1
|
Bonnel AS, Bihouée T, Ribault M, Driessen M, Grèvent D, Foissac F, Truong NH, Benhamida M, Arnouat B, Borghese R, Chedevergne F, Couderc-Kohen L, da Silva J, Grenet D, Houdouin V, Le A, Marchal S, Deneuville E, Pouradier D, Rousseau V, Treluyer JM, Francart A, Steffann J, Reix P, Benaboud S, Mamzer MF, Ville Y, Martin C, Burgel PR, Sermet-Gaudelus I. First real-world study of fetal therapy with CFTR modulators in cystic fibrosis: Report from the MODUL-CF study. J Cyst Fibros 2025:S1569-1993(25)00077-3. [PMID: 40133101 DOI: 10.1016/j.jcf.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND We aimed to build a cohort of Maternal-Cystic Fibrosis (CF) fetal dyads treated in utero with Variant Specific Therapy (VST), to assess the efficacy on Meconium Ileus (MI) and potential adverse effects of treatment. METHODS Dyads were included if the foetus had a genetic diagnosis of CF and carried at least one variant responsive to VST. Standardized assessment included pre-VST Magnetic Resonance Imaging (MRI), repeated ultrasound (US), and VST drug concentrations in cord blood, maternal and infant plasma. RESULTS We enrolled 13 dyads. One withdrew from the study. VST therapies (Elexacaftor (ELX)/Tezacaftor (TEZ)/Ivacaftor(IVA) (ETI) n = 11, ivacaftor (IVA) n = 1) were administered to the pregnant women between 19 and 36 weeks' of gestation for a median[IQR] of 35[55] days, either as a curative indication of MI (n = 8) or as a tertiary prevention of fetal CF-related intestinal symptoms (n = 4). One foetus experienced increased bowel dilatation after ETI introduction. MRI revealed intestinal atresia. One dyad received only 2 doses. In the other 6 cases, resolution of MI was observed within 14[10] days of ETI. Fetal development and neonatal tolerance were excellent. Fecal elastase at birth was always below 200 ng/g even in the ETI breast-fed infant. Cord-to-maternal concentration yielded median ratios of 0.40 for ELX, 0.54 for IVA and 1.59 for TEZ. CONCLUSION ETI administration from the third trimester of pregnancy enables MI resolution. Trans-placental transfer is high. Fetal tolerance at ETI initiation needs to be monitored by a standardized assessment.
Collapse
Affiliation(s)
- Anne-Sophie Bonnel
- Centre de Référence Maladies rares, Mucoviscidose et maladies apparentées. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. Paris. France; Cystic Fibrosis Center. Hôpital Mignot. Le Chesnay. France
| | - Tiphaine Bihouée
- Cystic Fibrosis Center. Centre Hospitalier Universitaire. Nantes, France
| | - Mélanie Ribault
- Cystic Fibrosis Center. Centre Hospitalier Universitaire. Rennes, France
| | - Marine Driessen
- Service de Gynéco-obstétrique. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. Paris. France
| | - David Grèvent
- Service d'Imagerie Pédiatrique. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. France
| | - Frantz Foissac
- U1343. Pharmacologie et évaluations thérapeutiques chez l'enfant et la femme enceinte. Inserm, Université Paris Cité. Paris. France; Service de Pharmacologie périnatale pédiatrique et adulte. Hôpital Cochin, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris. Paris. France; Unité de Recherche Clinique. Université Paris Cité Necker/Cochin, Hôpital Tarnier. Paris. France
| | - Ngoc Hoa Truong
- U1343. Pharmacologie et évaluations thérapeutiques chez l'enfant et la femme enceinte. Inserm, Université Paris Cité. Paris. France; Service de Pharmacologie périnatale pédiatrique et adulte. Hôpital Cochin, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris. Paris. France; Unité de Recherche Clinique. Université Paris Cité Necker/Cochin, Hôpital Tarnier. Paris. France
| | - Myriam Benhamida
- Cystic Fibrosis Center. Centre Hospitalier Universitaire. Nantes, France
| | - Baptiste Arnouat
- Cystic Fibrosis Center and Department of Respiratory Medicine. Centre Hospitalier de Vannes. Vannes. France
| | - Roxana Borghese
- Service de Médecine Génomique des Maladies Rares. Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris. Paris. France
| | - Frédérique Chedevergne
- Centre de Référence Maladies rares, Mucoviscidose et maladies apparentées. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. Paris. France
| | | | - Jennifer da Silva
- Centre de Référence Maladies rares, Mucoviscidose et maladies apparentées. Hôpital Cochin. Assistance Publique Hôpitaux de Paris. Paris. France
| | - Dominique Grenet
- Cystic Fibrosis Center and Department of Respiratory Medicine, Hôpital, Foch. Suresnes. France
| | | | - Anais Le
- Centre de Référence Maladies rares, Mucoviscidose et maladies apparentées. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. Paris. France
| | - Sarah Marchal
- Cystic Fibrosis Center. Centre Hospitalier Universitaire. Nice. France
| | - Eric Deneuville
- Cystic Fibrosis Center. Centre Hospitalier Universitaire. Rennes, France
| | | | - Véronique Rousseau
- Service de Chirurgie Digestive. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. Paris. France
| | - Jean-Marc Treluyer
- U1343. Pharmacologie et évaluations thérapeutiques chez l'enfant et la femme enceinte. Inserm, Université Paris Cité. Paris. France; Service de Pharmacologie périnatale pédiatrique et adulte. Hôpital Cochin, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris. Paris. France; Unité de Recherche Clinique. Université Paris Cité Necker/Cochin, Hôpital Tarnier. Paris. France
| | | | - Julie Steffann
- Service de Médecine Génomique des Maladies Rares. Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris. Paris. France; Université de Paris. Paris. France
| | - Philippe Reix
- Cystic Fibrosis Center. Hôpital Mère Enfant. Hospices Civils de Lyon. Lyon. France; Laboratoire de Biométrie et Biologie évolutive. Université de Lyon. Lyon. France
| | - Sihem Benaboud
- U1343. Pharmacologie et évaluations thérapeutiques chez l'enfant et la femme enceinte. Inserm, Université Paris Cité. Paris. France; Service de Pharmacologie périnatale pédiatrique et adulte. Hôpital Cochin, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris. Paris. France; Unité de Recherche Clinique. Université Paris Cité Necker/Cochin, Hôpital Tarnier. Paris. France
| | - Marie France Mamzer
- Université de Paris. Paris. France; Unité Fonctionnelle d'éthique et de Médecine légale. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. Paris. France
| | - Yves Ville
- Cystic Fibrosis Center. Centre Hospitalier Universitaire. Rennes, France; Université de Paris. Paris. France
| | - Clémence Martin
- Centre de Référence Maladies rares, Mucoviscidose et maladies apparentées. Hôpital Cochin. Assistance Publique Hôpitaux de Paris. Paris. France; Université de Paris. Paris. France; Institut Cochin, Paris, France
| | - Pierre-Régis Burgel
- Centre de Référence Maladies rares, Mucoviscidose et maladies apparentées. Hôpital Cochin. Assistance Publique Hôpitaux de Paris. Paris. France; Université de Paris. Paris. France; Institut Cochin, Paris, France
| | - Isabelle Sermet-Gaudelus
- Centre de Référence Maladies rares, Mucoviscidose et maladies apparentées. Hôpital Necker Enfants Malades. Assistance Publique Hôpitaux de Paris. Paris. France; Université de Paris. Paris. France; European Reference Network. Lung. Frankfurt. Germany; Institut Necker Enfants Malades. INSERM U1151. Paris. France
| |
Collapse
|
2
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
3
|
Gangadharan Nambiar G, Gonzalez Szachowicz S, Zirbes CF, Hill JJ, Powers LS, Meyerholz DK, Thornell IM, Stoltz DA, Fischer AJ. Pancreatic enzymes digest obstructive meconium from cystic fibrosis pig intestines. Front Pediatr 2024; 12:1387171. [PMID: 38665380 PMCID: PMC11043547 DOI: 10.3389/fped.2024.1387171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction Meconium ileus (MI) is a life-threatening obstruction of the intestines affecting ∼15% of newborns with cystic fibrosis (CF). Current medical treatments for MI often fail, requiring surgical intervention. MI typically occurs in newborns with pancreatic insufficiency from CF. Meconium contains mucin glycoprotein, a potential substrate for pancreatic enzymes or mucolytics. Our study aim was to determine whether pancreatic enzymes in combination with mucolytic treatments dissolve obstructive meconium using the CF pig model. Methods We collected meconium from CF pigs at birth and submerged it in solutions with and without pancreatic enzymes, including normal saline, 7% hypertonic saline, and the reducing agents N-acetylcysteine (NAC) and dithiothreitol (DTT). We digested meconium at 37 °C with agitation, and measured meconium pigment release by spectrophotometry and residual meconium solids by filtration. Results and discussion In CF pigs, meconium appeared as a solid pigmented mass obstructing the ileum. Meconium microscopically contained mucus glycoprotein, cellular debris, and bile pigments. Meconium fragments released pigments with maximal absorption at 405 nm after submersion in saline over approximately 8 h. Pancreatic enzymes significantly increased pigment release and decreased residual meconium solids. DTT did not improve meconium digestion and the acidic reducing agent NAC worsened digestion. Pancreatic enzymes digested CF meconium best at neutral pH in isotonic saline. We conclude that pancreatic enzymes digest obstructive meconium from CF pigs, while hydrating or reducing agents alone were less effective. This work suggests a potential role for pancreatic enzymes in relieving obstruction due to MI in newborns with CF.
