1
|
McNeill TJ, Rooney AM, Ross FP, Bostrom MPG, van der Meulen MCH. PTH pre-treatment prior to tibial mechanical loading improves their synergistic anabolic effects in mice. Bone 2025; 196:117474. [PMID: 40164271 DOI: 10.1016/j.bone.2025.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Parathyroid hormone (PTH) increases bone mass and decreases fracture risk. However, the anabolic effects of PTH are limited to a period of approximately 24 months, motivating the need to maximize bone growth during this timeframe. Concurrent mechanical loading with weight-bearing exercise is synergistic with PTH treatment. We sought to determine if priming with PTH prior to initiating mechanical loading would enhance their synergistic effects. We pre-treated 10-week-old, female C57Bl/6J mice with either PTH or saline vehicle (VEH) for six weeks. We subsequently initiated cyclic tibial compression for either two or six weeks while continuing PTH or VEH treatment. We analyzed bone morphology in cortical and cancellous compartments of the proximal tibia. To further explore the effects of PTH and loading in cancellous bone, we measured bone cell presence and changes in bone morphology via histology, immunohistochemistry, and dynamic histomorphometry. Concurrent treatment with PTH enhanced load-induced increases in bone mass in cortical bone but blunted the effects of loading in cancellous bone. PTH pre-treatment further increased load-induced changes in cortical bone mass and rescued the load effects in cancellous bone, returning values to those of VEH-treated animals. Osteoclast populations decreased with loading, independent of PTH treatment. Active osteoblast populations increased with PTH pre-treatment but did not change with loading. Bone formation rate increased with PTH pre-treatment in the 2-week group but did not differ between treatment groups after 6-weeks. Collectively, pre-treating with PTH prior to mechanical loading primed the skeletal tissue and enhanced the anabolic response of concurrent treatment and loading.
Collapse
Affiliation(s)
- Tyler J McNeill
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Medical Metrics, Inc., Houston, TX, USA.
| | | | | | - Marjolein C H van der Meulen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Research Division, Hospital for Special Surgery, NY, New York, USA.
| |
Collapse
|
2
|
Liao SS, Deng YL, Hsu CY, Lee HT, Li CR, Yang CC. Denosumab in the Management of Glucocorticoid-Induced Osteoporosis: Long-Term Efficacy and Secondary Fracture Outcomes. J Clin Med 2025; 14:1633. [PMID: 40095574 PMCID: PMC11900549 DOI: 10.3390/jcm14051633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025] Open
Abstract
Objectives: Osteoporosis is a common complication in patients undergoing long-term corticosteroid therapy, particularly those with rheumatological and immunological conditions. Denosumab has shown potential in enhancing bone density and reducing fracture risk in such patients. This study evaluates the effectiveness of denosumab in osteoporosis management among corticosteroid-treated individuals. Methods: Between 2013 and 2022, 390 osteoporosis patients who received denosumab (60 mg subcutaneously every 6 months) for ≤18 months were enrolled. Patients were categorized based on corticosteroid use, and age-matching was applied to ensure comparability. Bone mineral density (BMD) and trabecular bone score (TBS) at the lumbar spine and femoral neck were assessed, and secondary fractures during the follow-up period were recorded. Results: Over the 18-month follow-up, both groups showed improvements in lumbar spine T-scores. The corticosteroid group increased from -2.1 ± 1.2 to -2.0 ± 1.3 (p < 0.001), while the non-corticosteroid group improved from -2.6 ± 1.2 to -2.4 ± 1.2 (p = 0.003). However, logistic regression analysis revealed that corticosteroid use remained a significant risk factor for secondary fractures (odds ratio: 1.69; 95% confidence interval: 1.11-2.56, p = 0.014), despite denosumab treatment. Conclusions: This retrospective study observed stabilization and a modest increase in BMD and TBS among corticosteroid users. Although differences in secondary fractures persisted between groups, denosumab shows potential for managing corticosteroid-induced osteoporosis. The study's focus on Taiwanese patients limits its generalizability, and future research should include diverse populations to enhance applicability.
Collapse
Affiliation(s)
- Sian-Siang Liao
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
| | - Ya-Lian Deng
- Department of Nursing, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Chiann-Yi Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407405, Taiwan;
| | - Hsu-Tung Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chi-Ruei Li
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
| | - Chi-Chan Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sec. 4, Taichung 40705, Taiwan; (S.-S.L.); (H.-T.L.); (C.-R.L.)
- Department of Neurosurgery, Taichung Veterans General Hospital Puli Branch, Nantou 545402, Taiwan
| |
Collapse
|
3
|
Chen NX, O’Neill KD, Wilson HE, Srinivasan S, Bonewald L, Moe SM. The uremic toxin indoxyl sulfate decreases osteocyte RANKL/OPG and increases Wnt inhibitor RNA expression that is reversed by PTH. JBMR Plus 2025; 9:ziae136. [PMID: 39664935 PMCID: PMC11631378 DOI: 10.1093/jbmrpl/ziae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 12/13/2024] Open
Abstract
Renal osteodystrophy (ROD) leads to increased fractures, potentially due to underlying low bone turnover in chronic kidney disease (CKD). We hypothesized that indoxyl sulfate (IS), a circulating toxin elevated in CKD and a ligand for the aryl hydrocarbon receptor (AhR), may target the osteocytes leading to bone cell uncoupling in ROD. The IDG-SW3 osteocytes were cultured for 14 days (early) and 35 days (mature osteocytes) and incubated with 500 μM of IS after dose finding studies to confirm AhR activation. Long-term incubation of IS for 14 days led to decreased expression of Tnfsf11/Tnfrsf11b ratio (RANKL/OPG), which would increase osteoclast activity, and increased expression of Wnt inhibitors Sost and Dkk1, which would decrease bone formation in addition to decreased mineralization and alkaline phosphatase (ALP) activity. When osteocytes were incubated with IS and the AhR translocation inhibitor CH223191, mineralization and ALP activity were restored. However, the Tnfsf11/Tnfrsf11b ratio and Sost, Dkk1 expression were not altered compared with IS alone, suggesting more complex signaling. In both early and mature osteocytes, co-culture with parathyroid hormone (PTH) and IS reversed the IS-induced upregulation of Sost and Dkk1, and IS enhanced the PTH-induced increase of the Tnfsf11/Tnfrsf11b ratio. Co-culture of IS with PTH additively enhanced the AhR activity assessed by Cyp1a1 and Cyp1b1 expression. In summary, IS in the absence of PTH increased osteocyte messenger RNA (mRNA) Wnt inhibitor expression in both early and mature osteocytes, decreased mRNA expression ofTnfsf11/Tnfrsf11b ratio and decreased mineralization in early osteocytes. These changes would lead to decreased resorption and formation resulting in low bone remodeling. These data suggest IS may be important in the underlying low turnover bone disease observed in CKD when PTH is not elevated. In addition, when PTH is elevated, IS interacts to further increase Tnfsf11/Tnfrsf11b ratio for osteoclast activity in both early and mature osteocytes, which would worsen bone resorption.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Kalisha D O’Neill
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Hannah E Wilson
- Department of Anatomy, Cell Biology and Physiology Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shruthi Srinivasan
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Lynda Bonewald
- Department of Anatomy, Cell Biology and Physiology Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sharon M Moe
- Department of Medicine, Division of Nephrology and Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Anatomy, Cell Biology and Physiology Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Bai L, Zhang X, Shen W, Wang P, Yin X, Liu J, Xu H, Liu B, Man Z, Li W. Multifunctional Scaffold Comprising Metal-Organic Framework, Hydrogel, and Demineralized Bone Matrix for the Treatment of Steroid-Induced Femoral Head Necrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407758. [PMID: 39575484 DOI: 10.1002/smll.202407758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Indexed: 01/23/2025]
Abstract
Overproduction of reactive oxygen species (ROS) results in oxidative stress, a critical factor in the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Excess ROS not only hinders the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) but also impairs mitochondrial structure and function, resulting in irreversible cellular damage. Herein, a biomimetic multifunctional scaffold comprising Zn-modified metal-organic framework 818 (Zn-MOF-818) loaded with deferoxamine (DFO), gelatin methacryloyl (GelMA) hydrogel, and demineralized bone matrix (DBM) is shown to scavenge excess ROS, promote angiogenesis, and regulate immunity. Introduced Zn significantly enhances the superoxide dismutase- and catalase-like activities of MOF-818, which increases ROS-scavenging efficiency. Zn-MOF-818 disrupts the vicious intracellular cycle of mitochondrial dysfunction and ROS accumulation by enhancing mitophagy, stabilizing mitochondrial function, and upregulating antioxidant genes. Additionally, Zn-MOF-818 facilitates the polarization of macrophages toward the M2 phenotype and alleviates inflammation, creating an advantageous immune microenvironment for osteogenic differentiation of BMSCs. The release of DFO, an activator of the HIF-1α pathway, and Zn2+ from Zn-MOF-818, along with the secretion of various cytokines from DBM (such as bone morphogenetic proteins and vascular endothelial growth factors), enhances angiogenesis and osteogenesis. This scaffold targets multiple factors concurrently, offering a promising new approach for treating SONFH.
Collapse
Affiliation(s)
- Liangjie Bai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaolei Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wei Shen
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, 276007, China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xin Yin
- Department of Joint Surgery, Linyi People's Hospital, Shandong University, Linyi, Shandong, 276007, China
| | - Jianing Liu
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| |
Collapse
|
5
|
Urbaniak MM, Rudnicka K, Płociński P, Chmiela M. Exploring the Osteoinductive Potential of Bacterial Pyomelanin Derived from Pseudomonas aeruginosa in a Human Osteoblast Model. Int J Mol Sci 2024; 25:13406. [PMID: 39769171 PMCID: PMC11678243 DOI: 10.3390/ijms252413406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaptonuria (AKU) is a genetically determined disease associated with disorders of tyrosine metabolism. In AKU, the deposition of homogentisic acid polymers contributes to the pathological ossification of cartilage tissue. The controlled use of biomimetics similar to deposits observed in cartilage during AKU potentially may serve the development of new bone regeneration therapy based on the activation of osteoblasts. The proposed biomimetic is pyomelanin (PyoM), a polymeric biomacromolecule synthesized by Pseudomonas aeruginosa. This work presents comprehensive data on the osteoinductive, pro-regenerative, and antibacterial properties, as well as the cytocompatibility, of water-soluble (PyoMsol) or water-insoluble (PyoMinsol) PyoM. Both variants of PyoM support osteoinductive processes as well as the maturation of osteoblasts in cell cultures in vitro due to the upregulation of bone-formation markers, osteocalcin (OC), and alkaline phosphatase (ALP). Furthermore, the cytokines involved in these processes were elevated in cell cultures of osteoblasts exposed to PyoM: tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10. The PyoM variants are cytocompatible in a wide concentration range and limit the doxorubicin-induced apoptosis of osteoblasts. This cytoprotective PyoM activity is correlated with an increased migration of osteoblasts. Moreover, PyoMsol and PyoMinsol exhibit antibacterial activity against staphylococci isolated from infected bones. The osteoinductive, pro-regenerative, and antiapoptotic effects achieved through PyoM stimulation prompt the development of new biocomposites modified with this bacterial biopolymer for medical use.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St, 91-403 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| |
Collapse
|
6
|
Baroudi M, Daher M, Maheshwari K, Singh M, Nassar JE, McDonald CL, Diebo BG, Daniels AH. Surgical Management of Adult Spinal Deformity Patients with Osteoporosis. J Clin Med 2024; 13:7173. [PMID: 39685632 DOI: 10.3390/jcm13237173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Adult spinal deformity (ASD) commonly affects older adults, with up to 68% prevalence in those over 60, and is often complicated by osteoporosis, which reduces bone mineral density (BMD) and increases surgical risks. Osteoporotic patients undergoing ASD surgery face higher risks of complications like hardware failure, pseudoarthrosis, and proximal junctional kyphosis (PJK). Medical management with antiresorptive medications (e.g., bisphosphonates, SERMs, and denosumab) and anabolic agents (e.g., teriparatide, abaloparatide, and romosozumab) can improve BMD and reduce complications. While bisphosphonates reduce fracture risk, teriparatide and newer agents like romosozumab show promise in increasing bone density and improving fusion rates. Surgical adaptations such as consideration of age-adjusted alignment, fusion level selection, cement augmentation, and the use of expandable screws or tethers enhance surgical outcomes in osteoporotic patients. Specifically, expandable screws and cement augmentation have been shown to improve fixation stability. However, further research is needed to evaluate the effectiveness of these treatments, specifically in osteoporotic ASD patients.
