1
|
Li M, Yuan H, Yang X, Lei Y, Lian J. Glutamine-glutamate centered metabolism as the potential therapeutic target against Japanese encephalitis virus-induced encephalitis. Cell Biosci 2025; 15:6. [PMID: 39844330 PMCID: PMC11755858 DOI: 10.1186/s13578-024-01340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Japanese encephalitis (JE) induced by Japanese encephalitis virus (JEV) infection is the most prevalent diagnosed epidemic viral encephalitis globally. The underlying pathological mechanisms remain largely unknown. Given that viruses are obligate intracellular parasites, cellular metabolic reprogramming triggered by viral infection is intricately related to the establishment of infection and progression of disease. Therefore, uncovering and manipulating the metabolic reprogramming that underlies viral infection will help elucidate the pathogenic mechanisms and develop novel therapeutic strategies. METHODS Metabolomics analysis was performed to comprehensively delineate the metabolic profiles in JEV-infected mice brains and neurons. Metabolic flux analysis, quantitative real-time PCR, western blotting and fluorescence immunohistochemistry were utilized to describe detailed glutamine-glutamate metabolic profiles during JEV infection. Exogenous addition of metabolites and associated compounds and RNA interference were employed to manipulate glutamine-glutamate metabolism to clarify its effects on viral replication. The survival rate, severity of neuroinflammation, and levels of viral replication were assessed to determine the efficacy of glutamine supplementation in JEV-challenged mice. RESULTS Here, we have delineated a novel perspective on the pathogenesis of JE by identifying an aberrant low flux in glutamine-glutamate metabolism both in vivo and in vitro, which was critical in the establishment of JEV infection and progression of JE. The perturbed glutamine-glutamate metabolism induced neurotransmitter imbalance and created an immune-inhibitory state with increased gamma-aminobutyric acid/glutamate ratio, thus facilitating efficient viral replication both in JEV-infected neurons and the brain of JEV-infected mice. In addition, viral infection restrained the utilization of glutamine via the glutamate-α-ketoglutaric acid axis in neurons, thus avoiding the adverse effects of glutamine oxidation on viral propagation. As the conversion of glutamine to glutamate was inhibited after JEV infection, the metabolism of glutathione (GSH) was simultaneously impaired, exacerbating oxidative stress in JEV-infected neurons and mice brains and promoting the progression of JE. Importantly, the supplementation of glutamine in vivo alleviated the intracranial inflammation and enhanced the survival of JEV-challenged mice. CONCLUSION Altogether, our study highlights an aberrant glutamine-glutamate metabolism during JEV infection and unveils how this facilitates viral replication and promotes JE progression. Manipulation of these metabolic alterations may potentially be exploited to develop therapeutic approaches for JEV infection.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Hang Yuan
- Pathogenic Biology, Medical College of Yan'an University, Yan'an, 716000, China
| | - Xiaofei Yang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yingfeng Lei
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
- Department of Microbiology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
2
|
Lebeau G, Paulo-Ramos A, Hoareau M, El Safadi D, Meilhac O, Krejbich-Trotot P, Roche M, Viranaicken W. Metabolic Dependency Shapes Bivalent Antiviral Response in Host Cells in Response to Poly:IC: The Role of Glutamine. Viruses 2024; 16:1391. [PMID: 39339867 PMCID: PMC11436187 DOI: 10.3390/v16091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The establishment of effective antiviral responses within host cells is intricately related to their metabolic status, shedding light on immunometabolism. In this study, we investigated the hypothesis that cellular reliance on glutamine metabolism contributes to the development of a potent antiviral response. We evaluated the antiviral response in the presence or absence of L-glutamine in the culture medium, revealing a bivalent response hinging on cellular metabolism. While certain interferon-stimulated genes (ISGs) exhibited higher expression in an oxidative phosphorylation (OXPHOS)-dependent manner, others were surprisingly upregulated in a glycolytic-dependent manner. This metabolic dichotomy was influenced in part by variations in interferon-β (IFN-β) expression. We initially demonstrated that the presence of L-glutamine induced an enhancement of OXPHOS in A549 cells. Furthermore, in cells either stimulated by poly:IC or infected with dengue virus and Zika virus, a marked increase in ISGs expression was observed in a dose-dependent manner with L-glutamine supplementation. Interestingly, our findings unveiled a metabolic dependency in the expression of specific ISGs. In particular, genes such as ISG54, ISG12 and ISG15 exhibited heightened expression in cells cultured with L-glutamine, corresponding to higher OXPHOS rates and IFN-β signaling. Conversely, the expression of viperin and 2'-5'-oligoadenylate synthetase 1 was inversely related to L-glutamine concentration, suggesting a glycolysis-dependent regulation, confirmed by inhibition experiments. This study highlights the intricate interplay between cellular metabolism, especially glutaminergic and glycolytic, and the establishment of the canonical antiviral response characterized by the expression of antiviral effectors, potentially paving the way for novel strategies to modulate antiviral responses through metabolic interventions.