Collapse
Affiliation(s)
- Gopinathan Gangadharan Nambiar
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
- Department of Pediatrics, East Tennessee State University, Johnson City, TN, United States
| | | | - Christian F. Zirbes
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Jared J. Hill
- Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Linda S. Powers
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David K. Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Ian M. Thornell
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David A. Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - Anthony J. Fischer
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
4
|
STOLTZ DAVIDA. INSIGHTS INTO THE ORIGINS OF CYSTIC FIBROSIS LUNG DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:29-36. [PMID: 39135587 PMCID: PMC11316882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this paper, I will discuss recent studies using a cystic fibrosis pig model to better understand the origins of cystic fibrosis lung disease. Specifically, I will review our work investigating how loss of the cystic fibrosis transmembrane conductance regulator function (CFTR) impairs mucociliary transport in the cystic fibrosis airway. These studies reveal new insights into the early, underlying mechanisms of cystic fibrosis lung disease and could lead to novel therapeutic interventions.
Collapse
|
5
|
Van Wettere AJ, Leir S, Cotton CU, Regouski M, Viotti Perisse I, Kerschner JL, Paranjapye A, Fan Z, Liu Y, Schacht M, White KL, Polejaeva IA, Harris A. Early developmental phenotypes in the cystic fibrosis sheep model. FASEB Bioadv 2023; 5:13-26. [PMID: 36643895 PMCID: PMC9832529 DOI: 10.1096/fba.2022-00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023] Open
Abstract
Highly effective modulator therapies for cystic fibrosis (CF) make it a treatable condition for many people. However, although CF respiratory illness occurs after birth, other organ systems particularly in the digestive tract are damaged before birth. We use an ovine model of CF to investigate the in utero origins of CF disease since the sheep closely mirrors critical aspects of human development. Wildtype (WT) and CFTR -/- sheep tissues were collected at 50, 65, 80, 100, and 120 days of gestation and term (147 days) and used for histological, electrophysiological, and molecular analysis. Histological abnormalities are evident in CFTR-/- -/- animals by 80 days of gestation, equivalent to 21 weeks in humans. Acinar and ductal dilation, mucus obstruction, and fibrosis are observed in the pancreas; biliary fibrosis, cholestasis, and gallbladder hypoplasia in the liver; and intestinal meconium obstruction, as seen at birth in all large animal models of CF. Concurrently, cystic fibrosis transmembrane conductance regulator (CFTR)-dependent short circuit current is present in WT tracheal epithelium by 80 days gestation and is absent from CFTR -/- tissues. Transcriptomic profiles of tracheal tissues confirm the early expression of CFTR and suggest that its loss does not globally impair tracheal differentiation.
Collapse
Affiliation(s)
- Arnaud J. Van Wettere
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
- School of Veterinary MedicineUtah State UniversityLoganUtahUSA
| | - Shih‐Hsing Leir
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Calvin U. Cotton
- Departments of Pediatrics, Physiology and BiophysicsCase Western Reserve University School of MedicineClevelandOhioUSA
- Present address:
CFFT LaboratoriesLexingtonMassachusettsUSA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Jenny L. Kerschner
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Alekh Paranjapye
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ying Liu
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Makayla Schacht
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
6
|
Holliday ZM, Launspach JL, Durairaj L, Singh PK, Zabner J, Stoltz DA. Effects of Tham Nasal Alkalinization on Airway Microbial Communities: A Pilot Study in Non-CF and CF Adults. Ann Otol Rhinol Laryngol 2022; 131:1013-1020. [PMID: 34674574 PMCID: PMC9021322 DOI: 10.1177/00034894211051814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES In cystic fibrosis (CF), loss of CFTR-mediated bicarbonate secretion reduces the airway surface liquid (ASL) pH causing airway host defense defects. Aerosolized sodium bicarbonate can reverse these defects, but its effects are short-lived. Aerosolized tromethamine (THAM) also raises the ASL pH but its effects are much longer lasting. In this pilot study, we tested the hypothesis that nasally administered THAM would alter the nasal bacterial composition in adults with and without CF. METHODS Subjects (n = 32 total) received intranasally administered normal saline or THAM followed by a wash out period prior to receiving the other treatment. Nasal bacterial cultures were obtained prior to and after each treatment period. RESULTS At baseline, nasal swab bacterial counts were similar between non-CF and CF subjects, but CF subjects had reduced microbial diversity. Both nasal saline and THAM were well-tolerated. In non-CF subjects, nasal airway alkalinization decreased both the total bacterial density and the gram-positive bacterial species recovered. In both non-CF and CF subjects, THAM decreased the amount of Corynebacterium accolens detected, but increased the amount of Corynebacterium pseudodiphtheriticum recovered on nasal swabs. A reduction in Staphylococcus aureus nasal colonization was also found in subjects who grew C. pseudodiphtheriticum. CONCLUSIONS This study shows that aerosolized THAM is safe and well-tolerated and that nasal airway alkalinization alters the composition of mucosal bacterial communities. CLINICAL TRIAL REGISTRATION NCT00928135 (https://clinicaltrials.gov/ct2/show/NCT00928135).
Collapse
Affiliation(s)
- Zachary M Holliday
- Department of Internal Medicine, University of Iowa, Roy J and Lucille A. Carver College of Medicine, Iowa City, IA, USA
| | - Janice L Launspach
- Department of Internal Medicine, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Lakshmi Durairaj
- Department of Internal Medicine, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Pradeep K Singh
- Departments of Microbiology and Medicine, University of Washington, Seattle, WA, USA
| | - Joseph Zabner
- Department of Internal Medicine and Pappajohn Biomedical Institute, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - David A Stoltz
- Departments of Biomedical Engineering, Molecular Physiology and Biophysics, Internal Medicine and Pappajohn Biomedical Institute, University of Iowa, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
7
|
Tan X, Kini A, Römermann D, Seidler U. The NHE3 Inhibitor Tenapanor Prevents Intestinal Obstructions in CFTR-Deleted Mice. Int J Mol Sci 2022; 23:ijms23179993. [PMID: 36077390 PMCID: PMC9456459 DOI: 10.3390/ijms23179993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Mutations in the CFTR chloride channel result in intestinal obstructive episodes in cystic fibrosis (CF) patients and in CF animal models. In this study, we explored the possibility of reducing the frequency of obstructive episodes in cftr−/− mice through the oral application of a gut-selective NHE3 inhibitor tenapanor and searched for the underlying mechanisms involved. Sex- and age-matched cftr+/+ and cftr−/− mice were orally gavaged twice daily with 30 mg kg−1 tenapanor or vehicle for a period of 21 days. Body weight and stool water content was assessed daily and gastrointestinal transit time (GTT) once weekly. The mice were sacrificed when an intestinal obstruction was suspected or after 21 days, and stool and tissues were collected for further analysis. Twenty-one day tenapanor application resulted in a significant increase in stool water content and stool alkalinity and a significant decrease in GTT in cftr+/+ and cftr−/− mice. Tenapanor significantly reduced obstructive episodes to 8% compared to 46% in vehicle-treated cftr−/− mice and prevented mucosal inflammation. A decrease in cryptal hyperproliferation, mucus accumulation, and mucosal mast cell number was also observed in tenapanor- compared to vehicle-treated, unobstructed cftr−/− mice. Overall, oral tenapanor application prevented obstructive episodes in CFTR-deficient mice and was safe in cftr+/+ and cftr−/− mice. These results suggest that tenapanor may be a safe and affordable adjunctive therapy in cystic fibrosis patients to alleviate constipation and prevent recurrent DIOS.
Collapse
Affiliation(s)
| | | | | | - Ursula Seidler
- Correspondence: ; Tel.: +49-5115-329-427; Fax: +49-5115-328-428
| |
Collapse
|
8
|
Grubb BR, Livraghi-Butrico A. Animal models of cystic fibrosis in the era of highly effective modulator therapies. Curr Opin Pharmacol 2022; 64:102235. [DOI: 10.1016/j.coph.2022.102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
|
9
|
Schaaf CR, Gonzalez LM. Use of Translational, Genetically Modified Porcine Models to Ultimately Improve Intestinal Disease Treatment. Front Vet Sci 2022; 9:878952. [PMID: 35669174 PMCID: PMC9164269 DOI: 10.3389/fvets.2022.878952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
For both human and veterinary patients, non-infectious intestinal disease is a major cause of morbidity and mortality. To improve treatment of intestinal disease, large animal models are increasingly recognized as critical tools to translate the basic science discoveries made in rodent models into clinical application. Large animal intestinal models, particularly porcine, more closely resemble human anatomy, physiology, and disease pathogenesis; these features make them critical to the pre-clinical study of intestinal disease treatments. Previously, large animal model use has been somewhat precluded by the lack of genetically altered large animals to mechanistically investigate non-infectious intestinal diseases such as colorectal cancer, cystic fibrosis, and ischemia-reperfusion injury. However, recent advances and increased availability of gene editing technologies has led to both novel use of large animal models in clinically relevant intestinal disease research and improved testing of potential therapeutics for these diseases.