Collapse
Affiliation(s)
- Makeen Baroudi
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Mohammad Daher
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Krish Maheshwari
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Manjot Singh
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joseph E Nassar
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Christopher L McDonald
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Bassel G Diebo
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Alan H Daniels
- Department of Orthopedic Surgery, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Zhang T, Neunaber C, Ye W, Wagner A, Bülow JM, Relja B, Bundkirchen K. Aging Influences Fracture Healing on the Cellular Level and Alters Systemic RANKL and OPG Concentrations in a Murine Model. Adv Biol (Weinh) 2024; 8:e2300653. [PMID: 39164219 DOI: 10.1002/adbi.202300653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Clinical complications frequently follow polytrauma and bleeding fractures, increasing the risk of delayed fracture healing and nonunions, especially in aged patients. Therefore, this study examines age's impact on fracture repair with and without severe bleeding in mice. Young (17-26 weeks) and aged (64-72 weeks) male C57BL/6J mice (n = 72 in total, n = 6 per group) are allocated into 3 groups: the fracture group (Fx) undergoes femur osteotomy stabilized via external fixator, the combined trauma group (THFx) additionally receives pressure-controlled trauma hemorrhage (TH) and Sham animals are implanted with catheter and fixator without blood loss or osteotomy. Femoral bones are evaluated histologically 24 h and 3 weeks post-trauma, while RANKL/OPG and β-CTx are measured systemically via ELISA after 3 weeks. Aging results in less mineralized bone and fewer osteoclasts within the fracture of aged mice in contrast to young groups after three weeks. Systemically, aged animals exhibit increased RANKL and OPG levels after fracture compared to their young counterparts. The RANKL/OPG ratio rises in aged Fx animals compared to young mice, with a similar trend in THFx groups. In conclusion, age has an effect during the later course of fracture healing on the cellular and systemic levels.
Collapse
Affiliation(s)
- Tianqi Zhang
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Claudia Neunaber
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Weikang Ye
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
- Department of Spine Surgery, Yu Huang Ding Hospital, Yu Dong Str. 20, Yan Tai, 264000, China
| | - Alessa Wagner
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Jasmin Maria Bülow
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Borna Relja
- Ulm University Medical Center, Department of Trauma, Hand, Plastic and Reconstructive Surgery, Translational and Experimental Trauma Research, Helmholtz Str. 16, 89081, Ulm, Germany
| | - Katrin Bundkirchen
- Department of Trauma Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
8
|
Marino S, Bellido T. PTH receptor signalling, osteocytes and bone disease induced by diabetes mellitus. Nat Rev Endocrinol 2024; 20:661-672. [PMID: 39020007 DOI: 10.1038/s41574-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
Basic, translational and clinical research over the past few decades has provided new understanding on the mechanisms by which activation of the receptor of parathyroid hormone (parathyroid hormone 1 receptor (PTH1R)) regulates bone physiology and pathophysiology. A fundamental change in the field emerged upon the recognition that osteocytes, which are permanent residents of bone and the most abundant cells in bone, are targets of the actions of natural and synthetic ligands of PTH1R (parathyroid hormone and abaloparatide, respectively), and that these cells drive essential actions related to bone remodelling. Among the numerous genes regulated by PTH1R in osteocytes, SOST (which encodes sclerostin, the WNT signalling antagonist and inhibitor of bone formation) has a critical role in bone homeostasis and changes in its expression are associated with several bone pathologies. The bone fragility syndrome induced by diabetes mellitus is accompanied by increased osteocyte apoptosis and changes in the expression of osteocytic genes, including SOST. This Review will discuss advances in our knowledge of the role of osteocytes in PTH1R signalling and the new opportunities to restore bone health in diabetes mellitus by targeting the osteocytic PTH1R-sclerostin axis.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Zhan H, Xie D, Yan Z, Yi Z, Xiang D, Niu Y, Liang X, Geng B, Wu M, Xia Y, Jiang J. Fluid shear stress-mediated Piezo1 alleviates osteocyte apoptosis by activating the PI3K/Akt pathway. Biochem Biophys Res Commun 2024; 730:150391. [PMID: 39002199 DOI: 10.1016/j.bbrc.2024.150391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Glucocorticoid-induced osteoporosis serves as a primary cause for secondary osteoporosis and fragility fractures, representing the most prevalent adverse reaction associated with prolonged glucocorticoid use. In this study, to elucidate the impact and underlying mechanisms of fluid shear stress (FSS)-mediated Piezo1 on dexamethasone (Dex)-induced apoptosis, we respectively applied Dex treatment for 6 h, FSS at 9 dyne/cm2 for 30 min, Yoda1 treatment for 2 h, and Piezo1 siRNA transfection to intervene in MLO-Y4 osteocytes. Western blot analysis was used to assess the expression of Cleaved Caspase-3, Bax, Bcl-2, and proteins associated with the PI3K/Akt pathway. Additionally, qRT-PCR was utilized to quantify the mRNA expression levels of these molecules. Hoechst 33258 staining and flow cytometry were utilized to evaluate the apoptosis levels. The results indicate that FSS at 9 dyne/cm2 for 30 min significantly upregulates Piezo1 in osteocytes. Following Dex-induced apoptosis, the phosphorylation levels of PI3K and Akt are markedly suppressed. FSS-mediated Piezo1 exerts a protective effect against Dex-induced apoptosis by activating the PI3K/Akt pathway. Additionally, downregulating the expression of Piezo1 in osteocytes using siRNA exacerbates Dex-induced apoptosis. To further demonstrate the role of the PI3K/Akt signaling pathway, after intervention with the PI3K pathway inhibitor, the activation of the PI3K/Akt pathway by FSS-mediated Piezo1 in osteocytes was significantly inhibited, reversing the anti-apoptotic effect. This study indicates that under FSS, Piezo1 in MLO-Y4 osteocytes is significantly upregulated, providing protection against Dex-induced apoptosis through the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hongwei Zhan
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China; Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Daijun Xie
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Zhenxing Yan
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Zhi Yi
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Dejian Xiang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yongkang Niu
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Xiaoyuan Liang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Bin Geng
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Meng Wu
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Yayi Xia
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| | - Jin Jiang
- The Second Hospital of Lanzhou University, Orthopaedic Clinical Research Center of Gansu Province, Intelligent Orthopaedic Industry Technology Center of Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
10
|
Tokavanich N, Chan B, Strauss K, Castro Andrade CD, Arai Y, Nagata M, Foretz M, Brooks DJ, Ono N, Ono W, Wein MN. Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611228. [PMID: 39282451 PMCID: PMC11398370 DOI: 10.1101/2024.09.04.611228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs. Summary statement SIK2/SIK3 deletion in alveolar bone reduces bone formation and mass by impairing osteoblast maturation, unlike in long bones, where it increases bone formation and mass.
Collapse
|
11
|
Rong Y, Liang X, Jiang K, Jia H, Li H, Lu B, Li G. Global Trends in Research of Programmed Cell Death in Osteoporosis: A Bibliometric and Visualized Analysis (2000-2023). Orthop Surg 2024; 16:1783-1800. [PMID: 38923347 PMCID: PMC11293941 DOI: 10.1111/os.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Osteoporosis (OP) is a systemic metabolic bone disease that is characterized by decreased bone mineral density and microstructural damage to bone tissue. Recent studies have demonstrated significant advances in the research of programmed cell death (PCD) in OP. However, there is no bibliometric analysis in this research field. This study searched the Web of Science Core Collection (WoSCC) database for literature related to OP and PCD from 2000 to 2023. This study used VOSviewers 1.6.20, the "bibliometrix" R package, and CiteSpace (6.2.R3) for bibliometric and visualization analysis. A total of 2905 articles from 80 countries were included, with China and the United States leading the way. The number of publications related to PCD in OP is increasing year by year. The main research institutions are Shanghai Jiao Tong University, Chinese Medical University, Southern Medical University, Zhejiang University, and Soochow University. Bone is the most popular journal in the field of PCD in OP, and the Journal of Bone and Mineral Research is the most co-cited journal. These publications come from 14,801 authors, with Liu Zong-Ping, Yang Lei, Manolagas Stavros C, Zhang Wei, and Zhao Hong-Yan having published the most papers. Ronald S. Weinstein was co-cited most often. Oxidative stress and autophagy are the current research hot spots for PCD in OP. This bibliometric study provides the first comprehensive summary of trends and developments in PCD research in OP. This information identifies the most recent research frontiers and hot directions, which will provide a definitive reference for scholars studying PCD in OP.
Collapse
Affiliation(s)
- Yi‐fa Rong
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Xue‐Zhen Liang
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Kai Jiang
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Hai‐Feng Jia
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Han‐Zheng Li
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Bo‐Wen Lu
- The First College of Clinical MedicineShandong University of Traditional Chinese MedicineJinanChina
| | - Gang Li
- Orthopaedic MicrosurgeryAffiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
12
|
Vrščaj LA, Marc J, Ostanek B. Towards an enhanced understanding of osteoanabolic effects of PTH-induced microRNAs on osteoblasts using a bioinformatic approach. Front Endocrinol (Lausanne) 2024; 15:1380013. [PMID: 39086902 PMCID: PMC11289717 DOI: 10.3389/fendo.2024.1380013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
In this study, we used a bioinformatic approach to construct a miRNA-target gene interaction network potentially involved in the anabolic effect of parathyroid hormone analogue teriparatide [PTH (1-34)] on osteoblasts. We extracted a dataset of 26 microRNAs (miRNAs) from previously published studies and predicted miRNA target interactions (MTIs) using four software tools: DIANA, miRWalk, miRDB, and TargetScan. By constructing an interactome of PTH-regulated miRNAs and their predicted target genes, we elucidated signaling pathways regulating pluripotency of stem cells, the Hippo signaling pathway, and the TGF-beta signaling pathway as the most significant pathways in the effects of PTH on osteoblasts. Furthermore, we constructed intersection of MTI networks for these three pathways and added validated interactions. There are 8 genes present in all three selected pathways and a set of 18 miRNAs are predicted to target these genes, according to literature data. The most important genes in all three pathways were BMPR1A, BMPR2 and SMAD2 having the most interactions with miRNAs. Among these miRNAs, only miR-146a-5p and miR-346 have validated interactions in these pathways and were shown to be important regulators of these pathways. In addition, we also propose miR-551b-5p and miR-338-5p for further experimental validation, as they have been predicted to target important genes in these pathways but none of their target interactions have yet been verified. Our wet-lab experiment on miRNAs differentially expressed between PTH (1-34) treated and untreated mesenchymal stem cells supports miR-186-5p from the literature obtained data as another prominent miRNA. The meticulous selection of miRNAs outlined will significantly support and guide future research aimed at discovering and understanding the crucial pathways of osteoanabolic PTH-epigenetic effects on osteoblasts. Additionally, they hold potential for the discovery of new PTH target genes, innovative biomarkers for the effectiveness and safety of osteoporosis-affected treatment, as well as novel therapeutic targets.