Collapse
Affiliation(s)
- Grégorie Lebeau
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Aurélie Paulo-Ramos
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Mathilde Hoareau
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Daed El Safadi
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| | - Pascale Krejbich-Trotot
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Marjolaine Roche
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
| | - Wildriss Viranaicken
- PIMIT—Processus Infectieux en Milieu Insulaire Tropical, INSERM UMR 1187, CNRS 9192, IRD 249, Plateforme CYROI, Université de La Réunion, 97490 Sainte-Clotilde, France
- Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM UMR 1188, Campus Santé de Terre Sainte, Université de La Réunion, 97410 Saint-Pierre, France
| |
Collapse
|
3
|
Malemnganba T, Rattan A, Prajapati VK. Decoding macrophage immunometabolism in human viral infection. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:493-523. [PMID: 38762278 DOI: 10.1016/bs.apcsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Immune-metabolic interactions play a pivotal role in both host defense and susceptibility to various diseases. Immunometabolism, an interdisciplinary field, seeks to elucidate how metabolic processes impact the immune system. In the context of viral infections, macrophages are often exploited by viruses for their replication and propagation. These infections trigger significant metabolic reprogramming within macrophages and polarization of distinct M1 and M2 phenotypes. This metabolic reprogramming involves alterations in standard- pathways such as the Krebs cycle, glycolysis, lipid metabolism, the pentose phosphate pathway, and amino acid metabolism. Disruptions in the balance of key intermediates like spermidine, itaconate, and citrate within these pathways contribute to the severity of viral diseases. In this chapter, we describe the manipulation of metabolic pathways by viruses and how they crosstalk between signaling pathways to evade the immune system. This intricate interplay often involves the upregulation or downregulation of specific metabolites, making these molecules potential biomarkers for diseases like HIV, HCV, and SARS-CoV. Techniques such as Nuclear Magnetic Resonance (NMR) and Mass Spectrometry, are the evaluative ways to analyze these metabolites. Considering the importance of macrophages in the inflammatory response, addressing their metabolome holds great promise for the creating future therapeutic targets aimed at combating a wide spectrum of viral infections.
Collapse
Affiliation(s)
- Takhellambam Malemnganba
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Aditi Rattan
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India.
| |
Collapse
|
4
|
Xu Y, Li M, Lin M, Cui D, Xie J. Glutaminolysis of CD4 + T Cells: A Potential Therapeutic Target in Viral Diseases. J Inflamm Res 2024; 17:603-616. [PMID: 38318243 PMCID: PMC10840576 DOI: 10.2147/jir.s443482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
CD4+ T cells play a critical role in the pathogenesis of viral diseases, which are activated by the internal metabolic pathways encountering with viral antigens. Glutaminolysis converts glutamine into tricarboxylic acid (TCA) circulating metabolites by α-ketoglutaric acid, which is essential for the proliferation and differentiation of CD4+ T cells and plays a central role in providing the energy and structural components needed for viral replication after the virus hijacks the host cell. Changes in glutaminolysis in CD4+ T cells are accompanied by changes in the viral status of the host cell due to competition for glutamine between immune cells and host cells. More recently, attempts have been made to treat tumours, autoimmune diseases, and viral diseases by altering the breakdown of glutamine in T cells. In this review, we will discuss the current knowledge of glutaminolysis in the CD4+ T cell subsets from viral diseases, not only increasing our understanding of immunometabolism but also providing a new perspective for therapeutic target in viral diseases.
