inhibits the functions of C/EBPα through the LZ region, a small peptide TAT-LZ that could instantaneously interfere with the homodimerization of C/EBPα-p42 was constructed, and dynamic inhibition of C/EBPα phase separation was observed, demonstrating the importance of C/EBPα-p42 homodimers for its LLPS. Mechanistically, homodimerization of C/EBPα-p42 mediated its phosphorylation at the novel phosphorylation site S16, which promoted LLPS and subsequent AML cell differentiation. Finally, decreasing the endogenous C/EBPα-p30/C/EBPα-p42 ratio rescued the phase separation of C/EBPα in AML cells, which provided a new insight for the treatment of the AML.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhe Zhao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xue Sheng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuechan Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuhua Su
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Zhang
- Department of Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Lu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Zhang X, Zheng X, Ying X, Xie W, Yin Y, Wang X. CEBPG suppresses ferroptosis through transcriptional control of SLC7A11 in ovarian cancer. J Transl Med 2023; 21:334. [PMID: 37210575 DOI: 10.1186/s12967-023-04136-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/16/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) has high mortality and poor prognosis for lacking of specific biomarkers and typical clinical symptoms in the early stage. CEBPG is an important regulator in tumor development, yet it is unclear exactly how it contributes to the progression of OC. METHODS TCGA and tissue microarrays with immunohistochemical staining (IHC) were used to examine CEBPG expression in OC. A variety of in vitro assays were conducted, including colony formation, proliferation, migration, and invasion. The orthotopic OC mouse model was established for in vivo studies. Ferroptosis was detected by observing mitochondrial changes with electron microscopy, detecting ROS expression, and detecting cell sensitivity to drugs by CCK8 assay. The interaction between CEBPG and SLC7A11 was confirmed by CUT&Tag and dual luciferase reporter assays. RESULTS A significantly higher expression level of CEBPG in OC when compared with benign tissues of ovary, and that high CEBPG expression level was also tightly associated with poor prognosis of patients diagnosed with OC, as determined by analysis of datasets and patient samples. Conversely, knockdown of CEBPG inhibited OC progression using experiments of OC cell lines and in vivo orthotopic OC-bearing mouse model. Importantly, CEBPG was identified as a new participator mediating ferroptosis evasion in OC cells using RNA-sequencing, which could contribute to OC progression. The CUT&Tag and dua luciferase reporter assays further revealed the inner mechanism that CEBPG regulated OC cell ferroptosis through transcriptional control of SLC7A11. CONCLUSIONS Our findings established CEBPG as a novel transcriptional regulator of OC ferroptosis, with potential value in predicting clinical outcomes and as a therapeutic candidate.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xiang Ying
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Weiwei Xie
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, XinHua Hospital, Shanghai JiaoTong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
8
|
Bouligny IM, Maher KR, Grant S. Mechanisms of myeloid leukemogenesis: Current perspectives and therapeutic objectives. Blood Rev 2023; 57:100996. [PMID: 35989139 PMCID: PMC10693933 DOI: 10.1016/j.blre.2022.100996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematopoietic neoplasm which results in clonal proliferation of abnormally differentiated hematopoietic cells. In this review, mechanisms contributing to myeloid leukemogenesis are summarized, highlighting aberrations of epigenetics, transcription factors, signal transduction, cell cycling, and the bone marrow microenvironment. The mechanisms contributing to AML are detailed to spotlight recent findings that convey clinical impact. The applications of current and prospective therapeutic targets are accentuated in addition to reviews of treatment paradigms stratified for each characteristic molecular lesion - with a focus on exploring novel treatment approaches and combinations to improve outcomes in AML.
Collapse
Affiliation(s)
- Ian M Bouligny
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Keri R Maher
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Small Extracellular Vesicles and Their Involvement in Cancer Resistance: An Up-to-Date Review. Cells 2022; 11:cells11182913. [PMID: 36139487 PMCID: PMC9496799 DOI: 10.3390/cells11182913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, tremendous progress has been made in understanding the roles of extracellular vesicles (EVs) in cancer. Thanks to advancements in molecular biology, it has been found that the fraction of EVs called exosomes or small EVs (sEVs) modulates the sensitivity of cancer cells to chemotherapeutic agents by delivering molecularly active non-coding RNAs (ncRNAs). An in-depth analysis shows that two main molecular mechanisms are involved in exosomal modified chemoresistance: (1) translational repression of anti-oncogenes by exosomal microRNAs (miRs) and (2) lack of translational repression of oncogenes by sponging of miRs through long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). At the cellular level, these processes increase the proliferation and survival of cancer cells and improve their ability to metastasize and resist apoptosis. In addition, studies in animal models have shown enhancing tumor size under the influence of exosomal ncRNAs. Ultimately, exosomal ncRNAs are responsible for clinically significant chemotherapy failures in patients with different types of cancer. Preliminary data have also revealed that exosomal ncRNAs can overcome chemotherapeutic agent resistance, but the results are thoroughly fragmented. This review presents how exosomes modulate the response of cancer cells to chemotherapeutic agents. Understanding how exosomes interfere with chemoresistance may become a milestone in developing new therapeutic options, but more data are still required.
Collapse
|
10
|
Renfro Z, White BE, Stephens KE. CCAAT enhancer binding protein gamma (C/EBP-γ): An understudied transcription factor. Adv Biol Regul 2022; 84:100861. [PMID: 35121409 PMCID: PMC9376885 DOI: 10.1016/j.jbior.2022.100861] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 05/03/2023]
Abstract
The CCAAT enhancer binding protein (C/EBP) family of transcription factors are important transcriptional mediators of a wide range of physiologic processes. C/EBP-γ is the shortest C/EBP protein and lacks a canonical activation domain for the recruitment of transcriptional machinery. Despite its ubiquitous expression and ability to dimerize with other C/EBP proteins, C/EBP-γ has been studied far less than other C/EBP proteins, and, to our knowledge, no review of its functions has been written. This review seeks to integrate the current knowledge about C/EBP-γ and its physiologic roles, especially in cell proliferation, the integrated stress response, oncogenesis, hematopoietic and nervous system development, and metabolism, as well as to identify areas for future research.
Collapse
Affiliation(s)
- Zachary Renfro
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Bryan E White
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| | - Kimberly E Stephens
- Department of Pediatrics, Division of Infectious Diseases, College of Medicine, University of Arkansas for Medical Sciences, USA; Arkansas Children's Research Institute, 13 Children's Way, Mail slot 512-47, Little Rock, AR, 72202, USA.
| |
Collapse
|
11
|
Inferring transcription factor regulatory networks from single-cell ATAC-seq data based on graph neural networks. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00469-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Zhang F, Feng D, Wang X, Gu Y, Shen Z, Yang Y, Wang J, Zhong Q, Li D, Hu H, Han P. An Unfolded Protein Response Related Signature Could Robustly Predict Survival Outcomes and Closely Correlate With Response to Immunotherapy and Chemotherapy in Bladder Cancer. Front Mol Biosci 2022; 8:780329. [PMID: 35004850 PMCID: PMC8732996 DOI: 10.3389/fmolb.2021.780329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: The unfolded protein response (UPR) plays a significant role in maintaining protein hemostasis in tumor cells, which are crucial for tumor growth, invasion, and resistance to therapy. This study aimed to develop a UPR-related signature and explore its correlation with immunotherapy and chemotherapy in bladder cancer. Methods: The differentially expressed UPR-related genes were put into Lasso regression to screen out prognostic genes, which constituted the UPR signature, and were incorporated into multivariate Cox regression to generate risk scores. Subsequently, the predictive performance of this signature was estimated by receiver operating characteristic (ROC) curves. The CIBERSORTx, the maftool, and Gene set enrichment analysis (GSEA) were applied to explore infiltrated immune cells, tumor mutational burden (TMB), and enriched signaling pathways in both risk groups, respectively. Moreover, The Cancer Immunome Atlas (TCIA) and Genomics of Drug Sensitivity in Cancer (GDSC) databases were used to predict responses to chemotherapy and immunotherapy. Results: Twelve genes constituted the UPR-related signature. Patients with higher risk scores had worse overall survival (OS) in training and three validation sets. The UPR-related signature was closely correlated with clinicopathologic parameters and could serve as an independent prognostic factor. M0 macrophages showed a significantly infiltrated difference in both risk groups. TMB analysis showed that the risk score in the wild type and mutation type of FGFR3 was significantly different. GSEA indicated that the immune-, extracellular matrix-, replication and repair associated pathways belonged to the high risk group and metabolism-related signal pathways were enriched in the low risk group. Prediction of immunotherapy and chemotherapy revealed that patients in the high risk group might benefit from chemotherapy, but had a worse response to immunotherapy. Finally, we constructed a predictive model with age, stage, and UPR-related risk score, which had a robustly predictive performance and was validated in GEO datasets. Conclusion: We successfully constructed and validated a novel UPR-related signature in bladder cancer, which could robustly predict survival outcomes and closely correlate with the response to immunotherapy and chemotherapy in bladder cancer.