Collapse
Affiliation(s)
- Lucija Ana Vrščaj
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute of Clinical Chemistry and Biochemistry, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol 2024; 20:399-413. [PMID: 38499689 DOI: 10.1038/s41574-024-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Che J, Chen X, Ren W, Shang P. PTH 1-34 reduced apoptosis of MLO-Y4 osteocyte-like cells by activating autophagy and inhibiting ER stress under RPM conditions. Eur J Pharmacol 2024; 967:176364. [PMID: 38316249 DOI: 10.1016/j.ejphar.2024.176364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Osteocytes, as mechanosensitive cells residing within bone tissue, hold a pivotal role in averting the occurrence and progression of osteoporosis. The apoptosis of osteocytes induced by unloading is one of the contributing factors to osteoporosis, although the underlying molecular mechanisms have not been fully elucidated. PTH 1-34 is known to promote bone formation and inhibit bone loss by targeting osteoblasts and osteocytes. However, it is not known whether PTH 1-34 can inhibit osteocyte apoptosis under unloading conditions and the molecular mechanisms involved. In this study, we employed a Random Positioning Machine (RPM) to emulate unloading conditions and cultured MLO-Y4 osteocyte-like cells, in order to unravel the mechanisms through which PTH 1-34 constrains osteocyte apoptosis amidst unloading circumstances. Our findings revealed that PTH 1-34 activated autophagy while suppressing endoplasmic reticulum stress by curtailing the generation of reactive oxygen species (ROS) in MLO-Y4 osteocyte-like cells during unloading conditions. By shedding light on the osteoporosis triggered by skeletal unloading, this study contributes vital insights that may pave the way for the development of pharmacological interventions.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Xin Chen
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Weihao Ren
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China; Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Rubitschung K, Sherwood A, Kapadia R, Xi Y, Hajibeigi A, Rubinow KB, Zerwekh JE, Öz OK. Aromatase deficiency in transplanted bone marrow cells improves vertebral trabecular bone quantity, connectivity, and mineralization and decreases cortical porosity in murine bone marrow transplant recipients. PLoS One 2024; 19:e0296390. [PMID: 38315701 PMCID: PMC10843046 DOI: 10.1371/journal.pone.0296390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 12/12/2023] [Indexed: 02/07/2024] Open
Abstract
Estradiol is an important regulator of bone accumulation and maintenance. Circulating estrogens are primarily produced by the gonads. Aromatase, the enzyme responsible for the conversion of androgens to estrogen, is expressed by bone marrow cells (BMCs) of both hematopoietic and nonhematopoietic origin. While the significance of gonad-derived estradiol to bone health has been investigated, there is limited understanding regarding the relative contribution of BMC derived estrogens to bone metabolism. To elucidate the role of BMC derived estrogens in male bone, irradiated wild-type C57BL/6J mice received bone marrow cells transplanted from either WT (WT(WT)) or aromatase-deficient (WT(ArKO)) mice. MicroCT was acquired on lumbar vertebra to assess bone quantity and quality. WT(ArKO) animals had greater trabecular bone volume (BV/TV p = 0.002), with a higher trabecular number (p = 0.008), connectivity density (p = 0.017), and bone mineral content (p = 0.004). In cortical bone, WT(ArKO) animals exhibited smaller cortical pores and lower cortical porosity (p = 0.02). Static histomorphometry revealed fewer osteoclasts per bone surface (Oc.S/BS%), osteoclasts on the erosion surface (ES(Oc+)/BS, p = 0.04) and low number of osteoclasts per bone perimeter (N.Oc/B.Pm, p = 0.01) in WT(ArKO). Osteoblast-associated parameters in WT(ArKO) were lower but not statistically different from WT(WT). Dynamic histomorphometry suggested similar bone formation indices' patterns with lower mean values in mineral apposition rate, label separation, and BFR/BS in WT(ArKO) animals. Ex vivo bone cell differentiation assays demonstrated relative decreased osteoblast differentiation and ability to form mineralized nodules. This study demonstrates a role of local 17β-estradiol production by BMCs for regulating the quantity and quality of bone in male mice. Underlying in vivo cellular and molecular mechanisms require further study.
Collapse
Affiliation(s)
- Katie Rubitschung
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rasesh Kapadia
- Scanco USA Incorporated, Wayne, Pennsylvania, United States of America
| | - Yin Xi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Asghar Hajibeigi
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katya B. Rubinow
- Division of Metabolism, Endocrinology, and Nutrition, University of Washington Medicine Diabetes Institute, Seattle, Washington, United States of America
| | - Joseph E. Zerwekh
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
16
|
Slouma M, Hannech E, Gharsallah I. Hypoparathyroidism: Musculoskeletal Manifestations Related to Parathormone Deficiency. Curr Rheumatol Rev 2024; 20:488-500. [PMID: 38279727 DOI: 10.2174/0115733971267895231227102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Hypoparathyroidism is a rare metabolic disorder that can be responsible for musculoskeletal manifestations. AIM We present a systematic review of musculoskeletal manifestations of adult-onset nonsurgical nongenetic hypoparathyroidism. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline using the MEDLINE database, including manuscripts describing musculoskeletal manifestations of adult-onset nonsurgical nongenetic hypoparathyroidism. RESULTS Musculoskeletal manifestations included myopathy, shoulder disorder, immune-negative non-erosive peripheral arthritis, axial involvement simulating spondylarthritis, and diffuse ligamentous ossifications. An association between hypoparathyroidism and spondyloarthritis or autoimmune diseases is possible. T-cell activation, seen in patients with hypoparathyroidism, may explain the co-occurrence of hypoparathyroidism with other autoimmune diseases. The treatment of these manifestations is based on calcium and active vitamin D supplementation. Parathyroid hormone may have an anabolic effect on muscle atrophy and muscle weakness. Parathyroid hormone can also promote bone formation and bone resorption by stimulating osteoclast differentiation by increasing RANKL (receptor activator for nuclear factor kappa-B ligand) expression. Therefore, hypoparathyroidism can be responsible for an increase in bone mineral density. However, the risk of fractures does not appear to be reduced due to changes in bone microarchitecture and the high risk of falls. Treatment with parathyroid hormone has been shown to improve bone microarchitecture. CONCLUSION Our review showed that musculoskeletal manifestations are frequent in patients with hypoparathyroidism, including muscular, axial, peripheral articular, and entheseal manifestations.
Collapse
Affiliation(s)
- Maroua Slouma
- Department of Rheumatology Military Hospital, El Manar University of Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunisia
| | - Emna Hannech
- Department of Rheumatology Military Hospital, El Manar University of Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunisia
| | - Imen Gharsallah
- Department of Rheumatology Military Hospital, El Manar University of Tunis, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis El Manar University, Tunisia
| |
Collapse
|
17
|
Moriishi T, Kawai Y, Fukuyama R, Matsuo Y, He YW, Akiyama H, Asahina I, Komori T. Bcl2l1 Deficiency in Osteoblasts Reduces the Trabecular Bone Due to Enhanced Osteoclastogenesis Likely through Osteoblast Apoptosis. Int J Mol Sci 2023; 24:17319. [PMID: 38139148 PMCID: PMC10743571 DOI: 10.3390/ijms242417319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Bcl2l1 (Bcl-XL) belongs to the Bcl-2 family, Bcl2 and Bcl2-XL are major anti-apoptotic proteins, and the apoptosis of osteoblasts is a key event for bone homeostasis. As the functions of Bcl2l1 in osteoblasts and bone homeostasis remain unclear, we generated osteoblast-specific Bcl2l1-deficient (Bcl2l1fl/flCre) mice using 2.3-kb Col1a1 Cre. Trabecular bone volume and the trabecular number were lower in Bcl2l1fl/flCre mice of both sexes than in Bcl2l1fl/fl mice. In bone histomorphometric analysis, osteoclast parameters were increased in Bcl2l1fl/flCre mice, whereas osteoblast parameters and the bone formation rate were similar to those in Bcl2l1fl/fl mice. TUNEL-positive osteoblastic cells and serum TRAP5b levels were increased in Bcl2l1fl/flCre mice. The deletion of Bcl2l1 in osteoblasts induced Tnfsf11 expression, whereas the overexpression of Bcl-XL had no effect. In a co-culture of Bcl2l1-deficient primary osteoblasts and wild-type bone-marrow-derived monocyte/macrophage lineage cells, the numbers of multinucleated TRAP-positive cells and resorption pits increased. Furthermore, serum deprivation or the deletion of Bcl2l1 in primary osteoblasts increased apoptosis and ATP levels in the medium. Therefore, the reduction in trabecular bone in Bcl2l1fl/flCre mice may be due to enhanced bone resorption through osteoblast apoptosis and the release of ATP from apoptotic osteoblasts, and Bcl2l1 may inhibit bone resorption by preventing osteoblast apoptosis.
Collapse
Affiliation(s)
- Takeshi Moriishi
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (T.M.); (Y.M.)
| | - Yosuke Kawai
- Department of Regenerative Oral Surgery, Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan;
| | - Ryo Fukuyama
- Laboratory of Pharmacology, Hiroshima International University, Kure 737-0112, Japan;
| | - Yuki Matsuo
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; (T.M.); (Y.M.)
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Haruhiko Akiyama
- Department of Orthopedic Surgery, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan;
| | - Izumi Asahina
- Department of Oral and Maxillofacial Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan;
| | - Toshihisa Komori
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
18
|
Korff C, Adaway M, Atkinson EG, Horan DJ, Klunk A, Silva BS, Bellido T, Plotkin LI, Robling AG, Bidwell JP. Loss of Nmp4 enhances bone gain from sclerostin antibody administration. Bone 2023; 177:116891. [PMID: 37660938 PMCID: PMC10591883 DOI: 10.1016/j.bone.2023.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Severe osteoporosis is often treated with one of three Food and Drug Administration (FDA)-approved osteoanabolics. These drugs act by (1) parathyroid hormone (PTH) receptor stimulation using analogues to PTH (teriparatide) or PTH-related peptide (abaloparatide) or by (2) monoclonal antibody neutralization of sclerostin, an innate Wnt inhibitor (Scl-mAb, romosozumab-aqqg). The efficacies of both strategies wane over time. The transcription factor Nmp4 (Nuclear Matrix Protein 4) is expressed in all tissues yet mice lacking this gene are healthy and exhibit enhanced PTH-induced bone formation. Conditional deletion of Nmp4 in mesenchymal stem progenitor cells (MSPCs) phenocopies the elevated response to PTH in global Nmp4-/- mice. However, targeted deletion in later osteoblast stages does not replicate this response. In this study we queried whether loss of Nmp4 improves Scl-mAb potency. Experimental cohorts included global Nmp4-/- and Nmp4+/+ littermates and three conditional knockout models. Nmp4-floxed (Nmp4fl/fl) mice were crossed with mice harboring one of three Cre-drivers (i) Prx1Cre+ targeting MSPCs, (ii) BglapCre+ (mature osteocalcin-expressing osteoblasts), and (iii) Dmp1Cre+ (osteocytes). Female mice were treated with Scl-mAb or 0.9 % saline vehicle for 4 or 7 weeks from 10 weeks of age. Skeletal response was assessed using micro-computed tomography, dual-energy X-ray absorptiometry, bone histomorphometry, and serum analysis. Global Nmp4-/- mice exhibited enhanced Scl-mAb-induced increases in trabecular bone in the femur and spine and a heightened increase in whole body areal bone mineral density compared to global Nmp4+/+ controls. This improved Scl-mAb potency was primarily driven by enhanced increases in bone formation. Nmp4fl/fl;PrxCre+ mice showed an exaggerated Scl-mAb-induced increase in femoral bone but not in the spine since Prrx1 is not expressed in vertebra. The Nmp4fl/fl;BglapCre+ and Nmp4fl/fl;Dmp1Cre+ mice did not exhibit an improved Scl-mAb response. We conclude that Nmp4 expression in MSPCs interferes with the bone anabolic response to anti-sclerostin therapy.