Collapse
Affiliation(s)
- Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Miaomiao Li
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Mengjiao Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| |
Collapse
|
5
|
Ming S, Qu S, Wu Y, Wei J, Zhang G, Jiang G, Huang X. COVID-19 Metabolomic-Guided Amino Acid Therapy Protects from Inflammation and Disease Sequelae. Adv Biol (Weinh) 2023; 7:e2200265. [PMID: 36775870 DOI: 10.1002/adbi.202200265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Indexed: 02/14/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has caused a worldwide pandemic since 2019. A metabolic disorder is a contributing factor to deaths from COVID-19. However, the underlying mechanism of metabolic dysfunction in COVID-19 patients and the potential interventions are not elucidated. Here targeted plasma metabolomic is performed, and the metabolite profiles among healthy controls, and asymptomatic, moderate, and severe COVID-19 patients are compared. Among the altered metabolites, arachidonic acid and linolenic acid pathway metabolites are profoundly up-regulated in COVID-19 patients. Arginine biosynthesis, alanine, aspartate, and glutamate metabolism pathways are significantly disturbed in asymptomatic patients. In the comparison of metabolite variances among the groups, higher levels of l-citrulline and l-glutamine are found in asymptomatic carriers and moderate or severe patients at the remission stage. Furthermore, l-citrulline and l-glutamine combination therapy is demonstrated to effectively protect mice from coronavirus infection and endotoxin-induced sepsis, and is observed to efficiently prevent the occurrence of pulmonary fibrosis and central nervous system damage. Collectively, the data reveal the metabolite profile of asymptomatic COVID-19 patients and propose a potential strategy for COVID-19 treatment.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiayou Wei
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| | - Guanmin Jiang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518100, China
| |
Collapse
|
6
|
Li J, Wang Y, Deng H, Li S, Qiu HJ. Cellular metabolism hijacked by viruses for immunoevasion: potential antiviral targets. Front Immunol 2023; 14:1228811. [PMID: 37559723 PMCID: PMC10409484 DOI: 10.3389/fimmu.2023.1228811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.
Collapse
Affiliation(s)
| | | | | | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Wang WF, Zhong HJ, Cheng S, Fu D, Zhao Y, Cai HM, Xiong J, Zhao WL. A nuclear NKRF interacting long noncoding RNA controls EBV eradication and suppresses tumor progression in natural killer/T-cell lymphoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166722. [PMID: 37084822 DOI: 10.1016/j.bbadis.2023.166722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are differentially expressed in EBV-infected cells and play an essential role in tumor progression. Molecular pathogenesis of lincRNAs in EBV-driven natural killer T cell lymphoma (NKTCL) remains unclear. Here we investigated the ncRNA profile using high-throughput RNA sequencing data of 439 lymphoma samples and screened out LINC00486, whose downregulation was further validated by quantitative real-time polymerase chain reaction in EBV-encoded RNA (EBER)-positive lymphoma, particularly NKTCL. Both in vitro and in vivo studies revealed the tumor suppressive function of LINC00486 through inhibiting tumor cell growth and inducing G0/G1 cell cycle arrest. As mechanism of action, LINC00486 specifically interacted with NKRF to abrogate its binding with phosphorylated p65, activated NF-κB/TNF-α signaling and subsequently enhanced EBV eradication. Solute carrier family 1 member 1 (SLC1A1), upregulated and mediated the glutamine-addiction and tumor progression in NKTCL, was negatively correlated with the expression of NKRF. NKRF specifically bound to the promoter and transcriptionally downregulated the expression of SLC1A1, as evidenced by Chromatin Immunoprecipitation (ChIP) and luciferase assay. Collectively, LINC00486 functioned as a tumor suppressor and counteracted EBV infection in NKTCL. Our study improved the knowledge of EBV-driven oncogenesis in NKTCL and provided the clinical rationale of EBV eradication in anti-cancer treatment.
Collapse
Affiliation(s)
- Wen-Fang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Man Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
8
|
Trovato FM, Mujib S, Jerome E, Cavazza A, Morgan P, Smith J, Depante MT, O'Reilly K, Luxton J, Mare T, Napoli S, McPhail MJ. Immunometabolic analysis shows a distinct cyto-metabotype in Covid-19 compared to sepsis from other causes. Heliyon 2022; 8:e09733. [PMID: 35774516 PMCID: PMC9225950 DOI: 10.1016/j.heliyon.2022.e09733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background In Covid-19, profound systemic inflammatory responses are accompanied by both metabolic risk factors for severity and, separately, metabolic mechanisms have been shown to underly disease progression. It is unknown whether this reflects similar situations in sepsis or is a unique characteristic of Covid-19. Aims Define the immunometabolic signature of Covid-19. Methods 65 patients with Covid-19,19 patients with sepsis and 14 healthy controls were recruited and sampled for plasma, serum and peripheral blood mononuclear cells (PBMCs) through 10 days of critical illness. Metabotyping was performed using the Biocrates p180 kit and multiplex cytokine profiling undertaken. PBMCs underwent phenotyping by flow cytometry. Immune and metabolic readouts were integrated and underwent pathway analysis. Results Phopsphatidylcholines (PC) are reduced in Covid-19 but greater than in sepsis. Compared to controls, tryptophan is reduced in Covid-19 and inversely correlated with the severity of the disease and IFN-ɣ concentrations, conversely the kyneurine and kyneurine/tryptophan ratio increased in the most severe cases. These metabolic changes were consistent through 2 pandemic waves in our centre. PD-L1 expression in CD8+ T cells, Tregs and CD14+ monocytes was increased in Covid-19 compared to controls. Conclusions In our cohort, Covid-19 is associated with monocytopenia, increased CD14+ and Treg PD-L1 expression correlating with IFN-ɣ plasma concentration and disease severity (SOFA score). The latter is also associated with metabolic derangements of Tryptophan, LPC 16:0 and PCs. Lipid metabolism, in particular phosphatidylcholines and lysophosphatidylcolines, seems strictly linked to immune response in Covid-19. Our results support the hypothesis that IFN-ɣ -PD-L1 axis might be involved in the cytokine release syndrome typical of severe Covid-19 and the phenomenon persisted through multiple pandemic waves despite use of immunomodulation.