Collapse
Affiliation(s)
- Facai Zhang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China.,Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Dechao Feng
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Xiaoming Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Yiwei Gu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Zhiyong Shen
- Department of Urology, the Affiliated Cancer Hospital of Guizhou Medical University, Guizhou, China
| | - Yubo Yang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Jiahao Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Quliang Zhong
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Dengxiong Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Huan Hu
- School of Clinical Medicine, Guizhou Medical University, Guizhou, China
| | - Ping Han
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Sichuan, China.,Department of Urology, the Second People's Hospital of Yibin, Sichuan, China
| |
Collapse
|
13
|
Jiang Y, Wu SY, Chen YL, Zhang ZM, Tao YF, Xie Y, Liao XM, Li XL, Li G, Wu D, Wang HR, Zuo R, Cao HB, Pan JJ, Yu JJ, Jia SQ, Zhang Z, Chu XR, Zhang YP, Feng CX, Wang JW, Hu SY, Li ZH, Pan J, Fang F, Lu J. CEBPG promotes acute myeloid leukemia progression by enhancing EIF4EBP1. Cancer Cell Int 2021; 21:598. [PMID: 34743716 PMCID: PMC8574011 DOI: 10.1186/s12935-021-02305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a myeloid neoplasm accounts for 7.6% of hematopoietic malignancies. AML is a complex disease, and understanding its pathophysiology is contributing to the improvement in the treatment and prognosis of AML. In this study, we assessed the expression profile and molecular functions of CCAAT enhancer binding protein gamma (CEBPG), a gene implicated in myeloid differentiation and AML progression. Methods shRNA mediated gene interference was used to down-regulate the expression of CEBPG in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. Genes and pathways affected by knockdown of CEBPG were identified by gene expression analysis using RNA-seq. One of the genes affected by knockdown of CEBPG was Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), a known repressor of translation. Knockdown of EIF4EBP1 was used to assess its potential role in AML progression downstream of CEBPG. Results We explored the ChIP-Seq data of AML cell lines and non-AML hematopoietic cells, and found CEBPG was activated through its distal enhancer in AML cell lines. Using the public transcriptomic dataset, the Cancer Cell Line Encyclopedia (CCLE) and western blotting, we also found CEBPG was overexpressed in AML. Moreover, we observed that CEBPG promotes AML cell proliferation by activating EIF4EBP1, thus contributing to the progression of AML. These findings indicate that CEBPG could act as a potential therapeutic target for AML patients. Conclusion In summary, we systematically explored the molecular characteristics of CEBPG in AML and identified CEBPG as a potential therapeutic target for AML patients. Our findings provide novel insights into the pathophysiology of AML and indicate a key role for CEBPG in promoting AML progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02305-z.
Collapse
Affiliation(s)
- You Jiang
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Shui-Yan Wu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yan-Ling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.,School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215003, China
| | - Zi-Mu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yan-Fang Tao
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xin-Mei Liao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xiao-Lu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hai-Rong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Ran Zuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Hai-Bo Cao
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jing-Jing Pan
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Juan-Juan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Si-Qi Jia
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.,School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215003, China
| | - Zheng Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Xin-Ran Chu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Yong-Ping Zhang
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China
| | - Chen-Xi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jian-Wei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Shao-Yan Hu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Zhi-Heng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China
| | - Jian Pan
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China. .,Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, No.92 Zhongnan Street, SIP, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
14
|
Luo Y, Gui R. Circulating exosomal circFoxp1 confers cisplatin resistance in epithelial ovarian cancer cells. J Gynecol Oncol 2021; 31:e75. [PMID: 32808501 PMCID: PMC7440976 DOI: 10.3802/jgo.2020.31.e75] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/29/2020] [Accepted: 05/25/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Early detection and treatment are particularly important to epithelial ovarian cancer (EOC). Studies have shown that circular RNA (circRNA) dysregulation is associated with the proliferation and metastasis of ovarian cancer cells. This study focused on the role of serum exosomal circular forkhead box protein P1 (circFoxp1) on survival outcome and cisplatin (DDP) resistance in patients with EOC. Methods Quantitative polymerase chain reaction, 5-ethynyl-2′-deoxyuridine (EdU) staining, CCK-8, luciferase reporter assay, RNA immunoprecipitation, tumor xenograft in nude mice, and bioinformatic analysis were performed. Results Circulating exosomal circFoxp1 was significantly increased in patients with EOC, especially in DDP-resistant EOC patients. circFoxp1 expression was positively associated with International Federation of Gynecology and Obstetrics stage, primary tumor size, lymphatic metastasis, distant metastasis, residual tumor diameter, and clinical response. Exosomal circFoxp1 also was an independent factor predicting survival and disease recurrence in patients with EOC. Overexpression of circFoxp1 could promote cell proliferation and confer DDP resistance, while knockdown of circFoxp1 could inhibit cell proliferation and enhance DDP sensitivity in vitro and in vivo. In addition, miR-22 and miR-150-3p mimic treatment attenuated circFoxp1-meadiated DDP resistance, while miR-22 and miR-150-3p inhibitor treatment enhanced DDP resistance that mitigated by circFoxp1 knockdown. Furthermore, circFoxp1 positively regulated the expression of CCAAT enhancer binding protein gamma (CEBPG) and formin like 3 (FMNL3) through miR-22 and miR-150-3p. Conclusions circFoxp1 is an oncogene in EOC cells and can confer DDP resistance to EOC cells. Circulating exosomal circFoxp1 can be used as a biomarker and potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Yanwei Luo
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
15
|
Nie Y, Su L, Li W, Gao S. Novel insights of acute myeloid leukemia with CEBPA deregulation: Heterogeneity dissection and re-stratification. Crit Rev Oncol Hematol 2021; 163:103379. [PMID: 34087345 DOI: 10.1016/j.critrevonc.2021.103379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/21/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia with bi-allelic CEBPA mutation was categorized as an independent disease entity with favorable prognosis, however, recent researches have revealed huge heterogeneity within this disease group, and for some patients, relapse remained a major cause of treatment failure. Further risk stratification is essentially needed. Here by reviewing the latest literature, we summarized the characteristics of CEBPA mutation profiles and clinical features, with a special intention of dissecting the heterogeneity within the seemingly homogeneous AML with bi-allelic CEBPA mutations. Specifically, non-classical CEBPA mutation, miscellaneous companion genetic aberrations and the presence of germline CEBPA mutation are three major sources of heterogeneity. Identifying these factors can help us predict patients at a higher risk of relapse, for whom aggressive treatment may be recommended. Novel therapeutic approaches regarding manipulating potentially druggable targets as well as the debate over post remission consolidation regimens has also been discussed.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Wei Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China; Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, 130012, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
16
|
Setten RL, Chomchan P, Epps EW, Burnett JC, Rossi JJ. CRED9: A differentially expressed elncRNA regulates expression of transcription factor CEBPA. RNA (NEW YORK, N.Y.) 2021; 27:rna.078752.121. [PMID: 34039742 PMCID: PMC8284328 DOI: 10.1261/rna.078752.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Enhancer RNAs (eRNA) are non-coding transcripts produced from active enhancers and have potential gene regulatory function. CCAAT enhancer-binding protein alpha (CEBPA) is a transcription factor generally involved in metabolism, cell cycle inhibition, hematopoiesis, adipogenesis, hepatogenesis, and is associated with tumorigenesis. In this study, we demonstrate that an enhancer-associated long non-coding RNA (elncRNA), transcribed from an enhancer located 9kb downstream from the transcriptional start site (TSS) of CEBPA, positively regulates the expression of CEBPA. As a result, we named this elncRNA 'CEBPA regulatory elncRNA downstream 9kb' or 'CRED9'. CRED9 expression level positively correlates with CEBPA mRNA expression across multiple cell lines as detected by RT droplet digital PCR. Knockdown of CRED9 resulted in a reduction of CEBPA mRNA expression in Hep3B cells. Additionally, CRED9 knockdown in Hep3B and HepG2 cells resulted in lower CEBPA protein expression. We also found that knockdown of CRED9 in Hep3B cells caused a 57.8% reduction in H3K27ac levels at the +9kb CEBPA enhancer. H3K27ac has previously been described as a marker of active enhancers. Taken together, the evidence presented here supports a previously proposed model whereby, in some contexts, eRNA transcripts are necessary to amplify and maintain H3K27ac levels at a given enhancer. Ultimately, this study adds to the growing body of evidence that elncRNA transcripts have important roles in enhancer function and gene regulation.