Collapse
Affiliation(s)
- Crystal Korff
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Emily G Atkinson
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Daniel J Horan
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| | - Angela Klunk
- Department of Biochemistry and Molecular Biology, IUSM, USA
| | - Brandy Suarez Silva
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Lilian I Plotkin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, IUSM, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, IUSM, USA
| | - Joseph P Bidwell
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, IUSM, USA.
| |
Collapse
|
19
|
Chaturvedy M, Maurya SK, Bajpai NK, Jangid MK, Elhence P, Elhence A, Goel AD, Sharma P, Sharma PP, Jhorawat R. Relationship between biochemical parameters of mineral bone disease and static bone histomorphometry in chronic kidney disease patients on hemodialysis: An Indian cross-section study. Nefrologia 2023; 43 Suppl 2:67-76. [PMID: 38355239 DOI: 10.1016/j.nefroe.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 02/16/2024] Open
Abstract
AIM We estimated the relationship between routine biochemical laboratory parameters with static bone histomorphometric parameters and their high and low bone turnover capacity predictability in hemodialysis patients. METHOD It was a single-center cross-sectional study, included 28 hemodialysis patients. The routine biochemical parameters measured including calcium, phosphorous, alkaline phosphatase, intact PTH, and 25-hydroxycholecalciferol. The histomorphometric parameters assessed were osteoblasts perimeter, osteoclast perimeter, eroded perimeter, osteoid perimeter, bone fibrosis and bone volume. RESULT Total 28 hemodialysis patients underwent bone biopsy. Seventy percent were male, with a mean age was 33.07±10.42 yrs; serum alkaline phosphatase was 219.10±311.3IU/ml; vitamin D was 18.18±9.56ng/ml, and intact PTH was 650.7±466.0pg/ml. Intact PTH had a significant positive association with osteoblast, osteoclast, eroded surface, and osteoid perimeter. Serum alkaline phosphatase had a significant relationship with bone fibrosis (r=0.525, p-value=0.004). Intact PTH was significantly higher in females than males (1078.75±533.04 vs. 479.6±309.83; p-value=0.004). The osteoid surface was significantly high in females compared to males (p=0.038). Age had a significant impact on osteoblast and eroded surface (p=0.008 and p=0.031, respectively). Intact PTH is a reliable biomarkers for bone turnover compare to ALP (p<0.001 and p=0.554, respectively). CONCLUSION Intact PTH strongly associated with bone formation, bone resorption parameters. Gender and age had significant impact on static histomorphometric parameters in our study.
Collapse
Affiliation(s)
| | | | | | | | - Poonam Elhence
- All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Abhay Elhence
- All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Praveen Sharma
- All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Rajesh Jhorawat
- All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| |
Collapse
|
20
|
Martin TJ, Seeman E. Bone Remodeling and Modeling: Cellular Targets for Antiresorptive and Anabolic Treatments, Including Approaches Through the Parathyroid Hormone (PTH)/PTH-Related Protein Pathway. Neurospine 2023; 20:1097-1109. [PMID: 38171279 PMCID: PMC10762382 DOI: 10.14245/ns.2346966.483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bone is continuously in a state of building and renewal, though the process of remodeling that takes place at many sites asynchronously throughout the skeleton, with bone formation and resorption equal at these sites (bone multicellular units). Remodeling takes place on bone surfaces, both on trabeculae and in the cortex, and serves the purposes of replacing old bone or that damaged by microfractures throughout the skeleton. The bone loss and consequent osteoporotic fractures that result from excess resorption over formation have mainly been prevented or treated by antiresorptive drugs that inhibit osteoclast formation and/or activity. Virtually all of the evidence leading to acceptance of antiresorptive drugs as treatment has depended upon their prevention of vertebral fractures. In recent decades, new prospects came of anabolic treatments that partly restore bone volume and microstructure restore bone that has been lost. The first of these was parathyroid hormone (PTH), shown by daily injection to increase markers of bone formation and prevent fractures. This field of interest enlarged with the discovery of PTH-related protein (PTHrP), so closely related in structure and action to PTH. The structural relationship between PTH and PTHrP is important in assessing their physiological and pharmacological roles, with the N-terminal domains of the 2 having virtually equal actions on target cells. Abaloparatide, a peptide analogue based on the structures of PTHrP and PTH, has been approved in some countries as a therapy for osteoporosis. Treatment through the PTH receptor activation pathway, and probably with any anabolic therapy, needs to be followed by antiresorptive treatment in order to maintain bone that has been restored. No matter how effective anabolic therapies for the skeleton become, it seems highly likely that there will be a continuing need for antiresorptive drugs.
Collapse
Affiliation(s)
- Thomas John Martin
- Department of Medicine and St. Vincent’s Institute of Medical Research, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Department of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
21
|
Tsuji K, Kimura S, Tateda K, Takahashi H. Protective effect of teriparatide against vancomycin-induced cytotoxicity in osteoblasts. J Orthop Sci 2023; 28:1384-1391. [PMID: 36371341 DOI: 10.1016/j.jos.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/09/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Intrawound vancomycin powder is effective in preventing surgical site infection after spine surgery. In a previous study, vancomycin-induced cytotoxicity in osteoblasts was investigated in vitro, and vitamin D3 was verified to be a candidate drug aiding recovery from vancomycin-induced cytotoxicity. The treatment practices involving osteogenesis-promoting drugs vary widely. Teriparatide, an anabolic agent, highly promotes bone formation by inducing osteoblast activation, increasing bone formation and mineral density, and preventing vertebral fractures. Hence, teriparatide may be administered in combination with vancomycin. METHODS MC3T3-E1 cells were cultured in minimum essential medium supplemented with 10% fetal bovine serum at 37 °C in a humidified incubator containing 5% CO2. The experimental concentrations of vancomycin (2500, 5000, and 7500 μg/mL) were determined based on previous reports and our preliminary experiments. Teriparatide (100 ng/mL) was administered concomitantly to prevent cytotoxicity in osteoblasts, using pulsed vancomycin for 24 h (measured at 1, 3, and 7 days). Cell numbers and morphological changes in cells treated with vancomycin or vancomycin plus 100 ng/mL teriparatide were measured. Osteoblast differentiation was assessed using alkaline phosphatase staining, alkaline phosphatase activity, and alizarin red S staining. RESULTS Teriparatide showed a recovery effect when vancomycin (7500 μg/mL) was administered only for 24 h. Microscopic examination revealed that teriparatide had a protective effect on osteoblasts exposed to 7500 μg/mL vancomycin. Addition of teriparatide led to the recovery of alkaline phosphatase staining and alizarin red staining. CONCLUSION Vancomycin-induced cytotoxicity in osteoblasts could be inhibited by administering teriparatide concomitantly with vancomycin.
Collapse
Affiliation(s)
- Kentaro Tsuji
- Department of Orthopaedic Surgery, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku 143-8541, Tokyo, Japan
| | - Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, 5-21-16 Omori-nishi, Ota-ku 143-8540, Tokyo, Japan; Division of Infection Prevention and Control, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yohokaha 244-0806, Kanagawa, Japan.
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University Faculty of Medicine, 5-21-16 Omori-nishi, Ota-ku 143-8540, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Orthopaedic Surgery, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku 143-8541, Tokyo, Japan
| |
Collapse
|
22
|
Lv Z, Zhang J, Liang S, Zhou C, Hu D, Brooks DJ, Bouxsein ML, Lanske B, Kostenuik P, Gori F, Baron R. Comparative study in estrogen-depleted mice identifies skeletal and osteocyte transcriptomic responses to abaloparatide and teriparatide. JCI Insight 2023; 8:e161932. [PMID: 37870958 PMCID: PMC10619488 DOI: 10.1172/jci.insight.161932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2023] [Indexed: 10/25/2023] Open
Abstract
Osteocytes express parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptors and respond to the PTHrP analog abaloparatide (ABL) and to the PTH 1-34 fragment teriparatide (TPTD), which are used to treat osteoporosis. Several studies indicate overlapping but distinct skeletal responses to ABL or TPTD, but their effects on cortical bone may differ. Little is known about their differential effects on osteocytes. We compared cortical osteocyte and skeletal responses to ABL and TPTD in sham-operated and ovariectomized mice. Administered 7 weeks after ovariectomy for 4 weeks at a dose of 40 μg/kg/d, TPTD and ABL had similar effects on trabecular bone, but ABL showed stronger effects in cortical bone. In cortical osteocytes, both treatments decreased lacunar area, reflecting altered peri-lacunar remodeling favoring matrix accumulation. Osteocyte RNA-Seq revealed that several genes and pathways were altered by ovariectomy and affected similarly by TPTD and ABL. Notwithstanding, several signaling pathways were uniquely regulated by ABL. Thus, in mice, TPTD and ABL induced a positive osteocyte peri-lacunar remodeling balance, but ABL induced stronger cortical responses and affected the osteocyte transcriptome differently. We concluded that ABL affected the cortical osteocyte transcriptome in a manner subtly different from TPTD, resulting in more beneficial remodeling/modeling changes and homeostasis of the cortex.
Collapse
Affiliation(s)
- Zhengtao Lv
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Jiaming Zhang
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shuang Liang
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Chenhe Zhou
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Dorothy Hu
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Daniel J. Brooks
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School and Massachusetts General Hospital (MGH) Endocrine Unit, Boston, Massachusetts, USA
| | | | | | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Harvard Medical School and Massachusetts General Hospital (MGH) Endocrine Unit, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
24
|
Gera I, Szücs N. [The recombinant human parathyroid hormone, teriparatide as an alternative remedy for the medication-related osteonecrosis of the jaw]. Orv Hetil 2023; 164:1406-1415. [PMID: 37695713 DOI: 10.1556/650.2023.32861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/30/2023] [Indexed: 09/13/2023]
Abstract
In developed countries, osteoporosis is one of the most common debilitating conditions in the population over the age of 50. Unfortunately, the pathomechanism of the disease is still not fully understood. Nowadays, the administration of antiresorptive drugs blocking osteoclastic activity is the most commonly used medication to slow down the speed of the bone loss. One of the uncommon side effects of such drugs is the medication-related osteonecrosis of the jaw (MRONJ). Recently, a number of alternative therapeutic approaches has been tested and published, amongst them the recombinant human parathyroid hormone (rhPTH, teriparatide) use, which is turning into a promising treatment modality. According to certain meta-analyses, its pharmacological effect on increasing bone mineral density and controlling pathological vertebral fractures is superior to antiresorptive drugs; however, the so-called "off-label" application of teriparatide remains controversial. As intermittent administration of teriparatide stimulates bone formation, several animal and clinical studies indicated that systemic application of teriparatide shortened fracture healing time and improved quality of the callus and the newly formed bone. Furthermore, recently several clinical studies showed the beneficial effect of the intermittent rhPTH administration in the management of MRONJ. This article reviews the history of the anabolic effect of the low-dose rhPTH discovery, provides evidence-based data from animal and human studies, summarizes its biological mechanisms and the clinical benefits of the anabolic therapy and also their possible role in the management of MRONJ. The majority of the clinical data indicates that, in the case of therapy-resistant osteonecrosis, it may be worthwhile to apply short-term intermittent teriparatide therapy. Notwithstanding, more randomized clinical trials are necessary in order to confirm the efficacy and the safety of the use of teriparatide in the treatment of MRONJ. Orv Hetil. 2023; 164(36): 1406-1415.