Collapse
|
10
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
12
|
Viotti Perisse I, Fan Z, Van Wettere A, Liu Y, Leir S, Keim J, Regouski M, Wilson MD, Cholewa KM, Mansbach SN, Kelley TJ, Wang Z, Harris A, White KL, Polejaeva IA. Sheep models of F508del and G542X cystic fibrosis mutations show cellular responses to human therapeutics. FASEB Bioadv 2021; 3:841-854. [PMID: 34632318 PMCID: PMC8493969 DOI: 10.1096/fba.2021-00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023] Open
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del / F508del and CFTRG542X / G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR -/- sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del / F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X / G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Arnaud Van Wettere
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ying Liu
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Shih‐Hsing Leir
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jacob Keim
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Michael D. Wilson
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kelly M. Cholewa
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Sara N. Mansbach
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Thomas J. Kelley
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary SciencesUtah State UniversityLoganUtahUSA
| |
Collapse
|
13
|
Zarei K, Meyerholz DK, Stoltz DA. Early intrahepatic duct defects in a cystic fibrosis porcine model. Physiol Rep 2021; 9:e14978. [PMID: 34288572 PMCID: PMC8290831 DOI: 10.14814/phy2.14978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Hepatobiliary disease causes significant morbidity and mortality in people with cystic fibrosis (CF), yet this problem remains understudied. Previous studies in the newborn CF pig demonstrated decreased bile flow into the small intestine and a microgallbladder with increased luminal mucus and fluid secretion defects. In this study, we examined the intrahepatic bile ducts of the newborn CF pig. We assessed whether our findings from the gallbladder are present elsewhere in the porcine biliary tract and if CF pig cholangiocytes have fluid secretion defects. Immunohistochemistry demonstrated apical CFTR expression in non-CF pig intrahepatic bile ducts of a variety of sizes; CF pig intrahepatic bile ducts lacked CFTR expression. Assessment of serum markers did not reveal significant signs of hepatobiliary disease except for an elevation in direct bilirubin. Quantitative histology demonstrated that CF pigs had smaller bile ducts that more frequently contained luminal mucus. CF intrahepatic cholangiocyte organoids were smaller and lacked cAMP-mediated fluid secretion. Together these data suggest that cholangiocyte fluid secretion is decreased in the CF pig, contributing to structural changes in bile ducts and decreased biliary flow.
Collapse
Affiliation(s)
- Keyan Zarei
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Biomedical EngineeringRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - David K. Meyerholz
- Department of PathologyRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - David A. Stoltz
- Department of Internal MedicineRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Biomedical EngineeringRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Department of Molecular Physiology and BiophysicsRoy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Pappajohn Biomedical InstituteUniversity of IowaIowa CityIAUSA
| |
Collapse
|
14
|
Bouzek DC, Abou Alaiwa MH, Adam RJ, Pezzulo AA, Reznikov LR, Cook DP, Aguilar Pescozo MI, Ten Eyck P, Wu C, Gross TJ, Hornick DB, Hoffman EA, Meyerholz DK, Stoltz DA. Early Lung Disease Exhibits Bacterial-Dependent and -Independent Abnormalities in Cystic Fibrosis Pigs. Am J Respir Crit Care Med 2021; 204:692-702. [PMID: 34170795 DOI: 10.1164/rccm.202102-0451oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE While it is clear that cystic fibrosis airway disease begins at a very young age, the early and subsequent steps in disease pathogenesis and the relative contribution of infection, mucus, and inflammation are not well understood. OBJECTIVES As one approach to assessing the early contribution of infection, we tested the hypothesis that early and continuous antibiotics would decrease the airway bacterial burden. We thought that, if it does, it might reveal aspects of the disease that are more or less sensitive to decreasing infection. METHODS Three groups of pigs were studied from birth until ~3 weeks of age: 1) wild-type, 2) cystic fibrosis, and 3) cystic fibrosis pigs treated continuously with broad-spectrum antibiotics from birth until study completion. Disease was assessed with chest computed tomography, histopathology, microbiology, and bronchoalveolar lavage. MEASUREMENTS AND MAIN RESULTS Disease was present by 3 weeks of age in cystic fibrosis pigs. Continuous antibiotics from birth improved chest computed tomography imaging abnormalities and airway mucus accumulation, but not airway inflammation in the cystic fibrosis pig model. However, reducing bacterial infection did not improve two disease features already present at birth in cystic fibrosis pigs, air trapping and submucosal gland duct plugging. In the cystic fibrosis sinuses, antibiotics did not prevent the development of infection, disease, or the number of bacteria but did alter the bacterial species. CONCLUSIONS These findings suggest that cystic fibrosis airway disease begins immediately following birth, and that early and continuous antibiotics impact some, but not all, aspects of CF lung disease development.
Collapse
Affiliation(s)
- Drake C Bouzek
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Mahmoud H Abou Alaiwa
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Internal Medicine, Iowa City, Iowa, United States
| | - Ryan J Adam
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Alejandro A Pezzulo
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Internal Medicine, Iowa City, Iowa, United States
| | - Leah R Reznikov
- University of Florida, 3463, Physiological Sciences, Gainesville, Florida, United States
| | - Daniel P Cook
- Vanderbilt University Medical Center, 12328, Department of Medicine, Nashville, Tennessee, United States
| | - Maria I Aguilar Pescozo
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Patrick Ten Eyck
- The University of Iowa, 4083, Institute for Clinical and Translational Science, Iowa City, Iowa, United States
| | - Chaorong Wu
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Thomas J Gross
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Douglas B Hornick
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Eric A Hoffman
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Radiology, Iowa City, Iowa, United States
| | - David K Meyerholz
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Pathology, Iowa City, Iowa, United States
| | - David A Stoltz
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States;
| |
Collapse
|
15
|
Ensinck M, Mottais A, Detry C, Leal T, Carlon MS. On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Front Pharmacol 2021; 12:662110. [PMID: 33986686 PMCID: PMC8111007 DOI: 10.3389/fphar.2021.662110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a severe genetic disease for which curative treatment is still lacking. Next generation biotechnologies and more efficient cell-based and in vivo disease models are accelerating the development of novel therapies for CF. Gene editing tools, like CRISPR-based systems, can be used to make targeted modifications in the genome, allowing to correct mutations directly in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. Alternatively, with these tools more relevant disease models can be generated, which in turn will be invaluable to evaluate novel gene editing-based therapies for CF. This critical review offers a comprehensive description of currently available tools for genome editing, and the cell and animal models which are available to evaluate them. Next, we will give an extensive overview of proof-of-concept applications of gene editing in the field of CF. Finally, we will touch upon the challenges that need to be addressed before these proof-of-concept studies can be translated towards a therapy for people with CF.
Collapse
Affiliation(s)
- Marjolein Ensinck
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Angélique Mottais
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Claire Detry
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Teresinha Leal
- Institut de Recherche Expérimentale et Clinique, Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marianne S. Carlon
- Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Declercq M, de Zeeuw P, Conchinha NV, Geldhof V, Ramalho AS, García-Caballero M, Brepoels K, Ensinck M, Carlon MS, Bird MJ, Vinckier S, Proesmans M, Vermeulen F, Dupont L, Ghesquière B, Dewerchin M, Carmeliet P, Cassiman D, Treps L, Eelen G, Witters P. Transcriptomic analysis of CFTR-impaired endothelial cells reveals a pro-inflammatory phenotype. Eur Respir J 2021; 57:13993003.00261-2020. [PMID: 33184117 DOI: 10.1183/13993003.00261-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.