Collapse
Affiliation(s)
- Francesca M Trovato
- Institute of Liver Studies, King's College Hospital, London, United Kingdom.,Department of Inflammation BIology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, Kings College London, United Kingdom
| | - Salma Mujib
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ellen Jerome
- Institute of Liver Studies, King's College Hospital, London, United Kingdom.,Department of Inflammation BIology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, Kings College London, United Kingdom
| | - Anna Cavazza
- Institute of Liver Studies, King's College Hospital, London, United Kingdom.,Department of Inflammation BIology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, Kings College London, United Kingdom
| | - Phillip Morgan
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - John Smith
- Anaesthetics, Critical Care, Emergency and Trauma Research Delivery Unit, Kings College Hospital, London, United Kingdom
| | - Maria Theresa Depante
- Anaesthetics, Critical Care, Emergency and Trauma Research Delivery Unit, Kings College Hospital, London, United Kingdom
| | - Kevin O'Reilly
- Anaesthetics, Critical Care, Emergency and Trauma Research Delivery Unit, Kings College Hospital, London, United Kingdom
| | - James Luxton
- Contract R&D Department (Viapath), Kings College Hospital, London, United Kingdom
| | - Tracey Mare
- Contract R&D Department (Viapath), Kings College Hospital, London, United Kingdom
| | - Salvatore Napoli
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Mark Jw McPhail
- Institute of Liver Studies, King's College Hospital, London, United Kingdom.,Department of Inflammation BIology, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, Kings College London, United Kingdom
| |
Collapse
|
9
|
PPAR Ligands Induce Antiviral Effects Targeting Perturbed Lipid Metabolism during SARS-CoV-2, HCV, and HCMV Infection. BIOLOGY 2022; 11:biology11010114. [PMID: 35053112 PMCID: PMC8772958 DOI: 10.3390/biology11010114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
Simple Summary The current coronavirus disease 2019 pandemic turned the attention of researchers to developing novel strategies to counteract virus infections. Despite several antiviral drugs being commercially available, there is an urgent need to identify novel molecules efficacious against viral infections that act through different mechanisms of action. In this context, our attention is focused on novel compounds acting on nuclear receptors, whose activity could be beneficial in viral infections, including coronavirus, hepatitis C virus, and cytomegalovirus. Abstract The manipulation of host metabolisms by viral infections has been demonstrated by several studies, with a marked influence on the synthesis and utilization of glucose, nucleotides, fatty acids, and amino acids. The ability of virus to perturb the metabolic status of the infected organism is directly linked to the outcome of the viral infection. A great deal of research in recent years has been focusing on these metabolic aspects, pointing at modifications induced by virus, and suggesting novel strategies to counteract the perturbed host metabolism. In this review, our attention is turned on PPARs, nuclear receptors controlling multiple metabolic actions, and on the effects played by PPAR ligands during viral infections. The role of PPAR agonists and antagonists during SARS-CoV-2, HCV, and HCMV infections will be analyzed.
Collapse
|
10
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
11
|
Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Eur J Clin Nutr 2021; 75:1319-1327. [PMID: 34163018 PMCID: PMC8220356 DOI: 10.1038/s41430-021-00943-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Defences to pathogens such as SarCoV2 in mammals involves interactions between immune functions and metabolic pathways to eradicate infection while preventing hyperinflammation. Amino acid metabolic pathways represent with other antimicrobial agent potential targets for therapeutic strategies. iNOS-mediated production of NO from Arg is involved in the innate inflammatory response to pathogens and NO overproduction can induce hyperinflammation. The two Arg- and Trp-catabolising enzymes Arg1 and IDO1 reduce the hyperinflammation by an immunosuppressive effect via either Arg starvation (for Arg1) or via the immunoregulatory activity of the Trp-derived metabolites Kyn (for IDO1). In response to amino acid abundance mTOR activates the host protein translation and Coronaviruses use this machinery for their own protein synthesis and replication. In contrast GCN2, the sensor of amino acid starvation, activates pathways that restrict inflammation and viral replication. Gln depletion alters the immune response that become more suppressive, by favouring a regulatory T phenotype rather than a Th1 phenotype. Proliferating activated immune cells are highly dependent on Ser, activation and differentiation of T cells need enough Ser and dietary Ser restriction can inhibit their proliferation. Cys is strictly required for T-cell proliferation because they cannot convert Met to Cys. Restricting Met inhibits both viral RNA cap methylation and replication, and the proliferation of infected cells with an increased requirement for Met. Phe catabolism produces antimicrobial metabolites resulting in the inhibition of microbial growth and an immunosuppressive activity towards T lymphocytes.
