1
|
Hong J, Sui P, Li Y, Xu KY, Lee JH, Wang J, Chen S, Zhang P, Wingate N, Noor A, Yuan Y, Hromas R, Zhou H, Hamamoto K, Su R, Yin CC, Ye F, Quesada AE, Chen J, Huang S, Zhou D, You MJ, Yang FC, Wang J, Xu M. PSPC1 exerts an oncogenic role in AML by regulating a leukemic transcription program in cooperation with PU.1. Cell Stem Cell 2025; 32:463-478.e6. [PMID: 39954676 DOI: 10.1016/j.stem.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy characterized by the blockage of myeloid cell differentiation and uncontrolled proliferation of immature myeloid cells. Here, we show that paraspeckle component 1 (PSPC1) is aberrantly overexpressed and associated with poor survival in AML patients. Using human AML cells and mouse models, we demonstrate that PSPC1 is not required for normal hematopoiesis, but it is critical and essential for AML cells to maintain their leukemic characteristics. PSPC1 loss induces robust differentiation, suppresses proliferation, and abolishes leukemogenesis in diverse AML cells. Mechanistically, PSPC1 exerts a pro-leukemia effect by regulating a unique leukemic transcription program via cooperative chromatin binding with PU.1 and activation of tumor-promoting genes, including NDC1, which is not previously implicated in AML. Our findings uncover a unique and crucial role of PSPC1 dependency in AML and highlight its potential as a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Juyeong Hong
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pinpin Sui
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ying Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kerryn Y Xu
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ji-Hoon Lee
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Juan Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shi Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Peng Zhang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Noah Wingate
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Asra Noor
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yaxia Yuan
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina Hamamoto
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - C Cameron Yin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Fengxi Ye
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Andrés E Quesada
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Suming Huang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - M James You
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Feng-Chun Yang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Patel S, Ganbold K, Cho CH, Siddiqui J, Yildiz R, Sparman N, Sadeh S, Nguyen CM, Wang J, Whitelegge JP, Fried SK, Waki H, Villanueva CJ, Seldin MM, Sakaguchi S, Ellmeier W, Tontonoz P, Rajbhandari P. Transcription factor PATZ1 promotes adipogenesis by controlling promoter regulatory loci of adipogenic factors. Nat Commun 2024; 15:8533. [PMID: 39358382 PMCID: PMC11447024 DOI: 10.1038/s41467-024-52917-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
White adipose tissue (WAT) is essential for lipid storage and systemic energy homeostasis. Understanding adipocyte formation and stability is key to developing therapies for obesity and metabolic disorders. Through a high-throughput cDNA screen, we identified PATZ1, a POZ/BTB and AT-Hook Containing Zinc Finger 1 protein, as an important adipogenic transcription factor. PATZ1 is expressed in human and mouse adipocyte precursor cells (APCs) and adipocytes. In cellular models, PATZ1 promotes adipogenesis via protein-protein interactions and DNA binding. PATZ1 ablation in mouse adipocytes and APCs leads to a reduced APC pool, decreased fat mass, and hypertrophied adipocytes. ChIP-Seq and RNA-seq analyses show that PATZ1 supports adipogenesis by interacting with transcriptional machinery at the promoter regions of key early adipogenic factors. Mass-spec results show that PATZ1 associates with GTF2I, with GTF2I modulating PATZ1's function during differentiation. These findings underscore PATZ1's regulatory role in adipocyte differentiation and adiposity, offering insights into adipose tissue development.
Collapse
Affiliation(s)
- Sanil Patel
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chung Hwan Cho
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Juwairriyyah Siddiqui
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Njeri Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shani Sadeh
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christy M Nguyen
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Jiexin Wang
- Department of Pathology and Laboratory Medicine and Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hironori Waki
- Department of Metabolism and Endocrinology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Claudio J Villanueva
- Molecular, Cellular, and Integrative Physiology Program, and Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Shinya Sakaguchi
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Vienna, Austria
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine and Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Yucel-Polat A, Campos-Melo D, Alikhah A, Strong MJ. Dynamic Localization of Paraspeckle Components under Osmotic Stress. Noncoding RNA 2024; 10:23. [PMID: 38668381 PMCID: PMC11053584 DOI: 10.3390/ncrna10020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Paraspeckles are nuclear condensates formed by NEAT1_2 lncRNA and different RNA-binding proteins. In general, these membraneless organelles function in the regulation of gene expression and translation and in miRNA processing, and in doing this, they regulate cellular homeostasis and mediate pro-survival in the cell. Despite evidence showing the importance of paraspeckles in the stress response, the dynamics of paraspeckles and their components under conditions of osmotic stress remain unknown. We exposed HEK293T cells to sorbitol and examined NEAT1_2 expression using real-time PCR. Localization and quantification of the main paraspeckle components, NEAT1_2, PSPC1, NONO, and SFPQ, in different cellular compartments was performed using smFISH and immunofluorescence. Our findings showed a significant decrease in total NEAT1_2 expression in cells after osmotic stress. Sorbitol shifted the subcellular localization of NEAT1_2, PSPC1, NONO, and SFPQ from the nucleus to the cytoplasm and decreased the number and size of NEAT1_2 foci in the nucleus. PSPC1 formed immunoreactive cytoplasmic fibrils under conditions of osmotic stress, which slowly disassembled under recovery. Our study deepens the paraspeckle dynamics in response to stress, suggesting a novel role for NEAT1_2 in the cytoplasm in osmotic stress and physiological conditions.