Collapse
|
17
|
Shi H, Niimi A, Takeuchi T, Shiogama K, Mizutani Y, Kajino T, Inada K, Hase T, Hatta T, Shibata H, Fukui T, Chen-Yoshikawa TF, Nagano K, Murate T, Kawamoto Y, Tomida S, Takahashi T, Suzuki M. CEBPγ facilitates lamellipodia formation and cancer cell migration through CERS6 upregulation. Cancer Sci 2021; 112:2770-2780. [PMID: 33934437 PMCID: PMC8253294 DOI: 10.1111/cas.14928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
Ceramide synthase 6 (CERS6) promotes lung cancer metastasis by stimulating cancer cell migration. To examine the underlying mechanisms, we performed luciferase analysis of the CERS6 promoter region and identified the Y-box as a cis-acting element. As a parallel analysis of database records for 149 non-small-cell lung cancer (NSCLC) cancer patients, we screened for trans-acting factors with an expression level showing a correlation with CERS6 expression. Among the candidates noted, silencing of either CCAAT enhancer-binding protein γ (CEBPγ) or Y-box binding protein 1 (YBX1) reduced the CERS6 expression level. Following knockdown, CEBPγ and YBX1 were found to be independently associated with reductions in ceramide-dependent lamellipodia formation as well as migration activity, while only CEBPγ may have induced CERS6 expression through specific binding to the Y-box. The mRNA expression levels of CERS6, CEBPγ, and YBX1 were positively correlated with adenocarcinoma invasiveness. YBX1 expression was observed in all 20 examined clinical lung cancer specimens, while 6 of those showed a staining pattern similar to that of CERS6. The present findings suggest promotion of lung cancer migration by possible involvement of the transcription factors CEBPγ and YBX1.
Collapse
Affiliation(s)
- Hanxiao Shi
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan.,Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuko Niimi
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Toshiyuki Takeuchi
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kazuya Shiogama
- Department of Morphology and Cell Function, School of Medical Sciences, Fujita Health University, Toyoake, Japan
| | - Yasuyoshi Mizutani
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Taisuke Kajino
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kenichi Inada
- Diagnostic Pathology, Bantane Hospital, Fujita Health University, Toyoake, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Hatta
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirofumi Shibata
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kazuki Nagano
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Murate
- Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya, Japan.,College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | | | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Aichi Cancer Center, Nagoya, Japan
| | - Motoshi Suzuki
- Department of Molecular Oncology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
18
|
Huang Y, Lin L, Shen Z, Li Y, Cao H, Peng L, Qiu Y, Cheng X, Meng M, Lu D, Yin D. CEBPG promotes esophageal squamous cell carcinoma progression by enhancing PI3K-AKT signaling. Am J Cancer Res 2020; 10:3328-3344. [PMID: 33163273 PMCID: PMC7642652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023] Open
Abstract
CCAAT/enhancer binding proteins (CEBPs, including CEBPA, CEBPB, CEBPD, CEBPE, CEBPG, and CEBPZ) play critical roles in a variety of physiological and pathological processes. However, the molecular characteristics and biological significance of CEBPs in esophageal squamous cell carcinoma (ESCC) have rarely been reported. Here, we show that most of the CEBPs are upregulated and accompanied with copy number amplifications in ESCC. Of note, high CEBPG expression is regulated by the ESCC specific transcription factor TP63 and serves as a prognostic factor for poor survival in ESCC patients. Functionally, CEBPG significantly promotes the proliferation and migration of ESCC cells both in vitro and in vivo. Mechanistically, CEBPG activates the PI3K-AKT signaling pathway through directly binding to distal enhancers and/or promoters of genes involved in this pathway, including genes of CCND1, MYC, CDK2, etc. These findings provide new insights into CEBPs dysregulation in ESCC and elucidate a crucial role for CEBPG in the progression of ESCC, highlighting its potential therapeutic value for ESCC treatment.
Collapse
Affiliation(s)
- Yongsheng Huang
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Lehang Lin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Zhuojian Shen
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Yu Li
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Haotian Cao
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Li Peng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Yuntan Qiu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Xu Cheng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Meng Meng
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Daning Lu
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| | - Dong Yin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, China
| |
Collapse
|
19
|
Yin HM, Yan LF, Liu Q, Peng Z, Zhang CY, Xia Y, Su D, Gu AH, Zhou Y. Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism. SCIENCE ADVANCES 2020; 6:eaay9466. [PMID: 32494702 PMCID: PMC7202888 DOI: 10.1126/sciadv.aay9466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/27/2020] [Indexed: 05/10/2023]
Abstract
The cardiac and hematopoietic progenitors (CPs and HPs, respectively) in the mesoderm ultimately form a well-organized circulation system, but mechanisms that reconcile their development remain elusive. We found that activating transcription factor 3 (atf3) was highly expressed in the CPs, HPs, and mesoderm, in zebrafish. The atf3 -/- mutants exhibited atrial dilated cardiomyopathy and a high ratio of immature myeloid cells. These manifestations were primarily caused by the blockade of differentiation of both CPs and HPs within the anterior lateral plate mesoderm. Mechanistically, Atf3 targets cebpγ to repress slc2a1a-mediated glucose utilization. The high rate of glucose metabolism in atf3 -/- mutants inhibited the differentiation of progenitors by changing the redox state. Therefore, atf3 could provide CPs and HPs with metabolic adaptive capacity to changes in glucose levels. Our study provides new insights into the role of atf3 in the coordination of differentiation of CPs and HPs by regulating glucose metabolism.
Collapse
Affiliation(s)
- Hui-Min Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li-Feng Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Yuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Su
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| |
Collapse
|
20
|
Anjitha R, Antony A, Shilpa O, Anupama KP, Mallikarjunaiah S, Gurushankara HP. Malathion induced cancer-linked gene expression in human lymphocytes. ENVIRONMENTAL RESEARCH 2020; 182:109131. [PMID: 32069766 DOI: 10.1016/j.envres.2020.109131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Malathion is the most widely used organophosphate pesticide in agriculture. Increasing cancer incidence in agricultural workers and their children links to the exposure of malathion. Identification of genes involved in the process of carcinogenesis is essential for exploring the role of malathion. The alteration in gene expression by malathion in human lymphocytes has not been explored yet, although hematological malignancies are rampant in humans. OBJECTIVE This study investigates the malathion induced expression of cancer associated genes in human lymphocytes. METHODS Human lymphocyte viability and colony-forming ability were analyzed in malathion treated and control groups. Gene expression profile in control and malathion treated human lymphocytes were performed using a microarray platform. The genes which have significant functions and those involved in different pathways were analyzed using the DAVID database. Differential gene expression upon malathion exposure was validated by quantitative real-time (qRT)-PCR. RESULTS Malathion caused a concentration-dependent reduction in human lymphocyte viability. At low concentration (50 μg/mL) of malathion treatment, human lymphocytes were viable indicating that low concentration of malathion is not cytotoxic and induces the colony formation. Total of 659 genes (15%) were up regulated and 3729 genes (85%) were down regulated in malathion treated human lymphocytes. About 57 cancer associated genes related to the growth and differentiation of B and T cells, immunoglobulin production, haematopoiesis, tumor suppression, oncogenes and signal transduction pathways like MAPK and RAS were induced by malathion. CONCLUSION This study evidences the carcinogenic nature of malathion. Low concentration of this pesticide is not cytotoxic and induces differentially regulated genes in human lymphocytes, which are involved in the initiation, progression, and pathogenesis of cancer.