Collapse
|
12
|
Tomé D. Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Nutr Diabetes 2021; 11:20. [PMID: 34168115 PMCID: PMC8223530 DOI: 10.1038/s41387-021-00164-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Defences to pathogens such as SarCoV2 in mammals involves interactions between immune functions and metabolic pathways to eradicate infection while preventing hyperinflammation. Amino acid metabolic pathways represent with other antimicrobial agent potential targets for therapeutic strategies. iNOS-mediated production of NO from Arg is involved in the innate inflammatory response to pathogens and NO overproduction can induce hyperinflammation. The two Arg-catabolising enzymes Arg1 and IDO1 reduce the hyperinflammation by an immunosuppressive effect via either Arg starvation (for Arg1) or via the immunoregulatory activity of the Arg-derived metabolites Kyn (for IDO1). In response to amino acid abundance mTOR activates the host protein translation and Coronaviruses use this machinery for their own protein synthesis and replication. In contrast GCN2, the sensor of amino acid starvation, activates pathways that restrict inflammation and viral replication. Gln depletion alters the immune response that become more suppressive, by favouring a regulatory T phenotype rather than a Th1 phenotype. Proliferating activated immune cells are highly dependent on Ser, activation and differentiation of T cells need enough Ser and dietary Ser restriction can inhibit their proliferation. Cys is strictly required for T-cell proliferation because they cannot convert Met to Cys. Restricting Met inhibits both viral RNA cap methylation and replication, and the proliferation of infected cells with an increased requirement for Met. Phe catabolism produces antimicrobial metabolites resulting in the inhibition of microbial growth and an immunosuppressive activity towards T lymphocytes.
Collapse
Affiliation(s)
- Daniel Tomé
- grid.417885.70000 0001 2185 8223UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| |
Collapse
|
13
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
14
|
Sumbria D, Berber E, Mathayan M, Rouse BT. Virus Infections and Host Metabolism-Can We Manage the Interactions? Front Immunol 2021; 11:594963. [PMID: 33613518 PMCID: PMC7887310 DOI: 10.3389/fimmu.2020.594963] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
When viruses infect cells, they almost invariably cause metabolic changes in the infected cell as well as in several host cell types that react to the infection. Such metabolic changes provide potential targets for therapeutic approaches that could reduce the impact of infection. Several examples are discussed in this review, which include effects on energy metabolism, glutaminolysis and fatty acid metabolism. The response of the immune system also involves metabolic changes and manipulating these may change the outcome of infection. This could include changing the status of herpesviruses infections from productive to latency. The consequences of viral infections which include coronavirus disease 2019 (COVID-19), may also differ in patients with metabolic problems, such as diabetes mellitus (DM), obesity, and endocrine diseases. Nutrition status may also affect the pattern of events following viral infection and examples that impact on the pattern of human and experimental animal viral diseases and the mechanisms involved are discussed. Finally, we discuss the so far few published reports that have manipulated metabolic events in-vivo to change the outcome of virus infection. The topic is expected to expand in relevance as an approach used alone or in combination with other therapies to shape the nature of virus induced diseases.
Collapse
Affiliation(s)
- Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States.,Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Manikannan Mathayan
- Center for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
15
|
Abstract
Herpesviruses infect virtually all humans and establish lifelong latency and reactivate to infect other humans. Latency requires multiple functions: maintaining the herpesvirus genome in the nuclei of cells; partitioning the viral genome to daughter cells in dividing cells; avoiding recognition by the immune system by limiting protein expression; producing noncoding viral RNAs (including microRNAs) to suppress lytic gene expression or regulate cellular protein expression that could otherwise eliminate virus-infected cells; modulating the epigenetic state of the viral genome to regulate viral gene expression; and reactivating to infect other hosts. Licensed antivirals inhibit virus replication, but do not affect latency. Understanding of the mechanisms of latency is leading to novel approaches to destroy latently infected cells or inhibit reactivation from latency.