Collapse
Affiliation(s)
- Mathias Declercq
- Dept of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Nadine V Conchinha
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Vincent Geldhof
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anabela S Ramalho
- Stem Cell and Developmental Biology, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium
| | - Melissa García-Caballero
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Marjolein Ensinck
- Laboratory for Molecular Virology and Drug Discovery, Dept of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Marianne S Carlon
- Laboratory for Molecular Virology and Drug Discovery, Dept of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matthew J Bird
- Laboratory of Hepatology, Dept of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Metabolomics Expertise Centre, Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | | | - François Vermeulen
- Dept of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lieven Dupont
- Dept of Pneumology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Centre, Centre for Cancer Biology, VIB, Leuven, Belgium.,Metabolomics Expertise Centre, Dept of Oncology, KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Dept of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Centre of Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.,Equal co-authorship
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Centre for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Dept of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.,Equal co-authorship
| | - Peter Witters
- Dept of Development and Regeneration, CF Centre, Woman and Child, KU Leuven, Leuven, Belgium.,Dept of Paediatrics, University Hospitals Leuven, Leuven, Belgium.,Centre of Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium.,Equal co-authorship
| |
Collapse
|
17
|
Gibson-Corley KN, Engelhardt JF. Animal Models and Their Role in Understanding the Pathophysiology of Cystic Fibrosis-Associated Gastrointestinal Lesions. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 16:51-67. [PMID: 33497264 DOI: 10.1146/annurev-pathol-022420-105133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The life expectancy of cystic fibrosis (CF) patients has greatly increased over the past decade, and researchers and clinicians must now navigate complex disease manifestations that were not a concern prior to the development of modern therapies. Explosive growth in the number of CF animal models has also occurred over this time span, clarifying CF disease pathophysiology and creating opportunities to understand more complex disease processes associated with an aging CF population. This review focuses on the CF-associated pathologies of the gastrointestinal system and how animal models have increased our understanding of this complex multisystemic disease. Although CF is primarily recognized as a pulmonary disease, gastrointestinal pathology occurs very commonly and can affect the quality of life for these patients. Furthermore, we discuss how next-generation genetic engineering of larger animal models will impact the field's understanding of CF disease pathophysiology and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Katherine N Gibson-Corley
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA.,Current affiliation: Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA;
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA;
| |
Collapse
|
18
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Xu J, Livraghi-Butrico A, Hou X, Rajagopalan C, Zhang J, Song J, Jiang H, Wei HG, Wang H, Bouhamdan M, Ruan J, Yang D, Qiu Y, Xie Y, Barrett R, McClellan S, Mou H, Wu Q, Chen X, Rogers TD, Wilkinson KJ, Gilmore RC, Esther CR, Zaman K, Liang X, Sobolic M, Hazlett L, Zhang K, Frizzell RA, Gentzsch M, O'Neal WK, Grubb BR, Chen YE, Boucher RC, Sun F. Phenotypes of CF rabbits generated by CRISPR/Cas9-mediated disruption of the CFTR gene. JCI Insight 2021; 6:139813. [PMID: 33232302 PMCID: PMC7821608 DOI: 10.1172/jci.insight.139813] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Existing animal models of cystic fibrosis (CF) have provided key insights into CF pathogenesis but have been limited by short lifespans, absence of key phenotypes, and/or high maintenance costs. Here, we report the CRISPR/Cas9-mediated generation of CF rabbits, a model with a relatively long lifespan and affordable maintenance and care costs. CF rabbits supplemented solely with oral osmotic laxative had a median survival of approximately 40 days and died of gastrointestinal disease, but therapeutic regimens directed toward restoring gastrointestinal transit extended median survival to approximately 80 days. Surrogate markers of exocrine pancreas disorders were found in CF rabbits with declining health. CFTR expression patterns in WT rabbit airways mimicked humans, with widespread distribution in nasal respiratory and olfactory epithelia, as well as proximal and distal lower airways. CF rabbits exhibited human CF–like abnormalities in the bioelectric properties of the nasal and tracheal epithelia. No spontaneous respiratory disease was detected in young CF rabbits. However, abnormal phenotypes were observed in surviving 1-year-old CF rabbits as compared with WT littermates, and these were especially evident in the nasal respiratory and olfactory epithelium. The CF rabbit model may serve as a useful tool for understanding gut and lung CF pathogenesis and for the practical development of CF therapeutics.
Collapse
Affiliation(s)
- Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | | | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | | | - Hui Wang
- Department of Oncology, Karmanos Cancer Institute
| | | | - Jinxue Ruan
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, and
| | - Youming Xie
- Department of Oncology, Karmanos Cancer Institute
| | - Ronald Barrett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Sharon McClellan
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | - Hongmei Mou
- Mucosal Immunology & Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Troy D Rogers
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Kristen J Wilkinson
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rodney C Gilmore
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Charles R Esther
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Khalequz Zaman
- Department of Pediatrics, Case Western Research University School of Medicine, Cleveland, Ohio, USA
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | | | - Linda Hazlett
- Department of Anatomy and Cell Biology, Wayne State University (WSU) School of Medicine, Detroit, Michigan, USA
| | | | - Raymond A Frizzell
- Department of Pediatrics and Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvnia, USA
| | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Barbara R Grubb
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan (UM) Medical Center, Ann Arbor, Michigan, USA
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
20
|
McCarron A, Parsons D, Donnelley M. Animal and Cell Culture Models for Cystic Fibrosis: Which Model Is Right for Your Application? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:228-242. [PMID: 33232694 DOI: 10.1016/j.ajpath.2020.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Over the past 30 years, a range of cystic fibrosis (CF) animal models have been generated for research purposes. Different species, including mice, rats, ferrets, rabbits, pigs, sheep, zebrafish, and fruit flies, have all been used to model CF disease. While access to such a variety of animal models is a luxury for any research field, it also complicates the decision-making process when it comes to selecting the right model for an investigation. The purpose of this review is to provide a guide for selecting the most appropriate CF animal model for any given application. In this review, the characteristics and phenotypes of each animal model are described, along with a discussion of the key considerations that must be taken into account when choosing a suitable animal model. Available in vitro systems of CF are also described and can offer a useful alternative to using animal models. Finally, the future of CF animal model generation and its use in research are speculated upon.
Collapse
Affiliation(s)
- Alexandra McCarron
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia; Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia; Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Lara-Reyna S, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci 2020; 77:4485-4503. [PMID: 32367193 PMCID: PMC7599191 DOI: 10.1007/s00018-020-03540-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may eventually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in cells with CFTR mutations.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
- Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
22
|
Da Silva Sanchez A, Paunovska K, Cristian A, Dahlman JE. Treating Cystic Fibrosis with mRNA and CRISPR. Hum Gene Ther 2020; 31:940-955. [PMID: 32799680 PMCID: PMC7495921 DOI: 10.1089/hum.2020.137] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Less than 20% of the protein coding genome is thought to be targetable using small molecules. mRNA therapies are not limited in the same way since in theory, they can silence or edit any gene by encoding CRISPR nucleases, or alternatively, produce any missing protein. Yet not all mRNA therapies are equally likely to succeed. Over the past several years, an increasing number of clinical trials with siRNA- and antisense oligonucleotide-based drugs have revealed three key concepts that will likely extend to mRNA therapies delivered by nonviral systems. First, scientists have come to understand that some genes make better targets for RNA therapies than others. Second, scientists have learned that the type and position of chemical modifications made to an RNA drug can alter its therapeutic window, toxicity, and bioavailability. Third, scientists have found that safe and targeted drug delivery vehicles are required to ferry mRNA therapies into diseased cells. In this study, we apply these learnings to cystic fibrosis (CF). We also describe lessons learned from a subset of CF gene therapies that have already been tested in patients. Finally, we highlight the scientific advances that are still required for nonviral mRNA- or CRISPR-based drugs to treat CF successfully in patients.
Collapse
Affiliation(s)
- Alejandro Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ana Cristian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James E. Dahlman
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Cell-Based Therapeutic Approaches for Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21155219. [PMID: 32718005 PMCID: PMC7432606 DOI: 10.3390/ijms21155219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
Cystic Fibrosis (CF) is a chronic autosomal recessive disease caused by defects in the cystic fibrosis transmembrane conductance regulator gene (CFTR). Cystic Fibrosis affects multiple organs but progressive remodeling of the airways, mucus accumulation, and chronic inflammation in the lung, result in lung disease as the major cause of morbidity and mortality. While advances in management of CF symptoms have increased the life expectancy of this devastating disease, and there is tremendous excitement about the potential of new agents targeting the CFTR molecule itself, there is still no curative treatment. With the recent advances in the identification of endogenous airway progenitor cells and in directed differentiation of pluripotent cell sources, cell-based therapeutic approaches for CF have become a plausible treatment method with the potential to ultimately cure the disease. In this review, we highlight the current state of cell therapy in the CF field focusing on the relevant autologous and allogeneic cell populations under investigation and the challenges associated with their use. In addition, we present advances in induced pluripotent stem (iPS) cell approaches and emerging new genetic engineering methods, which have the capacity to overcome the current limitations hindering cell therapy approaches.