Collapse
Affiliation(s)
- Ramakrishnan Anjitha
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Olakkaran Shilpa
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Kizhakke P Anupama
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Shanthala Mallikarjunaiah
- Center for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnanabharathi, Bengaluru, 560 056, Karnataka, India
| | - Hunasanahally P Gurushankara
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
21
|
Pundhir S, Bratt Lauridsen FK, Schuster MB, Jakobsen JS, Ge Y, Schoof EM, Rapin N, Waage J, Hasemann MS, Porse BT. Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors. Cell Rep 2019; 23:2744-2757. [PMID: 29847803 DOI: 10.1016/j.celrep.2018.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/27/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation.
Collapse
Affiliation(s)
- Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Felicia Kathrine Bratt Lauridsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bruhn Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus Schou Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Marten Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johannes Waage
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Sigurd Hasemann
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Torben Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Bology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity. Neuron 2019; 104:680-692.e9. [DOI: 10.1016/j.neuron.2019.08.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/28/2019] [Accepted: 08/20/2019] [Indexed: 11/15/2022]
|
23
|
Abstract
Neutrophils are implicated in almost every stage of oncogenesis and paradoxically display anti- and pro-tumor properties. Accumulating evidence indicates that neutrophils display diversity in their phenotype resulting from functional plasticity and/or changes to granulopoiesis. In cancer, neutrophils at a range of maturation stages can be identified in the blood and tissues (i.e., outside of their developmental niche). The functional capacity of neutrophils at different states of maturation is poorly understood resulting from challenges in their isolation, identification, and investigation. Thus, the impact of neutrophil maturity on cancer progression and therapy remains enigmatic. In this review, we discuss the identification, prevalence, and function of immature and mature neutrophils in cancer and the potential impact of this on tumor progression and cancer therapy.
Collapse
Affiliation(s)
- John B. G. Mackey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Leo M. Carlin
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
24
|
Jakobsen JS, Laursen LG, Schuster MB, Pundhir S, Schoof E, Ge Y, d’Altri T, Vitting-Seerup K, Rapin N, Gentil C, Jendholm J, Theilgaard-Mönch K, Reckzeh K, Bullinger L, Döhner K, Hokland P, Fitzgibbon J, Porse BT. Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML. SCIENCE ADVANCES 2019; 5:eaaw4304. [PMID: 31309149 PMCID: PMC6620102 DOI: 10.1126/sciadv.aaw4304] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/31/2019] [Indexed: 05/04/2023]
Abstract
The key myeloid transcription factor (TF), CEBPA, is frequently mutated in acute myeloid leukemia (AML), but the direct molecular effects of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we performed microscale, in vivo chromatin immunoprecipitation sequencing and identified a set of aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. Comparing gene expression changes in human CEBPA mutant AML and the corresponding Cebpa Lp30 mouse model, we identified Nt5e, encoding CD73, as a cross-species AML gene with an upstream leukemic enhancer physically and functionally linked to the gene. Increased expression of CD73, mediated by the CEBPA-p30 isoform, sustained leukemic growth via the CD73/A2AR axis. Notably, targeting of this pathway enhanced survival of AML-transplanted mice. Our data thus indicate a first-in-class link between a cancer driver mutation in a TF and a druggable, direct transcriptional target.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- Animals
- Binding Sites
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- GPI-Linked Proteins/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mutation
- Nucleotide Motifs
- Prognosis
- Promoter Regions, Genetic
- Protein Binding
- Protein Isoforms/genetics
Collapse
Affiliation(s)
- Janus S. Jakobsen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Linea G. Laursen
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B. Schuster
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sachin Pundhir
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin Schoof
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ying Ge
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teresa d’Altri
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Rapin
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Bioinformatics Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Coline Gentil
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Jendholm
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Hematology, Rigshospitalet, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Reckzeh
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité University Medicine, Berlin, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Peter Hokland
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Jude Fitzgibbon
- Centre for Haemato-Oncology, Queen Mary University of London, London, UK
| | - Bo T. Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Centre (DanStem) Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author.
| |
Collapse
|
25
|
Sun Y, Jiang Y, Li Y, Ma S. Identification of cancer omics commonality and difference via community fusion. Stat Med 2018; 38:1200-1212. [PMID: 30421444 DOI: 10.1002/sim.8027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/06/2018] [Accepted: 10/13/2018] [Indexed: 12/18/2022]
Abstract
The analysis of cancer omics data is a "classic" problem; however, it still remains challenging. Advancing from early studies that are mostly focused on a single type of cancer, some recent studies have analyzed data on multiple "related" cancer types/subtypes, examined their commonality and difference, and led to insightful findings. In this article, we consider the analysis of multiple omics datasets, with each dataset on one type/subtype of "related" cancers. A Community Fusion (CoFu) approach is developed, which conducts marker selection and model building using a novel penalization technique, informatively accommodates the network community structure of omics measurements, and automatically identifies the commonality and difference of cancer omics markers. Simulation demonstrates its superiority over direct competitors. The analysis of TCGA lung cancer and melanoma data leads to interesting findings.
Collapse
Affiliation(s)
- Yifan Sun
- Center for Applied Statistics, Renmin University of China, Beijing, China.,School of Statistics, Renmin University of China, Beijing, China
| | - Yu Jiang
- School of Public Health, The University of Memphis, Memphis, Tennessee
| | - Yang Li
- Center for Applied Statistics, Renmin University of China, Beijing, China.,School of Statistics, Renmin University of China, Beijing, China.,Statistical Consulting Center, Renmin University of China, Beijing, China
| | - Shuangge Ma
- School of Statistics, Renmin University of China, Beijing, China.,Department of Biostatistics, Yale University, New Haven, Connecticut
| |
Collapse
|
26
|
Guo H, Barberi T, Suresh R, Friedman AD. Progression from the Common Lymphoid Progenitor to B/Myeloid PreproB and ProB Precursors during B Lymphopoiesis Requires C/EBPα. THE JOURNAL OF IMMUNOLOGY 2018; 201:1692-1704. [PMID: 30061199 DOI: 10.4049/jimmunol.1800244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022]
Abstract
The C/EBPα transcription factor is required for myelopoiesis, with prior observations suggesting additional contributions to B lymphopoiesis. Cebpa expression is evident in common lymphoid progenitor (CLP) and preproB cells but is absent in proB and preB cells. We previously observed that marrow lacking the Cebpa +37 kb enhancer is impaired in producing B cells upon competitive transplantation. Additionally, a Cebpa enhancer/promoter-hCD4 transgene is expressed in B/myeloid CFU. Extending these findings, pan-hematopoietic murine Cebpa enhancer deletion using Mx1-Cre leads to expanded CLP, fewer preproB cells, markedly reduced proB and preB cells, and reduced mature B cells, without affecting T cell numbers. In contrast, enhancer deletion at the proB stage using Mb1-Cre does not impair B cell maturation. Further evaluation of CLP reveals that the Cebpa transgene is expressed almost exclusively in Flt3+ multipotent CLP versus B cell-restricted Flt3- CLP. In vitro, hCD4+ preproB cells produce both B and myeloid cells, whereas hCD4- preproB cells only produce B cells. Additionally, a subset of hCD4- preproB cells express high levels of RAG1-GFP, as seen also in proB cells. Global gene expression analysis indicates that hCD4+ preproB cells express proliferative pathways, whereas B cell development and signal transduction pathways predominate in hCD4- preproB cells. Consistent with these changes, Cebpa enhancer-deleted preproB cells downmodulate cell cycle pathways while upregulating B cell signaling pathways. Collectively, these findings indicate that C/EBPα is required for Flt3+ CLP maturation into preproB cells and then for proliferative Cebpaint B/myeloid preproB cells to progress to Cebpalo B cell-restricted preproB cells and finally to Cebpaneg proB cells.