Collapse
|
16
|
Name JJ, Vasconcelos AR, Souza ACR, Fávaro WJ. Vitamin D, zinc and glutamine: Synergistic action with OncoTherad immunomodulator in interferon signaling and COVID‑19 (Review). Int J Mol Med 2021; 47:11. [PMID: 33448317 PMCID: PMC7834962 DOI: 10.3892/ijmm.2021.4844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December, 2019 in Wuhan, China. Since then, it has continued to spread rapidly in numerous countries, while the search for effective therapeutic options persists. Coronaviruses, including SARS-CoV-2, are known to suppress and evade the antiviral responses of the host organism mediated by interferon (IFN), a family of cytokines that plays an important role in antiviral defenses associated with innate immunity, and has been used therapeutically for chronic viral diseases and cancer. On the other hand, OncoTherad, a safe and effective immunotherapeutic agent in the treatment of non-muscle invasive bladder cancer (NMIBC), increases IFN signaling and has been shown to be a promising therapeutic approach for COVID-19 in a case report that described the rapid recovery of a 78-year-old patient with NMIBC with comorbidities. The present review discusses the possible synergistic action of OncoTherad with vitamin D, zinc and glutamine, nutrients that have been shown to facilitate immune responses mediated by IFN signaling, as well as the potential of this combination as a therapeutic option for COVID-19.
Collapse
Affiliation(s)
- José João Name
- Kilyos Assessoria, Cursos e Palestras (Kilyos Nutrition), São Paulo, SP 01311‑100, Brazil
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP 05508‑000, Brazil
| | | | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, SP 13083‑970, Brazil
| |
Collapse
|
17
|
HENGTRAKUL P, SUDLAPA P, CHAISURAT N, SODSAENGTHIEN S, CHAMNANKIJ C, NOIMOON S, PUNKONG C, PHATTHANAKUNANAN S, LERTWATCHARASARAKUL P, SRIPIBOON S. Biological and environmental factors associated with the detection of elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) in Thailand. J Vet Med Sci 2020; 82:1808-1815. [PMID: 33071255 PMCID: PMC7804042 DOI: 10.1292/jvms.20-0309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) infection is one of the most common diseases in young elephants, causing severe fatal hemorrhagic disease. Subclinical infection was previously described; however, information about the factors associated with virus shedding and reactivation were scarce. To identify the biological and environmental factors related with EEHV detection, blood and oral swab samples were collected from nine captive Asian elephants in Thailand for one year and tested for EEHV presence using real-time PCR. Data including hematological values, management, environmental temperature, and serum cortisol levels were also recorded and analyzed. Results showed that the viral detection frequency ranged from 0-25%. The highest detection frequency was found in the two youngest elephants, aged less than 15 years. Three types of viruses, EEHV1, EEHV4, and EEHV5, were found in this study, which also detected mixed infection in five elephants. Additionally, the study found that sample type, changes in hematological values, management and health issues, and serum cortisol levels were not associated with herpesvirus detection in the elephants. However, EEHV detection percentage was significantly increased in the summer (mid-Feb to mid-May), possibly due to body fitness reduction from food source limitation and low nutrient content. To obtain a broad aspect of EEHV management, long-term EEHV monitoring is highly recommended in every captive elephant herd.
Collapse
Affiliation(s)
- Pajitra HENGTRAKUL
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Pasinee SUDLAPA
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Nattawan CHAISURAT
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sasawat SODSAENGTHIEN
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Chonchayan CHAMNANKIJ
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Sakhon NOIMOON
- Khao Kheow Open Zoo, Bangpra, Sriracha, Chonburi 20110, Thailand
| | | | - Sakuna PHATTHANAKUNANAN
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Preeda LERTWATCHARASARAKUL
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Supaphen SRIPIBOON
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
18
|
Dyer A, Frost S, Fisher KD, Seymour LW. The role of cancer metabolism in defining the success of oncolytic viro-immunotherapy. Cytokine Growth Factor Rev 2020; 56:115-123. [PMID: 32921554 DOI: 10.1016/j.cytogfr.2020.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022]
Abstract
Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.