Collapse
Affiliation(s)
- István Gera
- 1 Semmelweis Egyetem, Fogorvostudományi Kar, Parodontológiai Klinika Budapest, Szentkirályi u. 47., 1088 Magyarország
| | - Nikolette Szücs
- 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Onkológiai Klinika Budapest Magyarország
| |
Collapse
|
25
|
Plotkin LI, Asad I, Kritikos AE, Sanz N. Role of Cx43 on the Bone Cell Generation, Function, and Survival. Bioelectricity 2023; 5:188-195. [PMID: 37746312 PMCID: PMC10517329 DOI: 10.1089/bioe.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
The presence of gap junction intercellular communication structures in bone cells has been known since the early 1970s, further confirmed by Doty and Marotti at the structural level in the 1980-1990s. Work by Civitelli, Donahue, and others showed the expression of Cx43 at the mRNA and protein levels in all bone cell types: osteoclasts (bone resorbing cells), osteoblasts (bone forming cells), and osteocytes (mature osteoblasts embedded in the bone matrix that regulate the function of both osteoclasts and osteoblasts). While Cx45, Cx46, and Cx37 were also shown to be expressed in bone cells, most studies have focused on Cx43, the most abundant member of the connexin (Cx) family of proteins expressed in bone. The role of Cx43 has been shown to be related to the formation of gap junction intercellular channels, to unopposed hemichannels, and to channel independent functions of the molecule. Cx43 participates in the response of bone cells to pharmacological, hormonal, and mechanical stimuli, and it is involved in the skeletal phenotype with old age. Human and murine studies have shown that mutations of Cx43 lead to oculodentodigital dysplasia and craniometaphyseal dysplasia, both conditions associated with abnormalities in the skeleton. However, whereas substantial advances have been made on the skeletal role of Cx43, further research is needed to understand the basis for the effects of mutated Cx43 and potential ways to prevent the effects of these mutations on bone.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| | - Iqra Asad
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alex E. Kritikos
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Natasha Sanz
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Mosca MJ, He Z, Ricarte FR, Le Henaff C, Partridge NC. Differential effects of PTH (1-34), PTHrP (1-36) and abaloparatide on the murine osteoblast transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523646. [PMID: 37645806 PMCID: PMC10461920 DOI: 10.1101/2023.01.11.523646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Teriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed differences in Wnt signaling, cAMP-mediated signaling, bone mineralization, morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, cytokine receptor/binding activity and many other actions in molecular functions. The 3 peptides increased Vdr, Cited1 and Pde10a mRNAs in a pattern similar to Rankl , i.e., PTH(1-34) > ABL > PTHrP(1-36). mRNA abundance of other genes based on gene/pathway analyses, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epha3, Tcf7, Crem, Fzd5, Pp2r2a , and Dvl3 showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, siRNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH(1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by SIKs and CRTCs, while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to examine the global effects of these peptides on the osteoblast transcriptome. Further delineation of which signaling events are attributable to PTH(1-34), PTHrP(1-36) or ABL exclusively and which are shared among all 3 will help improve our understanding of the effects these peptides have on the osteoblast and lead to the refinement of PTH-derived treatments for osteoporosis.
Collapse
|
27
|
Bagwe S, Mehta V, Mathur A, Kumbhalwar A, Bhati A. Role of various pharmacologic agents in alveolar bone regeneration: A review. Natl J Maxillofac Surg 2023; 14:190-197. [PMID: 37661974 PMCID: PMC10474547 DOI: 10.4103/njms.njms_436_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 09/05/2023] Open
Abstract
Alveolar bone and gingiva are components of the periodontium that house the tooth. It constantly adapts itself to the masticatory forces and position of the tooth. However, localized diseases like chronic periodontitis and certain systemic diseases destroy periodontal tissues, which include the alveolar bone. Various pharmacological agents are being explored for their pleiotropic properties to combat the destruction of alveolar bone. This review focuses on the role of pharmacological agents in alveolar bone regeneration.
Collapse
Affiliation(s)
| | - Vini Mehta
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Ankita Mathur
- Department of Periodontology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Abhishek Kumbhalwar
- Research Consultant, STAT SENSE, Srushti 10, Sector 1 D, Amba Township Pvt. Ltd., Trimandir, Adalaj, Gujarat, India
| | - Ashok Bhati
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Saudi Arabia
| |
Collapse
|
28
|
Puvvada CS, Marripaty JS. Using Teriparatide to Augment Healing in a Humeral Shaft Nonunion: A Case Report. Cureus 2023; 15:e39546. [PMID: 37378240 PMCID: PMC10291988 DOI: 10.7759/cureus.39546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The occurrence of complications of fracture healing, such as delayed union and nonunion, is well known, but the use of pharmacotherapy for these delayed unions and nonunions has not been explored in detail. The authors describe a case of traumatic humeral shaft fracture successfully treated with once-daily administration of 20mcg of teriparatide for six months. The patient was a 22-year-old male who had been through a road traffic accident. The radiograph of the humerus shaft showed a fracture line and the displaced distal portion of the shaft of the humerus. Based on these features, the patient was diagnosed with a humeral shaft fracture. The patient underwent internal fixation with a dynamic compression plate. However, there were no signs of callus formation even after 12 weeks from the time of internal fixation. The patient was initiated with teriparatide administration and union was achieved after six months of a once-daily administration of teriparatide. Once-daily teriparatide treatment is shown to be beneficial for improving the healing of humeral shaft fractures showing delayed union.
Collapse
Affiliation(s)
- Chaitanya S Puvvada
- General Surgery, Gayatri Vidya Parishad Institute of Health Care and Medical Technology, Visakhapatnam, IND
| | - Jaithra S Marripaty
- General Surgery, Gayatri Vidya Parishad Institute of Health Care and Medical Technology, Visakhapatnam, IND
| |
Collapse
|
29
|
Chen M, Fu W, Xu H, Liu CJ. Pathogenic mechanisms of glucocorticoid-induced osteoporosis. Cytokine Growth Factor Rev 2023; 70:54-66. [PMID: 36906448 PMCID: PMC10518688 DOI: 10.1016/j.cytogfr.2023.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Glucocorticoid (GC) is one of the most prescribed medicines to treat various inflammatory and autoimmune diseases. However, high doses and long-term use of GCs lead to multiple adverse effects, particularly glucocorticoid-induced osteoporosis (GIO). Excessive GCs exert detrimental effects on bone cells, including osteoblasts, osteoclasts, and osteocytes, leading to impaired bone formation and resorption. The actions of exogenous GCs are considered to be strongly cell-type and dose dependent. GC excess inhibits the proliferation and differentiation of osteoblasts and enhances the apoptosis of osteoblasts and osteocytes, eventually contributing to reduced bone formation. Effects of GC excess on osteoclasts mainly include enhanced osteoclastogenesis, increased lifespan and number of mature osteoclasts, and diminished osteoclast apoptosis, which result in increased bone resorption. Furthermore, GCs have an impact on the secretion of bone cells, subsequently disturbing the process of osteoblastogenesis and osteoclastogenesis. This review provides timely update and summary of recent discoveries in the field of GIO, with a particular focus on the effects of exogenous GCs on bone cells and the crosstalk among them under GC excess.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wenyu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Puvvada CS, Soomro FH, Osman HA, Haridi M, Gonzalez NA, Dayo SM, Fatima U, Sheikh A, Penumetcha SS. Efficacy and Safety of Teriparatide in Improving Fracture Healing and Callus Formation: A Systematic Review. Cureus 2023; 15:e37478. [PMID: 37187628 PMCID: PMC10177009 DOI: 10.7759/cureus.37478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Fracture nonunion remains a great challenge for orthopedic surgeons. Some bone fractures don't heal promptly, resulting in delayed unions and nonunions, and there is a need for an additional surgical procedure. Previous research has shown that teriparatide, a type of synthetic parathyroid hormone, can promote the formation of callus and lead to healing in individuals with delayed or non-healing bone fractures. Limited systematic reviews exist that examine the use of teriparatide in cases of delayed healing or non-healing bone fractures, which have their limitations. In this review, we overcome those limitations by including prospective studies, retrospective studies, case reports, and case series together. A systematic search of the literature was conducted in both PubMed and Google Scholar up to September of the year 2022. The studies included in our research included adult patients (over the age of 16) diagnosed with delayed union or nonunion of any bone in the body (flat bone, long bone, short bone, or irregular bone). The studies were limited to those written in English. The outcomes that were tracked and recorded include the healing of the fracture and any negative side effects or adverse events. The initial search yielded 504 abstracts and titles. After reviewing these, 32 articles were selected for further analysis, which included 19 case reports, five case series, two retrospective studies, and six prospective studies. Studies included daily (20 micrograms) or weekly (56.5 micrograms) subcutaneous administration of teriparatide. The duration of follow-up for these studies varied from three to 24 months. Based on the available research, it appears that administering teriparatide subcutaneously is a safe treatment option for delayed healing and non-healing bone fractures, with very few to no reported negative side effects. Using teriparatide for induction of callus formation and treating delayed and nonunions is highly safe and effective.
Collapse
Affiliation(s)
- Chaitanya S Puvvada
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Gayatri Vidya Parishad Institute of Health Care and Medical Technology, Visakhapatnam, IND
| | - Faiza H Soomro
- General Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Surgery, NineWells Hospital, NHS Tayside, Dundee, GBR
| | - Hafsa A Osman
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Merna Haridi
- Medical Education, Saint Martinus University, Curacao, CUW
| | - Natalie A Gonzalez
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sana M Dayo
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Umaima Fatima
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aaiyat Sheikh
- Internal Medicine, Era's Lucknow Medical College & Hospital, Lucknow, IND
| | - Sai Sri Penumetcha
- General Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- General Medicine, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
31
|
Alekos NS, Kushwaha P, Kim SP, Li Z, Abood A, Dirckx N, Aja S, Kodama J, Garcia-Diaz JG, Otsuru S, Rendina-Ruedy E, Wolfgang MJ, Riddle RC. Mitochondrial β-oxidation of adipose-derived fatty acids by osteoblasts fuels parathyroid hormone-induced bone formation. JCI Insight 2023; 8:e165604. [PMID: 36729662 PMCID: PMC10070112 DOI: 10.1172/jci.insight.165604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
The energetic costs of bone formation require osteoblasts to coordinate their activities with tissues, like adipose, that can supply energy-dense macronutrients. In the case of intermittent parathyroid hormone (PTH) treatment, a strategy used to reduce fracture risk, bone formation is preceded by a change in systemic lipid homeostasis. To investigate the requirement for fatty acid oxidation by osteoblasts during PTH-induced bone formation, we subjected mice with osteoblast-specific deficiency of mitochondrial long-chain β-oxidation as well as mice with adipocyte-specific deficiency for the PTH receptor or adipose triglyceride lipase to an anabolic treatment regimen. PTH increased the release of fatty acids from adipocytes and β-oxidation by osteoblasts, while the genetic mouse models were resistant to the hormone's anabolic effect. Collectively, these data suggest that PTH's anabolic actions require coordinated signaling between bone and adipose, wherein a lipolytic response liberates fatty acids that are oxidized by osteoblasts to fuel bone formation.