Collapse
Affiliation(s)
- Hong Guo
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Theresa Barberi
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Rahul Suresh
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| |
Collapse
|
27
|
Morel A, Baguet A, Perrard J, Demeret C, Jacquin E, Guenat D, Mougin C, Prétet JL. 5azadC treatment upregulates miR-375 level and represses HPV16 E6 expression. Oncotarget 2018; 8:46163-46176. [PMID: 28521287 PMCID: PMC5542257 DOI: 10.18632/oncotarget.17575] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 04/10/2017] [Indexed: 01/06/2023] Open
Abstract
High-risk human papillomaviruses are the etiological agents of cervical cancer and HPV16 is the most oncogenic genotype. Immortalization and transformation of infected cells requires the overexpression of the two viral oncoproteins E6 and E7 following HPV DNA integration into the host cell genome. Integration often leads to the loss of the E2 open reading frame and the corresponding protein can no longer act as a transcriptional repressor on p97 promoter. Recently, it has been proposed that long control region methylation also contributes to the regulation of E6/E7 expression. To determine which epigenetic mechanism is involved in HPV16 early gene regulation, 5-aza-2′-deoxycytidine was used to demethylate Ca Ski and SiHa cell DNA. Decreased expression of E6 mRNA and protein levels was observed in both cell lines in an E2-independent manner. E6 repression was accompanied by neither a modification of the main cellular transcription factor expression involved in long control region regulation, nor by a modification of the E6 mRNA splicing pattern. In contrast, a pronounced upregulation of miR-375, known to destabilize HPV16 early viral mRNA, was observed. Finally, the use of miR-375 inhibitor definitively proved the involvement of miR-375 in E6 repression. These results highlight that cellular DNA methylation modulates HPV16 early gene expression and support a role for epigenetic events in high-risk HPV associated-carcinogenesis.
Collapse
Affiliation(s)
- Adrien Morel
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
| | - Aurélie Baguet
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
| | - Jérôme Perrard
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
| | - Caroline Demeret
- Département de Virologie, Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, CNRS UMR 3569, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Elise Jacquin
- Signalling Department, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - David Guenat
- Centre Hospitalier Régional Universitaire, Besançon, France.,Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | - Christiane Mougin
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France.,Centre Hospitalier Régional Universitaire, Besançon, France
| | - Jean-Luc Prétet
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France.,Centre Hospitalier Régional Universitaire, Besançon, France
| |
Collapse
|
28
|
Kardosova M, Zjablovskaja P, Danek P, Angelisova P, de Figueiredo-Pontes LL, Welner RS, Brdicka T, Lee S, Tenen DG, Alberich-Jorda M. C/EBPγ is dispensable for steady-state and emergency granulopoiesis. Haematologica 2018; 103:e331-e335. [PMID: 29567783 DOI: 10.3324/haematol.2017.173781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Miroslava Kardosova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Charles University, Faculty of Science, Prague, Czech Republic
| | - Polina Zjablovskaja
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,CLIP-Childhood Leukaemia Investigation, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| | - Petr Danek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Angelisova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lorena Lobo de Figueiredo-Pontes
- Hematology/Oncology Division of the Department of Internal Medicine, Medical School of Ribeirao Preto, University of São Paulo, Brazil
| | - Robert S Welner
- Hematology/Oncology Department, University of Alabama at Birmingham, AL, USA
| | - Tomas Brdicka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sanghoon Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Meritxell Alberich-Jorda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic .,CLIP-Childhood Leukaemia Investigation, Prague, Czech Republic.,Department of Paediatric Haematology and Oncology, Charles University, Second Faculty of Medicine, Prague, Czech Republic
| |
Collapse
|
29
|
Zjablovskaja P, Danek P, Kardosova M, Alberich-Jorda M. Proliferation and Differentiation of Murine Myeloid Precursor 32D/G-CSF-R Cells. J Vis Exp 2018. [PMID: 29553501 DOI: 10.3791/57033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Understanding of the hematopoietic stem and progenitor cell biology has important implications for regenerative medicine and the treatment of hematological pathologies. Despite the most relevant data that can be acquired using in vivo models or primary cultures, the low abundance of hematopoietic stem and progenitor cells considerably restricts the pool of suitable techniques for their investigation. Therefore, the use of cell lines allows sufficient production of biological material for the performance of screenings or assays that require large cell numbers. Here we present a detailed description, readout, and interpretation of proliferation and differentiation assays which are used for the investigation of processes involved in myelopoiesis and neutrophilic differentiation. These experiments employ the 32D/G-CSF-R cytokine dependent murine myeloid cell line, which possesses the ability to proliferate in the presence of IL-3 and differentiate in G-CSF. We provide optimized protocols for handling 32D/G-CSF-R cells and discuss major pitfalls and drawbacks that might compromise the described assays and expected results. Additionally, this article contains protocols for lentiviral and retroviral production, titration, and transduction of 32D/G-CSF-R cells. We demonstrate that genetic manipulation of these cells can be employed to successfully perform functional and molecular studies, which can complement results obtained with primary hematopoietic stem and progenitor cells or in vivo models.
Collapse
Affiliation(s)
- Polina Zjablovskaja
- Department of Hemato-Oncology, Institute of Molecular Genetics of the ASCR; Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University
| | - Petr Danek
- Department of Hemato-Oncology, Institute of Molecular Genetics of the ASCR
| | | | - Meritxell Alberich-Jorda
- Department of Hemato-Oncology, Institute of Molecular Genetics of the ASCR; Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University;
| |
Collapse
|
30
|
The human nucleophosmin 1 mutation A inhibits myeloid differentiation of leukemia cells by modulating miR-10b. Oncotarget 2018; 7:71477-71490. [PMID: 27669739 PMCID: PMC5342094 DOI: 10.18632/oncotarget.12216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
Mutations in the nucleophosmin 1 (NPM1) gene are the most frequent genetic alteration in acute myeloid leukemia (AML). Here, we showed that enforced expression of NPM1 mutation type A (NPM1-mA) inhibits myeloid differentiation of leukemia cells, whereas knockdown of NPM1-mA has the opposite effect. Our analyses of normal karyotype AML samples from The Cancer Genome Atlas (TCGA) dataset revealed that miR-10b is commonly overexpressed in NPM1-mutated AMLs. We also found high expression of miR-10b in primary NPM1-mutated AML blasts and NPM1-mA positive OCI-AML3 cells. In addition, NPM1-mA knockdown enhanced myeloid differentiation, while induced expression of miR-10b reversed this effect. Finally, we showed that KLF4 is downregulated in NPM1-mutated AMLs. These results demonstrated that miR-10b exerts its effects by repressing the translation of KLF4 and that NPM1-mA inhibits myeloid differentiation through the miR-10b/KLF4 axis. This sheds new light on the effect of NPM1 mutations' on leukemogenesis.
Collapse
|
31
|
Gonzalez D, Luyten A, Bartholdy B, Zhou Q, Kardosova M, Ebralidze A, Swanson KD, Radomska HS, Zhang P, Kobayashi SS, Welner RS, Levantini E, Steidl U, Chong G, Collombet S, Choi MH, Friedman AD, Scott LM, Alberich-Jorda M, Tenen DG. ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPα. J Biol Chem 2017; 292:18924-18936. [PMID: 28900037 PMCID: PMC5704476 DOI: 10.1074/jbc.m117.811109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
The transcription factor C/EBPα is essential for myeloid differentiation and is frequently dysregulated in acute myeloid leukemia. Although studied extensively, the precise regulation of its gene by upstream factors has remained largely elusive. Here, we investigated its transcriptional activation during myeloid differentiation. We identified an evolutionarily conserved octameric sequence, CCCAGCAG, ∼100 bases upstream of the CEBPA transcription start site, and demonstrated through mutational analysis that this sequence is crucial for C/EBPα expression. This sequence is present in the genes encoding C/EBPα in humans, rodents, chickens, and frogs and is also present in the promoters of other C/EBP family members. We identified that ZNF143, the human homolog of the Xenopus transcriptional activator STAF, specifically binds to this 8-bp sequence to activate C/EBPα expression in myeloid cells through a mechanism that is distinct from that observed in liver cells and adipocytes. Altogether, our data suggest that ZNF143 plays an important role in the expression of C/EBPα in myeloid cells.