Collapse
|
24
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
25
|
Luan X, Tam JS, Jagadeeshan S, Grishchenko N, Hassan N, Gioino P, Shipley AM, Machen TE, Ianowski JP. Airway submucosal glands from cystic fibrosis swine suffer from abnormal ion transport across the serous acini, collecting duct, and ciliated duct. Am J Physiol Lung Cell Mol Physiol 2020; 318:L931-L942. [PMID: 32130033 DOI: 10.1152/ajplung.00219.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human airway is protected by an efficient innate defense mechanism that requires healthy secretion of airway surface liquid (ASL) to clear pathogens from the lungs. Most of the ASL in the upper airway is secreted by submucosal glands. In cystic fibrosis (CF), the function of airway submucosal glands is abnormal, and these abnormalities are attributed to anomalies in ion transport across the epithelia lining the different sections of the glands that function coordinately to produce the ASL. However, the ion transport properties of most of the anatomical regions of the gland have never been measured, and there is controversy regarding which segments express CFTR. This makes it difficult to determine the glandular abnormalities that may contribute to CF lung disease. Using a noninvasive, extracellular self-referencing ion-selective electrode technique, we characterized ion transport properties in all four segments of submucosal glands from wild-type and CFTR-/- swine. In wild-type airways, the serous acini, mucus tubules, and collecting ducts secrete Cl- and Na+ into the lumen in response to carbachol and forskolin stimulation. The ciliated duct also transports Cl- and Na+ but in the opposite direction, i.e., reabsorption from the ASL, which may contribute to lowering Na+ and Cl- activities in the secreted fluid. In CFTR-/- airways, the serous acini, collecting ducts, and ciliated ducts fail to transport ions after forskolin stimulation, resulting in the production of smaller volumes of ASL with normal Cl-, Na+, and K+ concentration.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Julian S Tam
- Department of Medicine, Division of Respirology, Critical Care, and Sleep Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Santosh Jagadeeshan
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nikolay Grishchenko
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Noman Hassan
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paula Gioino
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Juan P Ianowski
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Hepatobiliary Involvement in Cystic Fibrosis. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Cooney AL, Thornell IM, Singh BK, Shah VS, Stoltz DA, McCray PB, Zabner J, Sinn PL. A Novel AAV-mediated Gene Delivery System Corrects CFTR Function in Pigs. Am J Respir Cell Mol Biol 2019; 61:747-754. [PMID: 31184507 PMCID: PMC6890402 DOI: 10.1165/rcmb.2019-0006oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis is an autosomal-recessive disease that is caused by a mutant CFTR (cystic fibrosis transmembrane conductance regulator) gene and is characterized by chronic bacterial lung infections and inflammation. Complementation with functional CFTR normalizes anion transport across the airway surface. Adeno-associated virus (AAV) is a useful vector for gene therapy because of its low immunogenicity and ability to persist for months to years. However, because its episomal expression may decrease after cell division, readministration of the AAV vector may be required. To overcome this, we designed an integrating AAV-based CFTR-expressing vector, termed piggyBac (PB)/AAV, carrying CFTR flanked by the terminal repeats of the piggyBac transposon. With codelivery of the piggyBac transposase, PB/AAV can integrate into the host genome. Because of the packaging constraints of AAV, careful consideration was required to ensure that the vector would package and express its CFTR cDNA cargo. In this short-term study, PB/AAV-CFTR was aerosolized to the airways of CF pigs in the absence of the transposase. Two weeks later, transepithelial Cl- current was restored in freshly excised tracheal and bronchial tissue. Additionally, we observed an increase in tracheal airway surface liquid pH and bacterial killing in comparison with untreated CF pigs. Airway surface liquid from primary airway cells cultured from treated CF pigs exhibited increased pH correlating with decreased viscosity. Together, these results show that complementing CFTR in CF pigs with PB/AAV rescues the anion transport defect in a large-animal CF model. Delivery of this integrating viral vector system to airway progenitor cells could lead to persistent, life-long expression in vivo.
Collapse
Affiliation(s)
- Ashley L. Cooney
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Ian M. Thornell
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Brajesh K. Singh
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Viral S. Shah
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - David A. Stoltz
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Paul B. McCray
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| | - Joseph Zabner
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Patrick L. Sinn
- Stead Family Department of Pediatrics
- Pappajohn Biomedical Institute
- Center for Gene Therapy, and
| |
Collapse
|
28
|
Abstract
Cystic fibrosis (CF) lung disease is the major cause of morbidity and mortality in people with CF. Abnormal mucociliary transport has been the leading hypothesis for the underlying pathogenesis of CF airway disease. However, this has been difficult to investigate at very early time points. A porcine CF model, which recapitulates many features of CF disease in humans, enables studies to be performed in non-CF and CF pigs on the day that they are born. In newborn CF pigs, we found that under basal conditions, mucociliary transport rates in non-CF and CF pigs are similar. However, after cholinergic stimulation, which stimulates submucosal gland secretion, particles become stuck in the CF airways owing to a failure of mucus strands to release from submucosal glands. In this review, we summarize these recent discoveries and also discuss the morphology, composition, and function of mucins in the porcine lung.
Collapse
|
29
|
Yan Z, McCray Jr PB, Engelhardt JF. Advances in gene therapy for cystic fibrosis lung disease. Hum Mol Genet 2019; 28:R88-R94. [PMID: 31332440 PMCID: PMC6796993 DOI: 10.1093/hmg/ddz139] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is a multiorgan recessive genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Gene therapy efforts have focused on treating the lung, since it manifests the most significant life-threatening disease. Over two decades have past since the first CF lung gene therapy trials and significant advances in the therapeutic implementation of pharmacologic CFTR modulators have renewed the field's focus on developing gene therapies for the 10% of CF patients these modulators cannot help. This review summarizes recent progress made in developing vectors for airway transduction and CF animal models required for understanding the relevant cellular targets in the lung and testing the efficacy of gene therapy approaches. We also highlight future opportunities in emerging gene editing strategies that may offer advantages for treating diseases like CF where the gene target is highly regulated at the cellular level. The outcomes of CF lung gene therapy trials will likely inform productive paths toward gene therapy for other complex genetic disorders, while also advancing treatments for all CF patients.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray Jr
- Department of Pediatrics, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
30
|
Kuan SP, Liao YSJ, Davis KM, Messer JG, Zubcevic J, Aguirre JI, Reznikov LR. Attenuated Amiloride-Sensitive Current and Augmented Calcium-Activated Chloride Current in Marsh Rice Rat (Oryzomys palustris) Airways. iScience 2019; 19:737-748. [PMID: 31491720 PMCID: PMC6731178 DOI: 10.1016/j.isci.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 11/29/2022] Open
Abstract
Prolonged heat and sea salt aerosols pose a challenge for the mammalian airway, placing the protective airway surface liquid (ASL) at risk for desiccation. Thus, mammals inhabiting salt marshes might have acquired adaptations for ASL regulation. We studied the airways of the rice rat, a rodent that inhabits salt marshes. We discovered negligible Na+ transport through the epithelial sodium channel (ENaC). In contrast, carbachol induced a large Cl- secretory current that was blocked by the calcium-activated chloride channel (CaCC) inhibitor CaCCinhi-A01. Decreased mRNA expression of α, β, and γ ENaC, and increased mRNA expression of the CaCC transmembrane member 16A, distinguished the rice rat airway. Rice rat airway cultures also secreted fluid in response to carbachol and displayed an exaggerated expansion of the ASL volume when challenged with 3.5% NaCl. These data suggest that the rice rat airway might possess unique ion transport adaptations to facilitate survival in the salt marsh environment.
Collapse
Affiliation(s)
- Shin-Ping Kuan
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Yan-Shin J Liao
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Katelyn M Davis
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan G Messer
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
31
|
Miah KM, Hyde SC, Gill DR. Emerging gene therapies for cystic fibrosis. Expert Rev Respir Med 2019; 13:709-725. [PMID: 31215818 DOI: 10.1080/17476348.2019.1634547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.
Collapse
Affiliation(s)
- Kamran M Miah
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Stephen C Hyde
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Deborah R Gill
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
32
|
Cooney AL, Singh BK, Loza LM, Thornell IM, Hippee CE, Powers LS, Ostedgaard LS, Meyerholz DK, Wohlford-Lenane C, Stoltz DA, B McCray P, Sinn PL. Widespread airway distribution and short-term phenotypic correction of cystic fibrosis pigs following aerosol delivery of piggyBac/adenovirus. Nucleic Acids Res 2019; 46:9591-9600. [PMID: 30165523 PMCID: PMC6182177 DOI: 10.1093/nar/gky773] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 11/14/2022] Open
Abstract
Cystic fibrosis (CF) is a common genetic disease caused by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR). Although CF affects multiple organ systems, chronic bacterial infections and inflammation in the lung are the leading causes of morbidity and mortality in people with CF. Complementation with a functional CFTR gene repairs this defect, regardless of the disease-causing mutation. In this study, we used a gene delivery system termed piggyBac/adenovirus (Ad), which combines the delivery efficiency of an adenoviral-based vector with the persistent expression of a DNA transposon-based vector. We aerosolized piggyBac/Ad to the airways of pigs and observed widespread pulmonary distribution of vector. We quantified the regional distribution in the airways and observed transduction of large and small airway epithelial cells of non-CF pigs, with ∼30–50% of surface epithelial cells positive for GFP. We transduced multiple cell types including ciliated, non-ciliated, basal, and submucosal gland cells. In addition, we phenotypically corrected CF pigs following delivery of piggyBac/Ad expressing CFTR as measured by anion channel activity, airway surface liquid pH, and bacterial killing ability. Combining an integrating DNA transposon with adenoviral vector delivery is an efficient method for achieving functional CFTR correction from a single vector administration.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Brajesh K Singh
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Laura Marquez Loza
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ian M Thornell
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Camilla E Hippee
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - Linda S Powers
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Lynda S Ostedgaard
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Chris Wohlford-Lenane
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| | - David A Stoltz
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
- Department of Molecular Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Patrick L Sinn
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA 52242, USA
- Pappajohn Biomedical Institute and the Center for Gene Therapy for Cystic Fibrosis, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Gong J, Wang F, Xiao B, Panjwani N, Lin F, Keenan K, Avolio J, Esmaeili M, Zhang L, He G, Soave D, Mastromatteo S, Baskurt Z, Kim S, O’Neal WK, Polineni D, Blackman SM, Corvol H, Cutting GR, Drumm M, Knowles MR, Rommens JM, Sun L, Strug LJ. Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci. PLoS Genet 2019; 15:e1008007. [PMID: 30807572 PMCID: PMC6407791 DOI: 10.1371/journal.pgen.1008007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/08/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023] Open
Abstract
Cystic Fibrosis (CF) exhibits morbidity in several organs, including progressive lung disease in all patients and intestinal obstruction at birth (meconium ileus) in ~15%. Individuals with the same causal CFTR mutations show variable disease presentation which is partly attributed to modifier genes. With >6,500 participants from the International CF Gene Modifier Consortium, genome-wide association investigation identified a new modifier locus for meconium ileus encompassing ATP12A on chromosome 13 (min p = 3.83x10(-10)); replicated loci encompassing SLC6A14 on chromosome X and SLC26A9 on chromosome 1, (min p<2.2x10(-16), 2.81x10(-11), respectively); and replicated a suggestive locus on chromosome 7 near PRSS1 (min p = 2.55x10(-7)). PRSS1 is exclusively expressed in the exocrine pancreas and was previously associated with non-CF pancreatitis with functional characterization demonstrating impact on PRSS1 gene expression. We thus asked whether the other meconium ileus modifier loci impact gene expression and in which organ. We developed and applied a colocalization framework called the Simple Sum (SS) that integrates regulatory and genetic association information, and also contrasts colocalization evidence across tissues or genes. The associated modifier loci colocalized with expression quantitative trait loci (eQTLs) for ATP12A (p = 3.35x10(-8)), SLC6A14 (p = 1.12x10(-10)) and SLC26A9 (p = 4.48x10(-5)) in the pancreas, even though meconium ileus manifests in the intestine. The meconium ileus susceptibility locus on chromosome X appeared shifted in location from a previously identified locus for CF lung disease severity. Using the SS we integrated the lung disease association locus with eQTLs from nasal epithelia of 63 CF participants and demonstrated evidence of colocalization with airway-specific regulation of SLC6A14 (p = 2.3x10(-4)). Cystic Fibrosis is realizing the promise of personalized medicine, and identification of the contributing organ and understanding of tissue specificity for a gene modifier is essential for the next phase of personalizing therapeutic strategies.