Collapse
Affiliation(s)
- Nathalie S. Alekos
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Priyanka Kushwaha
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Soohyun P. Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhu Li
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdullah Abood
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Naomi Dirckx
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joe Kodama
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jean G. Garcia-Diaz
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth Rendina-Ruedy
- Department of Medicine and Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C. Riddle
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
32
|
Ren J, Wang J, Yao X, Wu Y, Shi M, Shi X, Du X. Investigation of the Underlying Mechanism of Sclerosteosis Expression in Muscle Tissue in Multiple Myeloma with Sarcopenia. J Inflamm Res 2023; 16:563-578. [PMID: 36818195 PMCID: PMC9930682 DOI: 10.2147/jir.s391465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Objective To explore the role of sclerosteosis (SOST) gene expression in the occurrence and development of multiple myeloma (MM) complicated with sarcopenia. Methods Analysis of the SOST expression in skeletal muscle tissue of patients with MM using high-throughput sequencing combined with transcriptomics; observation of morphological changes of the mouse C2C12 myoblasts co-cultured with SP2/0 myeloma cells in Transwell; observation of the SOST expression in the C2C12 myoblasts using the immunofluorescence labeling method; and assessment of the changes in exercise capacity of mice with MM using ethology; and the measurement of the SOST expression in muscles of mice using immunohistochemistry. Results The transcription level of the SOST gene in the muscle tissue was significantly higher in patients with MM and sarcopenia than in patients with MM without sarcopenia and elderly patients with sarcopenia; the area of C2C12 mouse myoblasts co-cultured with SP2/0 myeloma cells was 167,904 ± 8653.7 pix; this was significantly lower than the area of 402,994 ± 13,575.0 pix in the control group (CG); the fluorescence intensity of SOST in the cells of the experimental group (EG) was 159,389 ± 10,534 AU; this was significantly higher than the intensity of 26,338 ± 6059 AU in the CG; the differences in results of the coat-hanger test, the tail suspension test, the weight-bearing forced swimming test, and the grip strength test between the tumor-bearing mice in the EG and the CG were statistically significant; and the quantitative result of SOST expression in the muscle tissue of the EG mice was 11,515 ± 1573 pix; this was significantly higher than the result of 3399 ± 798.8 pix in the CG. Conclusion The SOST gene expression was significantly higher in muscle of mice in EG than in CG; and increased SOST gene expression might be a pathogenesis of MM complicated with sarcopenia.
Collapse
Affiliation(s)
- Jie Ren
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Jingzhou Wang
- Department of Orthopaedics, Beijing Daxing District People’s Hospital, Beijing, 102600, People’s Republic of China
| | - Xingchen Yao
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Yue Wu
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Ming Shi
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Xiangjun Shi
- Department of Hematology, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China
| | - Xinru Du
- Department of Orthopaedics, Beijing Chao-yang Hospital, Beijing, 100020, People’s Republic of China,Correspondence: Xinru Du, Department of orthopaedics, Beijing Chao-yang Hospital, No. 8 of Gongti South Road, Chaoyang District, Beijing, 100020, People’s Republic of China, Tel +86 13683156652, Email
| |
Collapse
|
33
|
Feng G, Zhang P, Huang J, Yu Y, Yang F, Zhao X, Wang W, Li D, Sun S, Niu X, Chai L, Li J. Sequential Release of Panax Notoginseng Saponins and Osteopractic Total Flavone from Poly ( L-Lactic Acid) Scaffold for Treating Glucocorticoid-Associated Osteonecrosis of Femoral Head. J Funct Biomater 2023; 14:jfb14010031. [PMID: 36662078 PMCID: PMC9863477 DOI: 10.3390/jfb14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Glucocorticoids inhibit angiogenesis in the femoral head, which fails to nourish the bone tissue and leads to osteonecrosis. Restoring angiogenesis is not only essential for vessel formation, but also crucial for osteogenesis. Poly (L-lactic acid) (PLLA) is commonly used in the bone tissue engineering field. Panax notoginseng saponins (PNS) and osteopractic total flavone (OTF) promote angiogenesis and osteogenesis, respectively. We designed a sequentially releasing PLLA scaffold including PLLA loaded with OTF (inner layer) and PLLA loaded with PNS (outer layer). We assessed the osteogenic effect of angiogenesis in this scaffold by comparing it with the one-layered scaffold (PLLA embedded with OTF and PNS) in vivo. Results from the micro-CT showed that the data of bone mineral density (BMD), bone volume (BV), and percent bone volume (BV/TV) in the PO-PP group were significantly higher than those in the POP group (p < 0.01). Histological analyses show that the PO-PP scaffold exhibits better angiogenic and osteogenic effects compared with the one-layered scaffold. These might result from the different structures between them, where the sequential release of a bi-layer scaffold achieves the osteogenic effect of vascularization by initially releasing PNS in the outer layer. We further explored the possible mechanism by an immunohistochemistry analysis and an immunofluorescence assay. The results showed that the protein expressions of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1(CD31) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.01); the protein expressions of osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) in the PO-PP scaffold were significantly higher than those in the POP scaffold (p < 0.05). Upregulating the expressions of angiogenic and osteogenic proteins might be the possible mechanism.
Collapse
Affiliation(s)
- Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jian Huang
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yao Yu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fenghe Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xueqian Zhao
- Yuquan Hospital Affiliated to Tsinghua University, Beijing 100040, China
| | - Wei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| | - Jinyu Li
- Department of Orthopedic, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- Correspondence: (X.N.); (L.C.); (J.L.)
| |
Collapse
|
34
|
Atkinson EG, Adaway M, Horan DJ, Korff C, Klunk A, Orr AL, Ratz K, Bellido T, Plotkin LI, Robling AG, Bidwell JP. Conditional Loss of Nmp4 in Mesenchymal Stem Progenitor Cells Enhances PTH-Induced Bone Formation. J Bone Miner Res 2023; 38:70-85. [PMID: 36321253 PMCID: PMC9825665 DOI: 10.1002/jbmr.4732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/29/2022] [Indexed: 11/24/2022]
Abstract
Activation of bone anabolic pathways is a fruitful approach for treating severe osteoporosis, yet FDA-approved osteoanabolics, eg, parathyroid hormone (PTH), have limited efficacy. Improving their potency is a promising strategy for maximizing bone anabolic output. Nmp4 (Nuclear Matrix Protein 4) global knockout mice exhibit enhanced PTH-induced increases in trabecular bone but display no overt baseline skeletal phenotype. Nmp4 is expressed in all tissues; therefore, to determine which cell type is responsible for driving the beneficial effects of Nmp4 inhibition, we conditionally removed this gene from cells at distinct stages of osteogenic differentiation. Nmp4-floxed (Nmp4fl/fl ) mice were crossed with mice bearing one of three Cre drivers including (i) Prx1Cre+ to remove Nmp4 from mesenchymal stem/progenitor cells (MSPCs) in long bones; (ii) BglapCre+ targeting mature osteoblasts, and (iii) Dmp1Cre+ to disable Nmp4 in osteocytes. Virgin female Cre+ and Cre- mice (10 weeks of age) were sorted into cohorts by weight and genotype. Mice were administered daily injections of either human PTH 1-34 at 30 μg/kg or vehicle for 4 weeks or 7 weeks. Skeletal response was assessed using dual-energy X-ray absorptiometry, micro-computed tomography, bone histomorphometry, and serum analysis for remodeling markers. Nmp4fl/fl ;Prx1Cre+ mice virtually phenocopied the global Nmp4-/- skeleton in the femur, ie, a mild baseline phenotype but significantly enhanced PTH-induced increase in femur trabecular bone volume/total volume (BV/TV) compared with their Nmp4fl/fl ;Prx1Cre- controls. This was not observed in the spine, where Prrx1 is not expressed. Heightened response to PTH was coincident with enhanced bone formation. Conditional loss of Nmp4 from the mature osteoblasts (Nmp4fl/fl ;BglapCre+ ) failed to increase BV/TV or enhance PTH response. However, conditional disabling of Nmp4 in osteocytes (Nmp4fl/fl ;Dmp1Cre+ ) increased BV/TV without boosting response to hormone under our experimental regimen. We conclude that Nmp4-/- Prx1-expressing MSPCs drive the improved response to PTH therapy and that this gene has stage-specific effects on osteoanabolism. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Emily G. Atkinson
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Michele Adaway
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Daniel J. Horan
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | | | - Angela Klunk
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
| | - Ashley L. Orr
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Katherine Ratz
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Present Address: Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University Indianapolis, IN 46222
| | - Teresita Bellido
- Department of Physiology and Cell Biology University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205
| | - Lilian I. Plotkin
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, IUSM
| | - Joseph P. Bidwell
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202
- Indiana Center for Musculoskeletal Health, IUSM
| |
Collapse
|
35
|
Hexapeptide decorated β-cyclodextrin delivery system for targeted therapy of bone infection. J Control Release 2023; 353:337-349. [PMID: 36462641 DOI: 10.1016/j.jconrel.2022.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Successfully treating bone infections is a major orthopedic challenge. Clinically, oral, intravenous, or intramuscular injections of drugs are usually used for direct or complementary treatment. However, once the drug enters the system, it circulates throughout the body, leading to an insufficient local dose and limiting the therapeutic effect because of the lack of targeting in the drug system. In this study, β-cyclodextrin, modified with poly (ethylene glycol) [PEG] and aspartic acid hexapeptide (Asp6-β-CD), was used to specifically target the hydroxyapatite (HA) component of the bone. It was then loaded with norfloxacin (NFX) to treat bone infections. The antibacterial ability of NFX was enhanced by loading it into Asp6-β-CD, because the solubility of Asp6-β-CD@NFX increased significantly. Moreover, Asp6-β-CD could target bone tissue in nude mice and showed significantly enhanced accumulation (10 times) than the unmodified β-CD. In addition, in a rat model of osteomyelitis, Asp6-β-CD@NFX targeted HA well and exerted its antibacterial activity, which reduced inflammation and promoted bone tissue repair. This study indicates that the Asp6-β-CD based drug delivery system can efficiently target bone tissue to enable potential applications for treating bone-related diseases.
Collapse
|
36
|
Vavanikunnel J, Sewing L, Triantafyllidou M, Steighardt A, Baumann S, Egger A, Grize L, Felix B, Kraenzlin M, Henzen C, Meier C. Determinants of Low Bone Turnover in Type 2 Diabetes-the Role of PTH. Calcif Tissue Int 2022; 111:587-596. [PMID: 36190530 PMCID: PMC9613733 DOI: 10.1007/s00223-022-01022-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022]
Abstract
Determinants of low bone turnover in type 2 diabetes (T2DM) are poorly understood. To investigate the relationship between markers of bone turnover, glycaemic control, disease duration and calciotropic hormones in T2DM we assessed baseline biochemical data from the DiabOS Study, a prospective multicenter observational cohort study. In a cross-sectional study-design data from 110 postmenopausal women and men aged 50-75 years diagnosed with T2DM for at least 3 years and 92 non-diabetic controls were evaluated. Biochemical markers of bone formation (N-terminal propeptide of type I procollagen [PINP]), bone-specific alkaline phosphatase [BAP]) and resorption (C-terminal cross-linking telopeptide of type I collagen [CTX]), measures of calcium homeostasis (intact parathormone [iPTH], 25-Hydroxyvitamin D, calcium, magnesium) and glycaemic control were assessed. After adjustment for age, gender and body mass index (BMI), patients with T2DM had lower serum levels of PINP (p < 0.001), CTX (p < 0.001), iPTH (p = 0.03) and magnesium (p < 0.001) compared to controls. Serum calcium, creatinine, 25-Hydroxyvitamin D and sclerostin did not differ between both groups. In multivariate linear regression analyses only serum iPTH remained an independent determinant of bone turnover markers in T2DM (PINP: p = 0.02; CTX: p < 0.001 and BAP: p < 0.01), whereas glycated haemoglobin (HbA1c), disease duration, age and BMI were not associated with bone turnover. In conclusion low bone turnover in T2DM is associated with low iPTH. The underlying mechanism remains to be elucidated.