Collapse
Affiliation(s)
- Arthur Dyer
- Department of Oncology, University of Oxford, Oxford, UK
| | - Sally Frost
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kerry D Fisher
- Department of Oncology, University of Oxford, Oxford, UK
| | - Len W Seymour
- Department of Oncology, University of Oxford, Oxford, UK; Old Road Campus Research Building, Department of Oncology, University of Oxford, OX37DQ, UK.
| |
Collapse
|
19
|
Aydin H, Engin A, Keleş S, Ertemur Z, Hekim N. Glutamine depletion in patients with Crimean-Congo hemorrhagic fever. J Med Virol 2020; 92:2983-2991. [PMID: 32281664 DOI: 10.1002/jmv.25872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a viral disease. There is not enough knowledge about plasma amino acid levels in CCHF. Therefore, we investigated plasma amino acid levels in patients with CCHF and the association between the levels of these amino acids and disease severity. The plasma amino acid levels (including glutamate [Glu], aspartate [Asp], glutamine [Gln], asparagine [Asn] and gamma-aminobutyric acid [GABA]) in CCHF patients and controls were measured by using liquid chromatography-mass spectrometry. Plasma levels of Gln were lower while Asp, Glu, and GABA levels were higher in patients. In fatal CCHF patients, we found the plasma level of Asn was increased whereas the plasma level of GABA was decreased. This study is the first in the literature to evaluate the plasma Gln, Glu, Asn, Asp, and GABA levels in CCHF patients. We found that the plasma Gln levels were significantly lower in CCHF patients while Asp, Glu, and GABA levels were elevated. Considering that these amino acids are important for immune cells, the plasma amino acid levels of CCHF patients may contribute to the understanding of the pathophysiology of disease and it can be important for supportive treatment of CCHF.
Collapse
Affiliation(s)
- Hüseyin Aydin
- Department of Biochemistry, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Aynur Engin
- Department of Infectious Diseases and Clinical Microbiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sami Keleş
- Ahenk Medical Diagnostic and Research Laboratory, Istanbul, Turkey
| | - Zeynep Ertemur
- Department of Biochemistry, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Nezih Hekim
- Department of Molecular Biology and Genetics, Biruni University, School of Medicine and Faculty of Engineering and Natural Sciences, Istanbul, Turkey
| |
Collapse
|
20
|
Ng SW, Selvarajah GT, Cheah YK, Mustaffa Kamal F, Omar AR. Cellular Metabolic Profiling of CrFK Cells Infected with Feline Infectious Peritonitis Virus Using Phenotype Microarrays. Pathogens 2020; 9:E412. [PMID: 32466289 PMCID: PMC7281222 DOI: 10.3390/pathogens9050412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal feline immune-mediated disease caused by feline infectious peritonitis virus (FIPV). Little is known about the biological pathways associated in FIP pathogenesis. This is the first study aiming to determine the phenotypic characteristics on the cellular level in relation to specific metabolic pathways of importance to FIP pathogenesis. METHODS The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells. RESULTS The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells. CONCLUSION This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.
Collapse
Affiliation(s)
- Shing Wei Ng
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Gayathri Thevi Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Sciences, Faculty of Medicine and Biomedical Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
| | - Farina Mustaffa Kamal
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
| | - Abdul Rahman Omar
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (F.M.K.); (A.R.O.)
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| |
Collapse
|
21
|
Sumbria D, Berber E, Rouse BT. Factors Affecting the Tissue Damaging Consequences of Viral Infections. Front Microbiol 2019; 10:2314. [PMID: 31636623 PMCID: PMC6787772 DOI: 10.3389/fmicb.2019.02314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Humans and animals are infected by multiple endogenous and exogenous viruses but few agents cause overt tissue damage. We review the circumstances which favor overt disease expression. These can include intrinsic virulence of the agent, new agents acquired from heterologous species, the circumstances of infection such as dose and route, current infection with other agents which includes the composition of the microbiome at mucosal and other sites, past history of exposure to other infections as well as the immune status of the host. We also briefly discuss promising therapeutic strategies that can expand immune response patterns that minimize tissue damaging responses to viral infections.
Collapse
Affiliation(s)
| | | | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
22
|
What makes a good new therapeutic l-asparaginase? World J Microbiol Biotechnol 2019; 35:152. [DOI: 10.1007/s11274-019-2731-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
|
23
|
Abstract
This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.