Collapse
Affiliation(s)
- David Gonzalez
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Annouck Luyten
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Boris Bartholdy
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Qiling Zhou
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Miroslava Kardosova
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Alex Ebralidze
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Kenneth D Swanson
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Hanna S Radomska
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- The Ohio State University, Comprehensive Cancer Center, Columbus, Ohio 43210, and
| | - Pu Zhang
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Susumu S Kobayashi
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Robert S Welner
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Hematology/Oncology Department, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Elena Levantini
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Institute of Biomedical Technologies, National Research Council, 56124 Pisa, Italy
| | - Ulrich Steidl
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
- the Department of Cell Biology, and Department of Medicine (Oncology), Albert Einstein College of Medicine, New York, New York 10461
| | - Gilbert Chong
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Samuel Collombet
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | - Min Hee Choi
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore
| | | | - Linda M Scott
- the The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Meritxell Alberich-Jorda
- the Institute of Molecular Genetics of the ASCR, Prague 142 20, Czech Republic,
- the Childhood Leukaemia Investigation Prague, Second Faculty of Medicine Charles University, University Hospital Motol, Prague 150 06, Czech Republic
| | - Daniel G Tenen
- From the Cancer Science Institute, National University of Singapore, 117599 Singapore,
- the Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
32
|
Schmidt N, Kollewe A, Constantin CE, Henrich S, Ritzau-Jost A, Bildl W, Saalbach A, Hallermann S, Kulik A, Fakler B, Schulte U. Neuroplastin and Basigin Are Essential Auxiliary Subunits of Plasma Membrane Ca2+-ATPases and Key Regulators of Ca2+ Clearance. Neuron 2017; 96:827-838.e9. [DOI: 10.1016/j.neuron.2017.09.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/31/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022]
|
33
|
Brechet A, Buchert R, Schwenk J, Boudkkazi S, Zolles G, Siquier-Pernet K, Schaber I, Bildl W, Saadi A, Bole-Feysot C, Nitschke P, Reis A, Sticht H, Al-Sanna'a N, Rolfs A, Kulik A, Schulte U, Colleaux L, Abou Jamra R, Fakler B. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nat Commun 2017; 8:15910. [PMID: 28675162 PMCID: PMC5500892 DOI: 10.1038/ncomms15910] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/11/2017] [Indexed: 11/25/2022] Open
Abstract
AMPA-type glutamate receptors (AMPARs), key elements in excitatory neurotransmission in the brain, are macromolecular complexes whose properties and cellular functions are determined by the co-assembled constituents of their proteome. Here we identify AMPAR complexes that transiently form in the endoplasmic reticulum (ER) and lack the core-subunits typical for AMPARs in the plasma membrane. Central components of these ER AMPARs are the proteome constituents FRRS1l (C9orf4) and CPT1c that specifically and cooperatively bind to the pore-forming GluA1-4 proteins of AMPARs. Bi-allelic mutations in the human FRRS1L gene are shown to cause severe intellectual disability with cognitive impairment, speech delay and epileptic activity. Virus-directed deletion or overexpression of FRRS1l strongly impact synaptic transmission in adult rat brain by decreasing or increasing the number of AMPARs in synapses and extra-synaptic sites. Our results provide insight into the early biogenesis of AMPARs and demonstrate its pronounced impact on synaptic transmission and brain function. The biogenesis of AMPA-type glutamate receptor (AMPAR) complexes is only partially understood. Here the authors identify transient assemblies of GluA1-4 proteins and proteins FRRS1l/CPT1c that drive formation of mature AMPAR complexes in the ER. Mutations in FRRS1l are associated with intellectual disability and epilepsy in three families.
Collapse
Affiliation(s)
- Aline Brechet
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Rebecca Buchert
- Institute of Human Genetics, University of Erlangen, Schwabachanlage 10, Erlangen 91054, Germany
| | - Jochen Schwenk
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany
| | - Sami Boudkkazi
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Gerd Zolles
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Karine Siquier-Pernet
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Irene Schaber
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany
| | - Abdelkrim Saadi
- Department de Neurologie, Etablissement Hospitalier Specialisé de Benaknoun, Algers, Algeria
| | - Christine Bole-Feysot
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Patrick Nitschke
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Andre Reis
- Institute of Human Genetics, University of Erlangen, Schwabachanlage 10, Erlangen 91054, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Emil-Fischer Center, Fahrstraße 17, Erlangen 91054, Germany
| | - Nouriya Al-Sanna'a
- Dharan Health Center, 8131 Medical Access Rd 1, Gharb al Dharan, Dharan 34465, Saudi Arabia
| | - Arndt Rolfs
- Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany.,Albrecht-Kossel-Institute for Neuroregeneration, Medical University Rostock, Gehlsheimerstr. 20, Rostock 18147, Germany
| | - Akos Kulik
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany.,Logopharm GmbH, Schlossstr. 14, March-Buchheim 79232, Germany
| | - Laurence Colleaux
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, Paris 75015, France
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Erlangen, Schwabachanlage 10, Erlangen 91054, Germany.,Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Philipp-Rosenthal-Str. 55, 04103 Leipzig, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str. 7, Freiburg 79104, Germany.,Center for Biological Signaling Studies (BIOSS), Schänzlestr. 18, Freiburg 79104, Germany
| |
Collapse
|
34
|
Wurm AA, Zjablovskaja P, Kardosova M, Gerloff D, Bräuer-Hartmann D, Katzerke C, Hartmann JU, Benoukraf T, Fricke S, Hilger N, Müller AM, Bill M, Schwind S, Tenen DG, Niederwieser D, Alberich-Jorda M, Behre G. Disruption of the C/EBPα-miR-182 balance impairs granulocytic differentiation. Nat Commun 2017; 8:46. [PMID: 28663557 PMCID: PMC5491528 DOI: 10.1038/s41467-017-00032-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/30/2017] [Indexed: 02/04/2023] Open
Abstract
Transcription factor C/EBPα is a master regulator of myelopoiesis and its inactivation is associated with acute myeloid leukemia. Deregulation of C/EBPα by microRNAs during granulopoiesis or acute myeloid leukemia development has not been studied. Here we show that oncogenic miR-182 is a strong regulator of C/EBPα. Moreover, we identify a regulatory loop between C/EBPα and miR-182. While C/EBPα blocks miR-182 expression by direct promoter binding during myeloid differentiation, enforced expression of miR-182 reduces C/EBPα protein level and impairs granulopoiesis in vitro and in vivo. In addition, miR-182 expression is highly elevated particularly in acute myeloid leukemia patients with C-terminal CEBPA mutations, thereby depicting a mechanism by which C/EBPα blocks miR-182 expression. Furthermore, we present miR-182 expression as a prognostic marker in cytogenetically high-risk acute myeloid leukemia patients. Our data demonstrate the importance of a controlled balance between C/EBPα and miR-182 for the maintenance of healthy granulopoiesis. C/EBPα is a critical transcription factor involved in myelopoiesis and its inactivation is associated with acute myeloid leukemia (AML). Here the authors show a negative feedback loop between C/EBPα and miR-182 and identify this miRNA as a marker of high-risk AML.
Collapse
Affiliation(s)
- Alexander Arthur Wurm
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Miroslava Kardosova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Dennis Gerloff
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniela Bräuer-Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Christiane Katzerke
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Jens-Uwe Hartmann
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Touati Benoukraf
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Anne-Marie Müller
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig, 04103, Germany
| | - Marius Bill
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Sebastian Schwind
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Daniel G Tenen
- Cancer Science Institute, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.,Harvard Stem Cell Institute, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Dietger Niederwieser
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany
| | - Meritxell Alberich-Jorda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
| | - Gerhard Behre
- Division of Hematology and Oncology, Leipzig University Hospital, Johannisallee 32a, Leipzig, 04103, Germany.
| |
Collapse
|
35
|
Xiao X, Xu Q, Sun Y, Lu Z, Li R, Wang X, Jiang X, Zhang G, Xiao Y. 5-aza-2′-deoxycytidine promotes migration of acute monocytic leukemia cells via activation of CCL2-CCR2-ERK signaling pathway. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
EVI2B is a C/EBPα target gene required for granulocytic differentiation and functionality of hematopoietic progenitors. Cell Death Differ 2017; 24:705-716. [PMID: 28186500 DOI: 10.1038/cdd.2017.6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/29/2022] Open
Abstract
Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.