Collapse
Affiliation(s)
- Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Bowei Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Avolio
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohsen Esmaeili
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lin Zhang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Gengming He
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - David Soave
- Wilfrid Laurier University, Department of Mathematics, Waterloo, Ontario, Canada
- Ontario Institute for Cancer Research, Department of Computational Biology, Toronto, Ontario, Canada
| | - Scott Mastromatteo
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zeynep Baskurt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sangook Kim
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Wanda K. O’Neal
- Marsico Lung Institute and Cystic Fibrosis Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Deepika Polineni
- Marsico Lung Institute and Cystic Fibrosis Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Internal Medicine, University of Kansas Medical Centre, Kansas City, Kansas, United States of America
| | - Scott M. Blackman
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Harriet Corvol
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôspital Trousseau, Pediatric Pulmonary Department; Institut National de la Santé et la Recherche Médicale (INSERM) U938, Paris, France
- Sorbonne Universités, Université Pierre et Marie (UPMC) Paris, Paris, France
| | - Garry R. Cutting
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mitchell Drumm
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael R. Knowles
- Marsico Lung Institute and Cystic Fibrosis Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Johanna M. Rommens
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Lisa J. Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
34
|
Semaniakou A, Croll RP, Chappe V. Animal Models in the Pathophysiology of Cystic Fibrosis. Front Pharmacol 2019; 9:1475. [PMID: 30662403 PMCID: PMC6328443 DOI: 10.3389/fphar.2018.01475] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023] Open
Abstract
Our understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator (CFTR) gene in 1989, the first mouse model was generated and this model has dominated in vivo CF research ever since. Nonetheless, the failure of murine models to mirror human disease severity in the pancreas and lung has led to the generation of larger animal models such as pigs and ferrets. The following review presents and discusses data from the current animal models used in CF research.
Collapse
Affiliation(s)
- Anna Semaniakou
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Roger P Croll
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
35
|
Cooney AL, McCray PB, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018; 9:genes9110538. [PMID: 30405068 PMCID: PMC6266271 DOI: 10.3390/genes9110538] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a cAMP-regulated anion channel. Although CF is a multi-organ system disease, most people with CF die of progressive lung disease that begins early in childhood and is characterized by chronic bacterial infection and inflammation. Nearly 90% of people with CF have at least one copy of the ΔF508 mutation, but there are hundreds of CFTR mutations that result in a range of disease severities. A CFTR gene replacement approach would be efficacious regardless of the disease-causing mutation. After the discovery of the CFTR gene in 1989, the in vitro proof-of-concept for gene therapy for CF was quickly established in 1990. In 1993, the first of many gene therapy clinical trials attempted to rescue the CF defect in airway epithelia. Despite the initial enthusiasm, there is still no FDA-approved gene therapy for CF. Here we discuss the history of CF gene therapy, from the discovery of the CFTR gene to current state-of-the-art gene delivery vector designs. While implementation of CF gene therapy has proven more challenging than initially envisioned; thanks to continued innovation, it may yet become a reality.
Collapse
Affiliation(s)
- Ashley L Cooney
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Patrick L Sinn
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
36
|
Meyerholz DK, Beck AP, Goeken JA, Leidinger MR, Ofori-Amanfo GK, Brown HC, Businga TR, Stoltz DA, Reznikov LR, Flaherty HA. Glycogen depletion can increase the specificity of mucin detection in airway tissues. BMC Res Notes 2018; 11:763. [PMID: 30359291 PMCID: PMC6203197 DOI: 10.1186/s13104-018-3855-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Objective Mucin is an important parameter for detection and assessment in studies of airway disease including asthma and cystic fibrosis. Histochemical techniques are often used to evaluate mucin in tissues sections. Periodic acid Schiff (PAS) is a common technique to detect neutral mucins in tissue, but this technique also detects other tissue components including cellular glycogen. We tested whether depletion of glycogen, a common cellular constituent, could impact the detection of mucin in the surface epithelium of the trachea. Results Normal tissues stained by PAS had significantly more staining than serial sections of glycogen-depleted tissue with PAS staining (i.e. dPAS technique) based on both quantitative analysis and semiquantitative scores. Most of the excess stain by the PAS technique was detected in ciliated cells adjacent to goblet cells. We also compared normal tissues using the Alcian blue technique, which does not have reported glycogen staining, with the dPAS technique. These groups had similar amounts of staining consistent with a high degree of mucin specificity. Our results suggest that when using PAS techniques to stain airways, the dPAS approach is preferred as it enhances the specificity for airway mucin.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Adam Goeken
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Mariah R Leidinger
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Georgina K Ofori-Amanfo
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hannah C Brown
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Thomas R Businga
- Department of Pathology, 1165ML, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA.,Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Heather A Flaherty
- Department of Veterinary Pathology, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
37
|
Fan Z, Perisse IV, Cotton CU, Regouski M, Meng Q, Domb C, Van Wettere AJ, Wang Z, Harris A, White KL, Polejaeva IA. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 2018; 3:123529. [PMID: 30282831 DOI: 10.1172/jci.insight.123529] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The major cause of limited life span in CF patients is progressive lung disease. CF models have been generated in 4 species (mice, rats, ferrets, and pigs) to enhance our understanding of the CF pathogenesis. Sheep may be a particularly relevant animal to model CF in humans due to the similarities in lung anatomy and development in the two species. Here, we describe the generation of a sheep model for CF using CRISPR/Cas9 genome editing and somatic cell nuclear transfer (SCNT) techniques. We generated cells with CFTR gene disruption and used them for production of CFTR-/- and CFTR+/- lambs. The newborn CFTR-/- sheep developed severe disease consistent with CF pathology in humans. Of particular relevance were pancreatic fibrosis, intestinal obstruction, and absence of the vas deferens. Also, substantial liver and gallbladder disease may reflect CF liver disease that is evident in humans. The phenotype of CFTR-/- sheep suggests this large animal model will be a useful resource to advance the development of new CF therapeutics. Moreover, the generation of specific human CF disease-associated mutations in sheep may advance personalized medicine for this common genetic disorder.
Collapse
Affiliation(s)
- Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | | | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Chaim Domb
- Departments of Pediatrics, Physiology and Biophysics, and
| | - Arnaud J Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
| |
Collapse
|
38
|
Cooney AL, Abou Alaiwa MH, Shah VS, Bouzek DC, Stroik MR, Powers LS, Gansemer ND, Meyerholz DK, Welsh MJ, Stoltz DA, Sinn PL, McCray PB. Lentiviral-mediated phenotypic correction of cystic fibrosis pigs. JCI Insight 2018; 1:88730. [PMID: 27656681 DOI: 10.1172/jci.insight.88730] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in CF transmembrane conductance regulator (CFTR), resulting in defective anion transport. Regardless of the disease-causing mutation, gene therapy is a strategy to restore anion transport to airway epithelia. Indeed, viral vector-delivered CFTR can complement the anion channel defect. In this proof-of-principle study, functional in vivo CFTR channel activity was restored in the airways of CF pigs using a feline immunodeficiency virus-based (FIV-based) lentiviral vector pseudotyped with the GP64 envelope. Three newborn CF pigs received aerosolized FIV-CFTR to the nose and lung. Two weeks after viral vector delivery, epithelial tissues were analyzed for functional correction. In freshly excised tracheal and bronchus tissues and cultured ethmoid sinus cells, we observed a significant increase in transepithelial cAMP-stimulated current, evidence of functional CFTR. In addition, we observed increases in tracheal airway surface liquid pH and bacterial killing in CFTR vector-treated animals. Together, these data provide the first evidence to our knowledge that lentiviral delivery of CFTR can partially correct the anion channel defect in a large-animal CF model and validate a translational strategy to treat or prevent CF lung disease.