Collapse
Affiliation(s)
- Janina Vavanikunnel
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Lilian Sewing
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | | | - Anna Steighardt
- Department of Internal Medicine, Kantonsspital Lucerne, Switzerland
| | - Sandra Baumann
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Andrea Egger
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Leticia Grize
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Barbara Felix
- Division of Endocrinology, Kantonsspital Baselland, Switzerland
| | | | - Christoph Henzen
- Department of Internal Medicine, Kantonsspital Lucerne, Switzerland
| | - Christian Meier
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Endocrine Clinic and Laboratory, Basel, Switzerland.
| |
Collapse
|
37
|
Chou HC, Lin SY, Chou LY, Ho ML, Chuang SC, Cheng TL, Kang L, Lin YS, Wang YH, Wei CW, Chen CH, Wang CZ. Ablation of Discoidin Domain Receptor 1 Provokes an Osteopenic Phenotype by Regulating Osteoblast/Osteocyte Autophagy and Apoptosis. Biomedicines 2022; 10:biomedicines10092173. [PMID: 36140274 PMCID: PMC9496360 DOI: 10.3390/biomedicines10092173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a collagen receptor that belongs to the receptor tyrosine kinase family. We have previously shown that DDR1 plays a crucial role during bone development, resulting in dwarfism and a short stature in osteoblast-specific knockout mice (OKO mice). However, the detailed pathophysiological effects of DDR1 on bone development throughout adulthood have remained unclear. This study aims to identify how DDR1 regulates osteoblast and osteocyte functions in vivo and in vitro during bone development in adulthood. The metabolic changes in bone tissues were analyzed using Micro-CT and immunohistochemistry staining (IHC) in vivo; the role of DDR1 in regulating osteoblasts was examined in MC3T3-E1 cells in vitro. The Micro-CT analysis results demonstrated that OKO mice showed a 10% reduction in bone-related parameters from 10 to 14 weeks old and a significant reduction in cortical thickness and diameter compared with flox/flox control mice (FF) mice. These results indicated that DDR1 knockout in OKO mice exhibiting significant bone loss provokes an osteopenic phenotype. The IHC staining revealed a significant decrease in osteogenesis-related genes, including RUNX2, osteocalcin, and osterix. We noted that DDR1 knockout significantly induced osteoblast/osteocyte apoptosis and markedly decreased autophagy activity in vivo. Additionally, the results of the gain- and loss-of-function of the DDR1 assay in MC3T3-E1 cells indicated that DDR1 can regulate the osteoblast differentiation through activating autophagy by regulating the phosphorylation of the mechanistic target of rapamycin (p-mTOR), light chain 3 (LC3), and beclin-1. In conclusion, our study highlights that the ablation of DDR1 results in cancellous bone loss by regulating osteoblast/osteocyte autophagy. These results suggest that DDR1 can act as a potential therapeutic target for managing cancellous bone loss.
Collapse
Affiliation(s)
- Hsin-Chiao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Liang-Yin Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mei-Ling Ho
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Wang Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City 80145, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-H.C.); (C.-Z.W.); Tel.: +886-7-3209209 (C.-H.C.); +886-7-3121101 (ext. 2140) (C.-Z.W.)
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (C.-H.C.); (C.-Z.W.); Tel.: +886-7-3209209 (C.-H.C.); +886-7-3121101 (ext. 2140) (C.-Z.W.)
| |
Collapse
|
38
|
Jörg DJ, Fuertinger DH, Cherif A, Bushinsky DA, Mermelstein A, Raimann JG, Kotanko P. Modeling osteoporosis to design and optimize pharmacological therapies comprising multiple drug types. eLife 2022; 11:76228. [PMID: 35942681 PMCID: PMC9363122 DOI: 10.7554/elife.76228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/26/2022] [Indexed: 11/13/2022] Open
Abstract
For the treatment of postmenopausal osteoporosis, several drug classes with different mechanisms of action are available. Since only a limited set of dosing regimens and drug combinations can be tested in clinical trials, it is currently unclear whether common medication strategies achieve optimal bone mineral density gains or are outperformed by alternative dosing schemes and combination therapies that have not been explored so far. Here, we develop a mathematical framework of drug interventions for postmenopausal osteoporosis that unifies fundamental mechanisms of bone remodeling and the mechanisms of action of four drug classes: bisphosphonates, parathyroid hormone analogs, sclerostin inhibitors, and receptor activator of NF-κB ligand inhibitors. Using data from several clinical trials, we calibrate and validate the model, demonstrating its predictive capacity for complex medication scenarios, including sequential and parallel drug combinations. Via simulations, we reveal that there is a large potential to improve gains in bone mineral density by exploiting synergistic interactions between different drug classes, without increasing the total amount of drug administered.
Collapse
Affiliation(s)
- David J Jörg
- Biomedical Modeling and Simulation Group, Global Research and Development, Fresenius Medical Care Germany, Bad Homburg, Germany
| | - Doris H Fuertinger
- Biomedical Modeling and Simulation Group, Global Research and Development, Fresenius Medical Care Germany, Bad Homburg, Germany
| | | | - David A Bushinsky
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | | | | | - Peter Kotanko
- Renal Research Institute, New York, United States.,Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
39
|
Lv B, Cheng Z, Yu Y, Chen Y, Gan W, Li S, Zhao K, Yang C, Zhang Y. Therapeutic perspectives of exosomes in glucocorticoid-induced osteoarthrosis. Front Surg 2022; 9:836367. [PMID: 36034358 PMCID: PMC9405187 DOI: 10.3389/fsurg.2022.836367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes are widely involved in a variety of physiological and pathological processes. These important roles are also hidden in the physiological processes related to bone. Chondrocytes, osteoblasts, synovial fibroblasts, and bone marrow mesenchymal stem cells produce and secrete exosomes, thereby affecting the biology process of target cells. Furthermore, in the primary pathogenesis of osteoarthrosis induced by steroid hormones, mainly involve glucocorticoid (GC), the exosomes have also widely participated. Therefore, exosomes may also play an important role in glucocorticoid-induced osteoarthrosis and serve as a promising treatment for early intervention of osteoarthrosis in addition to playing a regulatory role in malignant tumors. This review summarizes the previous results on this direction, systematically combs the role and therapeutic potential of exosomes in GC-induced osteoarthrosis, discusses the potential role of exosomes in the treatment and prevention of GC-induced osteoarthrosis, and reveals the current challenges we confronted.
Collapse
Affiliation(s)
- Bin Lv
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | | | | | | | | | | | - Kangcheng Zhao
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Cao Yang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| | - Yukun Zhang
- Correspondence: Yukun ZhangCao Yang Kangcheng Zhao Bin Lv
| |
Collapse
|
40
|
Li Y, Yang S, Liu Y, Qin L, Yang S. IFT20 governs mesenchymal stem cell fate through positively regulating TGF-β-Smad2/3-Glut1 signaling mediated glucose metabolism. Redox Biol 2022; 54:102373. [PMID: 35751983 PMCID: PMC9243161 DOI: 10.1016/j.redox.2022.102373] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Aberrant lineage allocation of mesenchymal stem cells (MSCs) could cause bone marrow osteoblast-adipocyte imbalance, and glucose as an important nutrient is required for the maintenance of the MSCs' fate and function. Intraflagellar transport 20 (IFT20) is one of the IFT complex B protein which regulates osteoblast differentiation, and bone formation, but how IFT20 regulates MSCs' fate remains undefined. Here, we demonstrated that IFT20 controls MSC lineage allocation through regulating glucose metabolism during skeletal development. IFT20 deficiency in the early stage of MSCs caused significantly shortened limbs, decreased bone mass and significant increase in marrow fat. However, deletion of IFT20 in the later stage of MSCs and osteocytes just slightly decreased bone mass and bone growth and increased marrow fat. Additionally, we found that loss of IFT20 in MSCs promotes adipocyte formation, which enhances RANKL expression and bone resorption. Conversely, ablation of IFT20 in adipocytes reversed these phenotypes. Mechanistically, loss of IFT20 in MSCs significantly decreased glucose tolerance and suppressed glucose uptake and lactate and ATP production. Moreover, loss of IFT20 significantly decreased the activity of TGF-β-Smad2/3 signaling and reduced the binding activity of Smad2/3 to Glut1 promoter to downregulate Glut1 expression. These findings indicate that IFT20 plays essential roles for preventing MSC lineage allocation into adipocytes through TGF-β-Smad2/3-Glut1 axis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Ledoux C, Boaretti D, Sachan A, Müller R, Collins CJ. Clinical Data for Parametrization of In Silico Bone Models Incorporating Cell-Cytokine Dynamics: A Systematic Review of Literature. Front Bioeng Biotechnol 2022; 10:901720. [PMID: 35910035 PMCID: PMC9335409 DOI: 10.3389/fbioe.2022.901720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In silico simulations aim to provide fast, inexpensive, and ethical alternatives to years of costly experimentation on animals and humans for studying bone remodeling, its deregulation during osteoporosis and the effect of therapeutics. Within the varied spectrum of in silico modeling techniques, bone cell population dynamics and agent-based multiphysics simulations have recently emerged as useful tools to simulate the effect of specific signaling pathways. In these models, parameters for cell and cytokine behavior are set based on experimental values found in literature; however, their use is currently limited by the lack of clinical in vivo data on cell numbers and their behavior as well as cytokine concentrations, diffusion, decay and reaction rates. Further, the settings used for these parameters vary across research groups, prohibiting effective cross-comparisons. This review summarizes and evaluates the clinical trial literature that can serve as input or validation for in silico models of bone remodeling incorporating cells and cytokine dynamics in post-menopausal women in treatment, and control scenarios. The GRADE system was used to determine the level of confidence in the reported data, and areas lacking in reported measures such as binding site occupancy, reaction rates and cell proliferation, differentiation and apoptosis rates were highlighted as targets for further research. We propose a consensus for the range of values that can be used for the cell and cytokine settings related to the RANKL-RANK-OPG, TGF-β and sclerostin pathways and a Levels of Evidence-based method to estimate parameters missing from clinical trial literature.
Collapse
Affiliation(s)
- Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Akanksha Sachan
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Caitlyn J. Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department for Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VI,United States
- *Correspondence: Caitlyn J. Collins,
| |
Collapse
|
42
|
Álvarez-Nava F, Soto-Quintana M. The Hypothesis of the Prolonged Cell Cycle in Turner Syndrome. J Dev Biol 2022; 10:16. [PMID: 35645292 PMCID: PMC9149809 DOI: 10.3390/jdb10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 01/27/2023] Open
Abstract
Turner syndrome (TS) is a chromosomal disorder that is caused by a missing or structurally abnormal second sex chromosome. Subjects with TS are at an increased risk of developing intrauterine growth retardation, low birth weight, short stature, congenital heart diseases, infertility, obesity, dyslipidemia, hypertension, insulin resistance, type 2 diabetes mellitus, metabolic syndrome, and cardiovascular diseases (stroke and myocardial infarction). The underlying pathogenetic mechanism of TS is unknown. The assumption that X chromosome-linked gene haploinsufficiency is associated with the TS phenotype is questioned since such genes have not been identified. Thus, other pathogenic mechanisms have been suggested to explain this phenotype. Morphogenesis encompasses a series of events that includes cell division, the production of migratory precursors and their progeny, differentiation, programmed cell death, and integration into organs and systems. The precise control of the growth and differentiation of cells is essential for normal development. The cell cycle frequency and the number of proliferating cells are essential in cell growth. 45,X cells have a failure to proliferate at a normal rate, leading to a decreased cell number in a given tissue during organogenesis. A convergence of data indicates an association between a prolonged cell cycle and the phenotypical features in Turner syndrome. This review aims to examine old and new findings concerning the relationship between a prolonged cell cycle and TS phenotype. These studies reveal a diversity of phenotypic features in TS that could be explained by reduced cell proliferation. The implications of this hypothesis for our understanding of the TS phenotype and its pathogenesis are discussed. It is not surprising that 45,X monosomy leads to cellular growth pathway dysregulation with profound deleterious effects on both embryonic and later stages of development. The prolonged cell cycle could represent the beginning of the pathogenesis of TS, leading to a series of phenotypic consequences in embryonic/fetal, neonatal, pediatric, adolescence, and adulthood life.