Collapse
|
37
|
CREB engages C/EBPδ to initiate leukemogenesis. Leukemia 2016; 30:1887-96. [PMID: 27118402 DOI: 10.1038/leu.2016.98] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 12/28/2022]
Abstract
cAMP response element binding protein (CREB) is frequently overexpressed in acute myeloid leukemia (AML) and acts as a proto-oncogene; however, it is still debated whether such overactivation alone is able to induce leukemia as its pathogenetic downstream signaling is still unclear. We generated a zebrafish model overexpressing CREB in the myeloid lineage, which showed an aberrant regulation of primitive hematopoiesis, and in 79% of adult CREB-zebrafish a block of myeloid differentiation, triggering to a monocytic leukemia akin the human counterpart. Gene expression analysis of CREB-zebrafish revealed a signature of 20 differentially expressed human homologous CREB targets in common with pediatric AML. Among them, we demonstrated that CREB overexpression increased CCAAT-enhancer-binding protein-δ (C/EBPδ) levels to cause myeloid differentiation arrest, and the silencing of CREB-C/EBPδ axis restored myeloid terminal differentiation. Then, C/EBPδ overexpression was found to identify a subset of pediatric AML affected by a block of myeloid differentiation at monocytic stage who presented a significant higher relapse risk and the enrichment of aggressive signatures. Finally, this study unveils the aberrant activation of CREB-C/EBPδ axis concurring to AML onset by disrupting the myeloid cell differentiation process. We provide a novel in vivo model to perform high-throughput drug screening for AML cure improvement.
Collapse
|
38
|
Yokoyama T, Nakatake M, Kuwata T, Couzinet A, Goitsuka R, Tsutsumi S, Aburatani H, Valk PJM, Delwel R, Nakamura T. MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Invest 2016; 126:1664-78. [PMID: 27018596 DOI: 10.1172/jci81516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
The TALE-class homeoprotein MEIS1 specifically collaborates with HOXA9 to drive myeloid leukemogenesis. Although MEIS1 alone has only a moderate effect on cell proliferation in vitro, it is essential for the development of HOXA9-induced leukemia in vivo. Here, using murine models of leukemogenesis, we have shown that MEIS1 promotes leukemic cell homing and engraftment in bone marrow and enhances cell-cell interactions and cytokine-mediated cell migration. We analyzed global DNA binding of MEIS1 in leukemic cells as well as gene expression alterations in MEIS1-deficent cells and identified synaptotagmin-like 1 (Sytl1, also known as Slp1) as the MEIS1 target gene that cooperates with Hoxa9 in leukemogenesis. Replacement of SYTL1 in MEIS1-deficent cells restored both cell migration and engraftment. Further analysis revealed that SYTL1 promotes cell migration via activation of the CXCL12/CXCR4 axis, as SYTL1 determines intracellular trafficking of CXCR4. Together, our results reveal that MEIS1, through induction of SYTL1, promotes leukemogenesis and supports leukemic cell homing and engraftment, facilitating interactions between leukemic cells and bone marrow stroma.
Collapse
|
39
|
An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood 2016; 127:2991-3003. [PMID: 26966090 DOI: 10.1182/blood-2016-01-695759] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 12/24/2022] Open
Abstract
Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only.
Collapse
|
40
|
Guo H, Cooper S, Friedman AD. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis. PLoS One 2016; 11:e0150809. [PMID: 26937964 PMCID: PMC4777376 DOI: 10.1371/journal.pone.0150809] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 12/29/2022] Open
Abstract
The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and <2-fold reduction in the LSK/SLAM subset. FACS analysis of marrow from these mice revealed 10-fold reduced neutrophils, 3-fold decreased GMP, and 3-fold increased LSK cells. Progenitor cell cycle progression was mildly impaired. Granulocyte and B lymphoid colony forming units were reduced while monocytic and erythroid colonies were increased, with reduced Pu.1 and Gfi1 and increased Egr1 and Klf4 in GMP. Finally, competitive transplantation indicated preservation of functional long-term hematopoietic stem cells upon enhancer deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression, with enhancer deletion leading to impaired myelopoiesis and potentially preleukemic progenitor expansion.
Collapse
Affiliation(s)
- Hong Guo
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stacy Cooper
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
41
|
Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quiñones OA, Johnson PF. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4. Mol Cell Biol 2015; 36:693-713. [PMID: 26667036 PMCID: PMC4760225 DOI: 10.1128/mcb.00911-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022] Open
Abstract
The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg(-/-) mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg(-/-) mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg(-/-) mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells.
Collapse
Affiliation(s)
- Christopher J Huggins
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Manasi K Mayekar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Nancy Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Karen L Saylor
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mesfin Gonit
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Parthav Jailwala
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Manjula Kasoji
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Diana C Haines
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- DMS, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Peter F Johnson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
42
|
The multifaceted functions of C/EBPα in normal and malignant haematopoiesis. Leukemia 2015; 30:767-75. [PMID: 26601784 DOI: 10.1038/leu.2015.324] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Abstract
The process of blood formation, haematopoiesis, depends upon a small number of haematopoietic stem cells (HSCs) that reside in the bone marrow. Differentiation of HSCs is characterised by decreased expression of genes associated with self-renewal accompanied by a stepwise activation of genes promoting differentiation. Lineage branching is further directed by groups of cooperating and counteracting genes forming complex networks of lineage-specific transcription factors. Imbalances in such networks can result in blockage of differentiation, lineage reprogramming and malignant transformation. CCAAT/enhancer-binding protein-α (C/EBPα) was originally identified 30 years ago as a transcription factor that binds both promoter and enhancer regions. Most of the early work focused on the role of C/EBPα in regulating transcriptional processes as well as on its functions in key differentiation processes during liver, adipogenic and haematopoietic development. Specifically, C/EBPα was shown to control differentiation by its ability to coordinate transcriptional output with cell cycle progression. Later, its role as an important tumour suppressor, mainly in acute myeloid leukaemia (AML), was recognised and has been the focus of intense studies by a number of investigators. More recent work has revisited the role of C/EBPα in normal haematopoiesis, especially its function in HSCs, and also started to provide more mechanistic insights into its role in normal and malignant haematopoiesis. In particular, the differential actions of C/EBPα isoforms, as well as its importance in chromatin remodelling and cellular reprogramming, are beginning to be elucidated. Finally, recent work has also shed light on the dichotomous function of C/EBPα in AML by demonstrating its ability to act as both a tumour suppressor and promoter. In the present review, we will summarise the current knowledge on the functions of C/EBPα during normal and malignant haematopoiesis with special emphasis on the recent work.
Collapse
|
43
|
Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells. Leukemia 2015; 30:209-18. [DOI: 10.1038/leu.2015.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/03/2015] [Accepted: 07/10/2015] [Indexed: 01/08/2023]
|
44
|
CEBPA methylation and mutation in myelodysplastic syndrome. Med Oncol 2015; 32:192. [DOI: 10.1007/s12032-015-0605-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/26/2015] [Indexed: 12/30/2022]
|
45
|
Cooper S, Guo H, Friedman AD. The +37 kb Cebpa Enhancer Is Critical for Cebpa Myeloid Gene Expression and Contains Functional Sites that Bind SCL, GATA2, C/EBPα, PU.1, and Additional Ets Factors. PLoS One 2015; 10:e0126385. [PMID: 25938608 PMCID: PMC4418761 DOI: 10.1371/journal.pone.0126385] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022] Open
Abstract
The murine Cebpa gene contains an evolutionarily conserved 453 bp enhancer located at +37 kb that, together with its promoter, directs expression to myeloid progenitors and to long-term hematopoietic stem cells in transgenic mice. In human acute myeloid leukemia cases, the enhancer lacks point mutations but binds the RUNX1-ETO oncoprotein. The enhancer contains the H3K4me1 and H3K27Ac histone modifications, denoting an active enhancer, at progressively increasing levels as long-term hematopoietic stem cells transition to granulocyte-monocyte progenitors. We previously identified four enhancer sites that bind RUNX1 and demonstrated that their integrity is required for maximal enhancer activity in 32Dcl3 myeloid cells. The +37 kb Cebpa enhancer also contains C/EBP, Ets factor, Myb, GATA, and E-box consensus sites conserved in the human +42 kb CEBPA enhancer. Mutation of the two C/EBP, seven Ets, one Myb, two GATA, or two E-box sites reduces activity of an enhancer-promoter reporter in 32Dcl3 cells. In 293T gel shift assays, exogenous C/EBPα binds both C/EBP sites, c-Myb binds the Myb site, PU.1 binds the second Ets site, PU.1, Fli-1, ERG, and Ets1 bind the sixth Ets site, GATA2 binds both GATA sites, and SCL binds the second E-box. Endogenous hematopoietic RUNX1, PU.1, Fli-1, ERG, C/EBPα, GATA2, and SCL were previously shown to bind the enhancer, and we find that endogenous PU.1 binds the second Ets site in 32Dcl3 cells. Using CRISPR/Cas9, we developed 32Dcl3 lines in which the wild-type enhancer alleles are replaced with a variant mutant in the seven Ets sites. These lines have 20-fold reduced Cebpa mRNA when cultured in IL-3 or G-CSF, demonstrating a critical requirement for enhancer integrity for optimal Cebpa expression. In addition, these results indicate that the +37 kb Cebpa enhancer is the focus of multiple regulatory transcriptional pathways that impact its expression during normal hematopoiesis and potentially during myeloid transformation.