Collapse
Affiliation(s)
- Ashley L Cooney
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology
| | - Mahmoud H Abou Alaiwa
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Viral S Shah
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Molecular Physiology and Biophysics
| | - Drake C Bouzek
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Mallory R Stroik
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Linda S Powers
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Nick D Gansemer
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - David K Meyerholz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pathology
| | - Michael J Welsh
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine.,Howard Hughes Medical Institute.,Molecular Physiology and Biophysics
| | - David A Stoltz
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Internal Medicine
| | - Patrick L Sinn
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| | - Paul B McCray
- Pappajohn Biomedical Institute.,Roy J. and Lucille A. Carver College of Medicine.,Departments of Microbiology.,Pediatrics, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
39
|
Yamashita MSDA, Melo EO. Mucin 2 (MUC2) promoter characterization: an overview. Cell Tissue Res 2018; 374:455-463. [PMID: 30218241 DOI: 10.1007/s00441-018-2916-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/13/2018] [Indexed: 12/24/2022]
Abstract
Transgenic livestock have been studied with a well-known interest in improving quantitative and qualitative traits. In order to direct heterologous gene expression, it is indispensable to identify and characterize a promoter suitable for directing the expression of the gene of interest (GOI) in a tissue-specific way. The gastrointestinal tract is a desirable target for gene expression in several mammalian models. Throughout the surface of the intestinal epithelium, there is an intricate polymer network, formed by gel-forming mucins (especially MUC2 and MUC5AC, of which MUC2 is the major one), which plays a protective role due to the formation of a physical, chemical and immunological barrier between the organism and the environment. The characterization of the gel-forming mucins is difficult because of their large size and repetitive DNA sequences and domains. The main mucin in the small and large intestine, mucin 2 (MUC2), is expressed specifically in goblet cells. MUC2 plays an important role in intestinal homeostasis and its disruption is associated with several diseases and carcinomas. This mucin is also an important marker for elucidating mechanisms that regulate differentiation of the secretory cell lineage. This review presents the state of the art of MUC2 promoter structure and functional characterization.
Collapse
Affiliation(s)
| | - Eduardo O Melo
- EMBRAPA Genetic Resources and Biotechnology, PqEB Av W5 Norte, Brasilia, DF, 70770-917, Brazil
| |
Collapse
|
40
|
Meyerholz DK, Stoltz DA, Gansemer ND, Ernst SE, Cook DP, Strub MD, LeClair EN, Barker CK, Adam RJ, Leidinger MR, Gibson-Corley KN, Karp PH, Welsh MJ, McCray PB. Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. J Transl Med 2018; 98:825-838. [PMID: 29467455 PMCID: PMC6019641 DOI: 10.1038/s41374-018-0026-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/16/2017] [Accepted: 01/10/2018] [Indexed: 11/15/2022] Open
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with CF, structural airway defects are increasingly recognized before the onset of significant lung disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal lung disease similar to humans; therefore, we studied lung development in the pig model (non-CF and CF). CF trachea and proximal airways had structural lesions detectable as early as pseudoglandular development. At this early developmental stage, budding CF airways had smaller, hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We studied primary pig airway epithelial cell cultures and found that FGF10 increased cellular proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR is consistent with the site, during branching morphogenesis, where airway epithelia are responsive to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/liquid secretion likely contributes to these hypo-distended airways.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nick D Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sarah E Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel P Cook
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew D Strub
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erica N LeClair
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Carrie K Barker
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan J Adam
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mariah R Leidinger
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Philip H Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
41
|
McCarron A, Donnelley M, Parsons D. Airway disease phenotypes in animal models of cystic fibrosis. Respir Res 2018; 19:54. [PMID: 29609604 PMCID: PMC5879563 DOI: 10.1186/s12931-018-0750-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
In humans, cystic fibrosis (CF) lung disease is characterised by chronic infection, inflammation, airway remodelling, and mucus obstruction. A lack of pulmonary manifestations in CF mouse models has hindered investigations of airway disease pathogenesis, as well as the development and testing of potential therapeutics. However, recently generated CF animal models including rat, ferret and pig models demonstrate a range of well characterised lung disease phenotypes with varying degrees of severity. This review discusses the airway phenotypes of currently available CF animal models and presents potential applications of each model in airway-related CF research.
Collapse
Affiliation(s)
- Alexandra McCarron
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - Martin Donnelley
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| | - David Parsons
- Adelaide Medical School, Discipline of Paediatrics, University of Adelaide, Adelaide, SA Australia
- Department of Respiratory and Sleep Medicine, Women’s and Children’s Hospital, Adelaide, SA Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA Australia
| |
Collapse
|
42
|
Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech 2018; 11:11/1/dmm030783. [PMID: 29419487 PMCID: PMC5818075 DOI: 10.1242/dmm.030783] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. Summary: An overview of porcine models of human disease, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We summarise the technologies involved and potential future impact of recent technical advances.
Collapse
Affiliation(s)
- Carolin Perleberg
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
43
|
Carlon MS, Vidović D, Birket S. Roadmap for an early gene therapy for cystic fibrosis airway disease. Prenat Diagn 2017; 37:1181-1190. [DOI: 10.1002/pd.5164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/12/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Marianne S. Carlon
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
| | - Dragana Vidović
- Molecular Virology and Gene Therapy; Department of Pharmaceutical and Pharmacological Sciences; KU Leuven Flanders Belgium
- Current affiliation: Cellular Protein Chemistry, Faculty of Science; Utrecht University; The Netherlands
| | - Susan Birket
- Department of Medicine; University of Alabama at Birmingham; Birmingham AL USA
| |
Collapse
|
44
|
Luan X, Belev G, Tam JS, Jagadeeshan S, Hassan N, Gioino P, Grishchenko N, Huang Y, Carmalt JL, Duke T, Jones T, Monson B, Burmester M, Simovich T, Yilmaz O, Campanucci VA, Machen TE, Chapman LD, Ianowski JP. Cystic fibrosis swine fail to secrete airway surface liquid in response to inhalation of pathogens. Nat Commun 2017; 8:786. [PMID: 28983075 PMCID: PMC5629252 DOI: 10.1038/s41467-017-00835-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel, which can result in chronic lung disease. The sequence of events leading to lung disease is not fully understood but recent data show that the critical pathogenic event is the loss of the ability to clear bacteria due to abnormal airway surface liquid secretion (ASL). However, whether the inhalation of bacteria triggers ASL secretion and whether this is abnormal in cystic fibrosis has never been tested. Here we show, using a novel synchrotron-based in vivo imaging technique, that wild-type pigs display both a basal and a Toll-like receptor-mediated ASL secretory response to the inhalation of cystic fibrosis relevant bacteria. Both mechanisms fail in CFTR-/- swine, suggesting that cystic fibrosis airways do not respond to inhaled pathogens, thus favoring infection and inflammation that may eventually lead to tissue remodeling and respiratory disease.Cystic fibrosis is caused by mutations in the CFTR chloride channel, leading to reduced airway surface liquid secretion. Here the authors show that exposure to bacteria triggers secretion in wild-type but not in pig models of cystic fibrosis, suggesting an impaired response to pathogens contributes to infection.
Collapse
Affiliation(s)
- Xiaojie Luan
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - George Belev
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, Canada, S7N 2V3
| | - Julian S Tam
- Department of Medicine, Division of Respirology, Critical Care, and Sleep Medicine, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Saskatoon, SK, Canada, S7N 0W8
| | - Santosh Jagadeeshan
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Noman Hassan
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Paula Gioino
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Nikolay Grishchenko
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Yanyun Huang
- Prairie Diagnostic Services Inc., 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - James L Carmalt
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Tanya Duke
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Teela Jones
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Bev Monson
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Monique Burmester
- Animal Care Unit, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada, S7N 5B4
| | - Tomer Simovich
- Surface Science and Technology Group, School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Orhan Yilmaz
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Veronica A Campanucci
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Terry E Machen
- Department of Molecular and Cell Biology, University of California, 231 LSA, Berkeley, CA, 94720-3200, USA
| | - L Dean Chapman
- University of Saskatchewan, Department of Anatomy and Cell Biology, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5
| | - Juan P Ianowski
- Department of Physiology, University of Saskatchewan, Health Science Building, Room 2D01, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5.
| |
Collapse
|
45
|
Arora K, Huang Y, Mun K, Yarlagadda S, Sundaram N, Kessler MM, Hannig G, Kurtz CB, Silos-Santiago I, Helmrath M, Palermo JJ, Clancy JP, Steinbrecher KA, Naren AP. Guanylate cyclase 2C agonism corrects CFTR mutants. JCI Insight 2017; 2:93686. [PMID: 28978796 DOI: 10.1172/jci.insight.93686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/29/2017] [Indexed: 01/06/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder in which epithelium-generated fluid flow from the lung, intestine, and pancreas is impaired due to mutations disrupting CF transmembrane conductance regulator (CFTR) channel function. CF manifestations of the pancreas and lung are present in the vast majority of CF patients, and 15% of CF infants are born with obstructed gut or meconium ileus. However, constipation is a significantly underreported outcome of CF disease, affecting 47% of the CF patients, and management becomes critical in the wake of increasing life span of CF patients. In this study, we unraveled a potentially novel molecular role of a membrane-bound cyclic guanosine monophosphate-synthesizing (cGMP-synthesizing) intestinal enzyme, guanylate cyclase 2C (GCC) that could be targeted to ameliorate CF-associated intestinal fluid deficit. We demonstrated that GCC agonism results in functional rescue of murine F508del/F508del and R117H/R117H Cftr and CFTR mutants in CF patient-derived intestinal spheres. GCC coexpression and activation facilitated processing and ER exit of F508del CFTR and presented a potentially novel rescue modality in the intestine, similar to the CF corrector VX-809. Our findings identify GCC as a biological CFTR corrector and potentiator in the intestine.