Collapse
Affiliation(s)
- Francisco Álvarez-Nava
- Biological Sciences School, Faculty of Biological Sciences, Central University of Ecuador, Quito 170113, Ecuador
| | | |
Collapse
|
43
|
Öztürk E, Çiğiloğlu A, Çakmak G, Öztürk ZA. An inconvenient status in anti-osteoporotic treatment process: corticosteroid use. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:636-640. [DOI: 10.1590/1806-9282.20211368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 11/22/2022]
|
44
|
Hung C, Muñoz M, Shibli-Rahhal A. Anorexia Nervosa and Osteoporosis. Calcif Tissue Int 2022; 110:562-575. [PMID: 33666707 DOI: 10.1007/s00223-021-00826-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Patients with anorexia nervosa (AN) often experience low bone mineral density (BMD) and increased fracture risk, with low body weight and decreased gonadal function being the strongest predictors of the observed bone mineral deficit and fractures. Other metabolic disturbances have also been linked to bone loss in this group of patients, including growth hormone resistance, low insulin-like growth factor-1 (IGF-1) concentrations, low leptin concentrations, and hypercortisolemia. However, these correlations lack definitive evidence of causality. Weight restoration and resumption of menstrual function have the strongest impact on increasing BMD. Other potential treatment options include bisphosphonates and teriparatide, supported by data from small clinical trials, but these agents are not approved for the treatment of low BMD in adolescents or premenopausal women with AN.
Collapse
Affiliation(s)
- Chermaine Hung
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Marcus Muñoz
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amal Shibli-Rahhal
- Division of Endocrinology, Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
45
|
Kir MC, Onal MO, Uluer ET, Ulman C, Inan S. Continuous and intermittent parathyroid hormone administration promotes osteogenic differentiation and activity of programmable cells of monocytic origin. Biotech Histochem 2022; 97:593-603. [PMID: 35473476 DOI: 10.1080/10520295.2022.2049876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Bone healing deficiencies are challenging for orthopedic practice. The use of stem cells with scaffolds to treat bone tissue losses currently is popular for promoting regeneration of tissue. Programmable cells of monocytic origin (PCMO) may differentiate into three germ layers and may be a promising alternative treatment due to their stem cell-like properties. Parathyroid hormone (PTH) participates in bone metabolism. Intermittent administration of PTH promotes osteogenic activity of mesenchymal stem cdells (MSC). We investigated the osteogenic effects of continuous and intermittent administration of PTH on PCMO. Mononuclear cells were harvested from the peripheral blood of healthy donors. Isolated cells were cultured for six days in a de-differentiation medium. Indirect immunocytochemistry using anti-CD14, anti-CD45 and anti-CD90 primary antibodies, as well as electron microscopy were used to detect PCMO. PCMO then were cultured in an osteogenic differentiation medium supplemented with continuous or intermittent 50 ng/ml PTH. The PTH-free control group (CG), intermittent PTH treated group (IPG) and continuous PTH treated group (CPG) were cultured and assessed for their differentiation into osteogenic lineage cells by indirect immunocytochemistry using anti-collagen I, anti-osteonectin and anti-osteocalcin primary antibodies. Osteoblast-like cells obtained by continuous or intermittent PTH administration exhibited increased levels of collagen I, osteonectin and osteocalcin immunoreactivity. We found that continuous and intermittent PTH administration to PCMO enhanced their differentiation to osteogenic lineage cells and increased osteoblastic activity.
Collapse
Affiliation(s)
- M C Kir
- Department of Orthopedics and Traumatology, Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - M O Onal
- Department of Histology & Embryology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - E T Uluer
- Department of Histology & Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - C Ulman
- Department of Biochemistry, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - S Inan
- Department of Histology & Embryology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| |
Collapse
|
46
|
Galán-Díez M, Borot F, Ali AM, Zhao J, Gil-Iturbe E, Shan X, Luo N, Liu Y, Huang XP, Bisikirska B, Labella R, Kurland I, Roth BL, Quick M, Mukherjee S, Rabadán R, Carroll M, Raza A, Kousteni S. Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discov 2022; 12:1106-1127. [PMID: 35046097 PMCID: PMC8983599 DOI: 10.1158/2159-8290.cd-21-0692] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023]
Abstract
Remodeling of the microenvironment by tumor cells can activate pathways that favor cancer growth. Molecular delineation and targeting of such malignant-cell nonautonomous pathways may help overcome resistance to targeted therapies. Herein we leverage genetic mouse models, patient-derived xenografts, and patient samples to show that acute myeloid leukemia (AML) exploits peripheral serotonin signaling to remodel the endosteal niche to its advantage. AML progression requires the presence of serotonin receptor 1B (HTR1B) in osteoblasts and is driven by AML-secreted kynurenine, which acts as an oncometabolite and HTR1B ligand. AML cells utilize kynurenine to induce a proinflammatory state in osteoblasts that, through the acute-phase protein serum amyloid A (SAA), acts in a positive feedback loop on leukemia cells by increasing expression of IDO1-the rate-limiting enzyme for kynurenine synthesis-thereby enabling AML progression. This leukemia-osteoblast cross-talk, conferred by the kynurenine-HTR1B-SAA-IDO1 axis, could be exploited as a niche-focused therapeutic approach against AML, opening new avenues for cancer treatment. SIGNIFICANCE AML remains recalcitrant to treatments due to the emergence of resistant clones. We show a leukemia-cell nonautonomous progression mechanism that involves activation of a kynurenine-HTR1B-SAA-IDO1 axis between AML cells and osteoblasts. Targeting the niche by interrupting this axis can be pharmacologically harnessed to hamper AML progression and overcome therapy resistance. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York.,Corresponding Authors: Stavroula Kousteni, Phone: 212-305-2068; E-mail: ; and Marta Galán-Díez, Department of Physiology and Cellular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032. Phone: 212-305-2481; E-mail:
| | - Florence Borot
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York
| | - Abdullah Mahmood Ali
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University, New York, New York
| | - Xiaochuan Shan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Na Luo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Yongfeng Liu
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina
| | - Xi-Ping Huang
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina
| | - Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Irwin Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Bryan L. Roth
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, New York.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
| | - Siddhartha Mukherjee
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Raul Rabadán
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York.,Department of Biomedical Informatics, Columbia University, New York, New York
| | - Martin Carroll
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Azra Raza
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York.,Columbia Stem Cell Initiative, Columbia University, New York, New York.,Corresponding Authors: Stavroula Kousteni, Phone: 212-305-2068; E-mail: ; and Marta Galán-Díez, Department of Physiology and Cellular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032. Phone: 212-305-2481; E-mail:
| |
Collapse
|
47
|
New Directions in the Development of Pharmacotherapy for Osteoarthrosis Based on Modern Concepts of the Disease Pathogenesis (A Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Yu B, Wang CY. Osteoporosis and periodontal diseases - An update on their association and mechanistic links. Periodontol 2000 2022; 89:99-113. [PMID: 35244945 DOI: 10.1111/prd.12422] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Periodontitis and osteoporosis are prevalent inflammation-associated skeletal disorders that pose significant public health challenges to our aging population. Both periodontitis and osteoporosis are bone disorders closely associated with inflammation and aging. There has been consistent intrigue on whether a systemic skeletal disease such as osteoporosis will amplify the alveolar bone loss in periodontitis. A survey of the literature published in the past 25 years indicates that systemic low bone mineral density (BMD) is associated with alveolar bone loss, while recent evidence also suggests a correlation between clinical attachment loss and other parameters of periodontitis. Inflammation and its influence on bone remodeling play critical roles in the pathogenesis of both osteoporosis and periodontitis and could serve as the central mechanistic link between these disorders. Enhanced cytokine production and elevated inflammatory response exacerbate osteoclastic bone resorption while inhibiting osteoblastic bone formation, resulting in a net bone loss. With aging, accumulation of oxidative stress and cellular senescence drive the progression of osteoporosis and exacerbation of periodontitis. Vitamin D deficiency and smoking are shared risk factors and may mediate the connection between osteoporosis and periodontitis, through increasing oxidative stress and impairing host response to inflammation. With the connection between systemic and localized bone loss in mind, routine dental exams and intraoral radiographs may serve as a low-cost screening tool for low systemic BMD and increased fracture risk. Conversely, patients with fracture risk beyond the intervention threshold are at greater risk for developing severe periodontitis and undergo tooth loss. Various Food and Drug Administration-approved therapies for osteoporosis have shown promising results for treating periodontitis. Understanding the molecular mechanisms underlying their connection sheds light on potential therapeutic strategies that may facilitate co-management of systemic and localized bone loss.
Collapse
Affiliation(s)
- Bo Yu
- Division of Regenerative and Constitutive Sciences, School of Dentistry, University of California at Los Angeles, Los Angeles, California, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, California, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, Broad Stem Cell Research Center and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
49
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
50
|
Baranowsky A, Jahn D, Jiang S, Yorgan T, Ludewig P, Appelt J, Albrecht KK, Otto E, Knapstein P, Donat A, Winneberger J, Rosenthal L, Köhli P, Erdmann C, Fuchs M, Frosch KH, Tsitsilonis S, Amling M, Schinke T, Keller J. Procalcitonin is expressed in osteoblasts and limits bone resorption through inhibition of macrophage migration during intermittent PTH treatment. Bone Res 2022; 10:9. [PMID: 35087025 PMCID: PMC8795393 DOI: 10.1038/s41413-021-00172-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Intermittent injections of parathyroid hormone (iPTH) are applied clinically to stimulate bone formation by osteoblasts, although continuous elevation of parathyroid hormone (PTH) primarily results in increased bone resorption. Here, we identified Calca, encoding the sepsis biomarker procalcitonin (ProCT), as a novel target gene of PTH in murine osteoblasts that inhibits osteoclast formation. During iPTH treatment, mice lacking ProCT develop increased bone resorption with excessive osteoclast formation in both the long bones and axial skeleton. Mechanistically, ProCT inhibits the expression of key mediators involved in the recruitment of macrophages, representing osteoclast precursors. Accordingly, ProCT arrests macrophage migration and causes inhibition of early but not late osteoclastogenesis. In conclusion, our results reveal a potential role of osteoblast-derived ProCT in the bone microenvironment that is required to limit bone resorption during iPTH.
Collapse
Affiliation(s)
- Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kai K Albrecht
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Ellen Otto
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Paul Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Jack Winneberger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Lana Rosenthal
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Paul Köhli
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Melanie Fuchs
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany.,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany. .,Berlin Institute of Health, Berlin, 10178, Germany.
| |
Collapse
|