Collapse
Affiliation(s)
- Shivani K Thaker
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - James Ch'ng
- Department of Pediatrics, Division of Hematology/Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Heather R Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Liu D, Lin J, Su J, Chen X, Jiang P, Huang K. Glutamine Deficiency Promotes PCV2 Infection through Induction of Autophagy via Activation of ROS-Mediated JAK2/STAT3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11757-11766. [PMID: 30343565 DOI: 10.1021/acs.jafc.8b04704] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Porcine circovirus type 2 (PCV2) is an important pathogen in swine herds. We previously reported that glutamine (Gln) deficiency promoted PCV2 infection in vitro. Here, we established a Gln deficiency model in vivo and further investigated the detailed molecular mechanisms. In vivo and in vitro, Gln deficiency promoted PCV2 infection, which was evident through increased viral yields and PCV2 Cap protein synthesis. It also induced autophagy, as demonstrated by the increases in LC3-II conversion, SQSTM1 degradation, and GFP-LC3 dot accumulation. Autophagy inhibition abolished the effects of Gln deficiency on PCV2 infection. Inhibition of ROS generation alleviated the Gln deficiency-activated JAK2/STAT3 signaling pathway, thereby inhibiting autophagy induction. In vitro, the inhibition of STAT3 by an inhibitor or RNA interference blocked autophagy, thus reversing the effects of Gln deficiency on PCV2 infection. These results indicate that Gln deficiency activates autophagy by upregulating ROS-medicated JAK2/STAT3 signaling and thereby promoting PCV2 infection.
Collapse
|
25
|
Wang L, Yang X, Li D, Liang Z, Chen Y, Ma G, Wang Y, Li Y, Liang Y, Niu H. The elevated glutaminolysis of bladder cancer and T cells in a simulated tumor microenvironment contributes to the up-regulation of PD-L1 expression by interferon-γ. Onco Targets Ther 2018; 11:7229-7243. [PMID: 30425515 PMCID: PMC6203092 DOI: 10.2147/ott.s180505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Metabolic reprogramming occurs in the tumor microenvironment and influences the survival and function of tumor and immune cells. Interferon-γ (IFN-γ) produced by T cells up-regulates PD-L1 expression in tumors. However, reports regarding the relationship between nutrient metabolism and the up-regulation of PD-L1 expression are lacking. Materials and methods In this paper, we analyzed the metabolic changes in T cells and bladder cancer cells in a simulated tumor microenvironment to provide evidence regarding their relevance to PD-L1 up-regulation. Results The glutaminolysis was increased in both activated T cells and glucose-deprived T cells. IFN-γ production by T cells was decreased in a glucose-free medium and severely decreased when cells were simultaneously deprived of glutamine. Furthermore, the glutaminolysis of the bladder cancer cells under glucose deprivation exhibited a compensatory elevation. The glucose concentration of T cells co-cultured with bladder cancer cells was decreased and T cell proliferation was reduced, but IFN-γ production and glutaminolysis were increased. However, in bladder cancer cells, the elevation in glutaminolysis under co-culture conditions did not compensate for glucose deprivation because the glucose concentration in the culture medium did not significantly differ between the cultures with and without T cells. Our data also show that inhibiting glutamine metabolism in bladder cancer cells could reduce the elevation in PD-L1 expression induced by IFN-γ. Conclusion In a simulated tumor microenvironment, elevated glutaminolysis may play an essential role in IFN-γ production by T cells, ultimately improving the high PD-L1 expression, and also directly contributing to producing more PD-L1 in bladder cancer cells.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China,
| | - Xuecheng Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China, ;
| | - Dan Li
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China,
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China,
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China,
| | - Guofeng Ma
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China, ;
| | - Yonghua Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China, ;
| | - Yongxin Li
- Department of Vascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China,
| | - Haitao Niu
- Key Laboratory, Department of Urology and Andrology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China, .,Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China, ;
| |
Collapse
|
26
|
Zhang S, Carriere J, Lin X, Xie N, Feng P. Interplay between Cellular Metabolism and Cytokine Responses during Viral Infection. Viruses 2018; 10:v10100521. [PMID: 30249998 PMCID: PMC6213852 DOI: 10.3390/v10100521] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolism and immune responses are two fundamental biological processes that serve to protect hosts from viral infection. As obligate intracellular pathogens, viruses have evolved diverse strategies to activate metabolism, while inactivating immune responses to achieve maximal reproduction or persistence within their hosts. The two-way virus-host interaction with metabolism and immune responses choreograph cytokine production via reprogramming metabolism of infected cells/hosts. In return, cytokines can affect the metabolism of virus-infected and bystander cells to impede viral replication processes. This review aims to summarize our current understanding of the cross-talk between metabolic reprogramming and cytokine responses, and to highlight future potential research topics. Although the focus is placed on viral pathogens, relevant findings from other microbes are integrated to provide an overall picture, particularly when corresponding information on viral infection is lacking.
Collapse
Affiliation(s)
- Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Jessica Carriere
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Xiaoxi Lin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Na Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-0641, USA.
| |
Collapse
|
27
|
Dendritic cells in the cornea during Herpes simplex viral infection and inflammation. Surv Ophthalmol 2018; 63:565-578. [DOI: 10.1016/j.survophthal.2017.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/24/2022]
|