Collapse
Affiliation(s)
- Kavisha Arora
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | - Yunjie Huang
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | - Kyushik Mun
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | | | - Nambirajan Sundaram
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | | | | | | | | | - Michael Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
| | - Joseph J Palermo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, and
| | - John P Clancy
- Division of Pulmonary Medicine, Department of Pediatrics, and
| | - Kris A Steinbrecher
- Division of Gastroenterology, Hepatology and Nutrition, CCHMC, Cincinnati, Ohio, USA
| | | |
Collapse
|
46
|
Cook DP, Adam RJ, Zarei K, Deonovic B, Stroik MR, Gansemer ND, Meyerholz DK, Au KF, Stoltz DA. CF airway smooth muscle transcriptome reveals a role for PYK2. JCI Insight 2017; 2:95332. [PMID: 28878137 DOI: 10.1172/jci.insight.95332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Abnormal airway smooth muscle function can contribute to cystic fibrosis (CF) airway disease. We previously found that airway smooth muscle from newborn CF pigs had increased basal tone, an increased bronchodilator response, and abnormal calcium handling. Since CF pigs lack airway infection and inflammation at birth, these findings suggest intrinsic airway smooth muscle dysfunction in CF. In this study, we tested the hypothesis that CFTR loss in airway smooth muscle would produce a distinct set of changes in the airway smooth muscle transcriptome that we could use to develop novel therapeutic targets. Total RNA sequencing of newborn wild-type and CF airway smooth muscle revealed changes in muscle contraction-related genes, ontologies, and pathways. Using connectivity mapping, we identified several small molecules that elicit transcriptional signatures opposite of CF airway smooth muscle, including NVP-TAE684, an inhibitor of proline-rich tyrosine kinase 2 (PYK2). In CF airway smooth muscle tissue, PYK2 phosphorylation was increased and PYK2 inhibition decreased smooth muscle contraction. In vivo NVP-TAE684 treatment of wild-type mice reduced methacholine-induced airway smooth muscle contraction. These findings suggest that studies in the newborn CF pig may provide an important approach to enhance our understanding of airway smooth muscle biology and for discovery of novel airway smooth muscle therapeutics for CF and other diseases of airway hyperreactivity.
Collapse
Affiliation(s)
- Daniel P Cook
- Department of Internal Medicine.,Department of Molecular Physiology and Biophysics, and
| | - Ryan J Adam
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Keyan Zarei
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Benjamin Deonovic
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | | | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kin Fai Au
- Department of Internal Medicine.,Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - David A Stoltz
- Department of Internal Medicine.,Department of Molecular Physiology and Biophysics, and.,Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
47
|
Meyerholz DK, Ofori-Amanfo GK, Leidinger MR, Goeken JA, Khanna R, Sieren JC, Darbro BW, Quelle DE, Weimer JM. Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models. J Histochem Cytochem 2017; 65:607-618. [PMID: 28846462 DOI: 10.1369/0022155417729357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common, cancer-predisposing disease caused by mutations in the NF1 tumor gene. Patients with NF1 have an increased risk for benign and malignant tumors of the nervous system (e.g., neurofibromas, malignant peripheral nerve sheath tumors, gliomas) and other tissues (e.g., leukemias, rhabdomyosarcoma, etc.) as well as increased susceptibility to learning disabilities, chronic pain/migraines, hypertension, pigmentary changes, and developmental lesions (e.g., tibial pseudoarthrosis). Pigs are an attractive and upcoming animal model for future NF1 studies, but a potential limitation to porcine model research has been the lack of validated reagents for direct translational study to humans. To address that issue, we used formalin-fixed tissues (human and pigs) to evaluate select immunohistochemical markers (activated caspase-3, allograft inflammatory factor-1, beta-tubulin III, calbindin D, CD13, CD20, desmin, epithelial membrane antigen, glial fibrillary acidic protein, glucose transporter-1, laminin, myelin basic protein, myoglobin, proliferating cell nuclear antigen, S100, vimentin, and von Willebrand factor). The markers were validated by comparing known expression and localization in human and pig tissues. Validation of these markers on fixed tissues will facilitate prospective immunohistochemical studies of NF1 pigs, as well as other pig models, in a more efficient, reproducible, and translationally relevant manner.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh Khanna
- University of Iowa, Iowa City, Iowa, Departments of Pharmacology and Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona.,Departments of Pharmacology and Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Dawn E Quelle
- Department of Pathology.,Department of Pediatrics.,Department of Pharmacology
| | - Jill M Weimer
- Pediatrics and Rare Disease Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
48
|
Hohwieler M, Perkhofer L, Liebau S, Seufferlein T, Müller M, Illing A, Kleger A. Stem cell-derived organoids to model gastrointestinal facets of cystic fibrosis. United European Gastroenterol J 2017; 5:609-624. [PMID: 28815024 PMCID: PMC5548342 DOI: 10.1177/2050640616670565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/25/2016] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is one of the most frequently occurring inherited human diseases caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which lead to ample defects in anion transport and epithelial fluid secretion. Existing models lack both access to early stages of CF development and a coeval focus on the gastrointestinal CF phenotypes, which become increasingly important due increased life span of the affected individuals. Here, we provide a comprehensive overview of gastrointestinal facets of CF and the opportunity to model these in various systems in an attempt to understand and treat CF. A particular focus is given on forward-leading organoid cultures, which may circumvent current limitations of existing models and thereby provide a platform for drug testing and understanding of disease pathophysiology in gastrointestinal organs.
Collapse
Affiliation(s)
- Meike Hohwieler
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Oesterbergstr. 3, 72074 Tuebingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Martin Müller
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Anett Illing
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, University Medical Centre Ulm, Ulm, Germany
| |
Collapse
|
49
|
Adam RJ, Abou Alaiwa MH, Bouzek DC, Cook DP, Gansemer ND, Taft PJ, Powers LS, Stroik MR, Hoegger MJ, McMenimen JD, Hoffman EA, Zabner J, Welsh MJ, Meyerholz DK, Stoltz DA. Postnatal airway growth in cystic fibrosis piglets. J Appl Physiol (1985) 2017; 123:526-533. [PMID: 28620056 DOI: 10.1152/japplphysiol.00263.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 11/22/2022] Open
Abstract
Mutations in the gene encoding the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel cause CF. The leading cause of death in the CF population is lung disease. Increasing evidence suggests that in utero airway development is CFTR-dependent and that developmental abnormalities may contribute to CF lung disease. However, relatively little is known about postnatal CF airway growth, largely because such studies are limited in humans. Therefore, we examined airway growth and lung volume in a porcine model of CF. We hypothesized that CF pigs would have abnormal postnatal airway growth. To test this hypothesis, we performed CT-based airway and lung volume measurements in 3-wk-old non-CF and CF pigs. We found that 3-wk-old CF pigs had tracheas of reduced caliber and irregular shape. Their bronchial lumens were reduced in size proximally but not distally, were irregularly shaped, and had reduced distensibility. Our data suggest that lack of CFTR results in aberrant postnatal airway growth and development, which could contribute to CF lung disease pathogenesis.NEW & NOTEWORTHY This CT scan-based study of airway morphometry in the cystic fibrosis (CF) postnatal period is unique, as analogous studies in humans are greatly limited for ethical and technical reasons. Findings such as reduced airway lumen area and irregular caliber suggest that airway growth and development are CF transmembrane conductance regulator-dependent and that airway growth defects may contribute to CF lung disease pathogenesis.
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Drake C Bouzek
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Daniel P Cook
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Nicholas D Gansemer
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Peter J Taft
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Linda S Powers
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mallory R Stroik
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Mark J Hoegger
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - James D McMenimen
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Eric A Hoffman
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Radiology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa; and
| | - Michael J Welsh
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa; and.,Howard Hughes Medical Institute, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - David K Meyerholz
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa; .,Department of Biomedical Engineering, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa.,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
50
|
Meyerholz DK, Reznikov LR. Simple and reproducible approaches for the collection of select porcine ganglia. J Neurosci Methods 2017; 289:93-98. [PMID: 28602889 DOI: 10.1016/j.jneumeth.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The anatomy and physiology of the pig nervous system is more similar to humans compared to traditional rodent models. This makes the pig an attractive model to answer questions relating to human health and disease. Yet the technical and molecular tools available to pig researchers are limited compared to rodent researchers. NEW METHOD We developed simple and rapid methods to isolate the trigeminal, nodose (distal vagal), and dorsal root ganglia from neonatal pigs. We selected these ganglia due to their broad applicability to basic science researchers and clinicians. RESULTS Use of these methods resulted in reproducible isolation of all three types of ganglia as validated by histological examination. COMPARISON WITH EXISTING METHOD(S) There are currently no methods that describe a step-by-step protocol to isolate these porcine ganglia. CONCLUSIONS In conclusion, these methods for ganglia collection will facilitate and accelerate future neuroscience investigations in pig models of human disease.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|