Collapse
Affiliation(s)
- Stacy Cooper
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Hong Guo
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alan D. Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
46
|
Friedman AD. C/EBPα in normal and malignant myelopoiesis. Int J Hematol 2015; 101:330-41. [PMID: 25753223 DOI: 10.1007/s12185-015-1764-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/22/2022]
Abstract
CCAAT/enhancer binding protein α (C/EBPα) dimerizes via its leucine zipper (LZ) domain to bind DNA via its basic region and activate transcription via N-terminal trans-activation domains. The activity of C/EBPα is modulated by several serine/threonine kinases and via sumoylation, its gene is activated by RUNX1 and additional transcription factors, its mRNA stability is modified by miRNAs, and its mRNA is subject to translation control that affects AUG selection. In addition to inducing differentiation, C/EBPα inhibits cell cycle progression and apoptosis. Within hematopoiesis, C/EBPα levels increase as long-term stem cells progress to granulocyte-monocyte progenitors (GMP). Absence of C/EBPα prevents GMP formation, and higher levels are required for granulopoiesis compared to monopoiesis. C/EBPα interacts with AP-1 proteins to bind hybrid DNA elements during monopoiesis, and induction of Gfi-1, C/EBPε, KLF5, and miR-223 by C/EBPα enables granulopoiesis. The CEBPA ORF is mutated in approximately 10 % of acute myeloid leukemias (AML), leading to expression of N-terminally truncated C/EBPαp30 and C-terminal, in-frame C/EBPαLZ variants, which inhibit C/EBPα activities but also play additional roles during myeloid transformation. RUNX1 mutation, CEBPA promoter methylation, Trib1 or Trib2-mediated C/EBPαp42 degradation, and signaling pathways leading to C/EBPα serine 21 phosphorylation reduce C/EBPα expression or activity in additional AML cases.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University, Cancer Research Building I, Room 253, 1650 Orleans Street, Baltimore, MD, 21231, USA,
| |
Collapse
|
47
|
Haghi N, Brody J, Mahmood N, Gheewala D, Allen SL, Sreekantaiah C, Zhang X. B-cell precursor acute lymphoblastic leukemia with isolated t(14;19)(q32;q13) abnormality involving the CEBPG gene. Leuk Lymphoma 2015; 56:2978-81. [PMID: 25669928 DOI: 10.3109/10428194.2015.1011639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Nina Haghi
- a Department of Pathology and Laboratory Medicine , Hofstra North Shore-LIJ School of Medicine , Lake Success , NY , USA
| | - Judith Brody
- a Department of Pathology and Laboratory Medicine , Hofstra North Shore-LIJ School of Medicine , Lake Success , NY , USA
| | - Nayyara Mahmood
- a Department of Pathology and Laboratory Medicine , Hofstra North Shore-LIJ School of Medicine , Lake Success , NY , USA
| | - Dipti Gheewala
- a Department of Pathology and Laboratory Medicine , Hofstra North Shore-LIJ School of Medicine , Lake Success , NY , USA
| | - Steven L Allen
- b Division of Hematology, Department of Medicine , North Shore-Long Island Jewish Health System, Hofstra North Shore-LIJ School of Medicine , Lake Success , NY , USA
| | - Chandrika Sreekantaiah
- a Department of Pathology and Laboratory Medicine , Hofstra North Shore-LIJ School of Medicine , Lake Success , NY , USA
| | - Xinmin Zhang
- a Department of Pathology and Laboratory Medicine , Hofstra North Shore-LIJ School of Medicine , Lake Success , NY , USA
| |
Collapse
|
48
|
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014; 159:647-61. [PMID: 25307932 PMCID: PMC4253859 DOI: 10.1016/j.cell.2014.09.029] [Citation(s) in RCA: 1929] [Impact Index Per Article: 175.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022]
Abstract
While the catalog of mammalian transcripts and their expression levels in different cell types and disease states is rapidly expanding, our understanding of transcript function lags behind. We present a robust technology enabling systematic investigation of the cellular consequences of repressing or inducing individual transcripts. We identify rules for specific targeting of transcriptional repressors (CRISPRi), typically achieving 90%-99% knockdown with minimal off-target effects, and activators (CRISPRa) to endogenous genes via endonuclease-deficient Cas9. Together they enable modulation of gene expression over a ∼1,000-fold range. Using these rules, we construct genome-scale CRISPRi and CRISPRa libraries, each of which we validate with two pooled screens. Growth-based screens identify essential genes, tumor suppressors, and regulators of differentiation. Screens for sensitivity to a cholera-diphtheria toxin provide broad insights into the mechanisms of pathogen entry, retrotranslocation and toxicity. Our results establish CRISPRi and CRISPRa as powerful tools that provide rich and complementary information for mapping complex pathways.
Collapse
Affiliation(s)
- Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Britt Adamson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline E Villalta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuwen Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Evan H Whitehead
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carla Guimaraes
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hidde L Ploegh
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael C Bassik
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei S Qi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
49
|
Kidd M, Modlin IM, Drozdov I. Gene network-based analysis identifies two potential subtypes of small intestinal neuroendocrine tumors. BMC Genomics 2014; 15:595. [PMID: 25023465 PMCID: PMC4124138 DOI: 10.1186/1471-2164-15-595] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/07/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumor transcriptomes contain information of critical value to understanding the different capacities of a cell at both a physiological and pathological level. In terms of clinical relevance, they provide information regarding the cellular "toolbox" e.g., pathways associated with malignancy and metastasis or drug dependency. Exploration of this resource can therefore be leveraged as a translational tool to better manage and assess neoplastic behavior. The availability of public genome-wide expression datasets, provide an opportunity to reassess neuroendocrine tumors at a more fundamental level. We hypothesized that stringent analysis of expression profiles as well as regulatory networks of the neoplastic cell would provide novel information that facilitates further delineation of the genomic basis of small intestinal neuroendocrine tumors. RESULTS We re-analyzed two publically available small intestinal tumor transcriptomes using stringent quality control parameters and network-based approaches and validated expression of core secretory regulatory elements e.g., CPE, PCSK1, secretogranins, including genes involved in depolarization e.g., SCN3A, as well as transcription factors associated with neurodevelopment (NKX2-2, NeuroD1, INSM1) and glucose homeostasis (APLP1). The candidate metastasis-associated transcription factor, ST18, was highly expressed (>14-fold, p < 0.004). Genes previously associated with neoplasia, CEBPA and SDHD, were decreased in expression (-1.5 - -2, p < 0.02). Genomic interrogation indicated that intestinal tumors may consist of two different subtypes, serotonin-producing neoplasms and serotonin/substance P/tachykinin lesions. QPCR validation in an independent dataset (n = 13 neuroendocrine tumors), confirmed up-regulated expression of 87% of genes (13/15). CONCLUSIONS An integrated cellular transcriptomic analysis of small intestinal neuroendocrine tumors identified that they are regulated at a developmental level, have key activation of hypoxic pathways (a known regulator of malignant stem cell phenotypes) as well as activation of genes involved in apoptosis and proliferation. Further refinement of these analyses by RNAseq studies of large-scale databases will enable definition of individual master regulators and facilitate the development of novel tissue and blood-based tools to better understand diagnose and treat tumors.
Collapse
Affiliation(s)
- Mark Kidd
- Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
50
|
Boudkkazi S, Brechet A, Schwenk J, Fakler B. Cornichon2 Dictates the Time Course of Excitatory Transmission at Individual Hippocampal Synapses. Neuron 2014; 82:848-58. [DOI: 10.1016/j.neuron.2014.03.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 11/16/2022]
|