Collapse
Affiliation(s)
- Aysegul Yucel-Polat
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
| | - Danae Campos-Melo
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
| | - Asieh Alikhah
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
| | - Michael J. Strong
- Molecular Medicine Group, Schulich School of Medicine & Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (A.Y.-P.); (A.A.)
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
4
|
Guo JK, Blanco MR, Walkup WG, Bonesteele G, Urbinati CR, Banerjee AK, Chow A, Ettlin O, Strehle M, Peyda P, Amaya E, Trinh V, Guttman M. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol Cell 2024; 84:1271-1289.e12. [PMID: 38387462 PMCID: PMC10997485 DOI: 10.1016/j.molcel.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Polycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo. Using denaturing purification of in vivo crosslinked RNA-protein complexes in human and mouse cell lines, we observe a loss of detectable RNA binding to PRC2 and chromatin-associated proteins previously reported to bind RNA (CTCF, YY1, and others), despite accurately mapping bona fide RNA-binding sites across others (SPEN, TET2, and others). Taken together, these results argue for a critical re-evaluation of the broad role of RNA binding to orchestrate various chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jimmy K Guo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Ward G Walkup
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant Bonesteele
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carl R Urbinati
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Abhik K Banerjee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Olivia Ettlin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Parham Peyda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Enrique Amaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vickie Trinh
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
5
|
Li Q, Pan Y, Zhang J, Hu B, Qin D, Liu S, Chen N, Zhang L. TET2 regulation of alcoholic fatty liver via Srebp1 mRNA in paraspeckles. iScience 2024; 27:109278. [PMID: 38482502 PMCID: PMC10933471 DOI: 10.1016/j.isci.2024.109278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 01/06/2025] Open
Abstract
Epigenetic modifications have emerged as key regulators of metabolism-related complex diseases including the alcoholic fatty liver disease (AFLD) prevalent chronic liver disorder with significant economic implications. Building upon previous research that emphasizes ten-eleven translocation (TET) proteins' involvement in adipocyte insulin sensitization and fatty acid oxidation, we explored the role of TET2 protein in AFLD pathogenesis which catalyzes 5-methylcytosine into 5-hydroxymethylcytosine in DNA/RNA. Our findings revealed that TET2 deficiency exacerbates AFLD progression. And TET2 influenced the expression and activity of sterol regulatory element binding protein 1 (SREBP1), a key regulator of hepatic lipid synthesis, by modulating Srebp1 mRNA retention. Employing RIP-qPCR and bisulfite sequencing techniques, we provided evidence of TET2-mediated epigenetic modifications on Srebp1 mRNA, thereby affecting lipid metabolism. Through elucidating the role of methylation in RNA nuclear retention via paraspeckles, our study enhances understanding of AFLD pathogenesis from an epigenetic perspective, paving the way for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Qinjin Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Pan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxu Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dan Qin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shenghui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lisheng Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
7
|
Frith MC, Ni S. DNA Conserved in Diverse Animals Since the Precambrian Controls Genes for Embryonic Development. Mol Biol Evol 2023; 40:msad275. [PMID: 38085182 PMCID: PMC10735318 DOI: 10.1093/molbev/msad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
DNA that controls gene expression (e.g. enhancers, promoters) has seemed almost never to be conserved between distantly related animals, like vertebrates and arthropods. This is mysterious, because development of such animals is partly organized by homologous genes with similar complex expression patterns, termed "deep homology." Here, we report 25 regulatory DNA segments conserved across bilaterian animals, of which 7 are also conserved in cnidaria (coral and sea anemone). They control developmental genes (e.g. Nr2f, Ptch, Rfx1/3, Sall, Smad6, Sp5, Tbx2/3), including six homeobox genes: Gsx, Hmx, Meis, Msx, Six1/2, and Zfhx3/4. The segments contain perfectly or near-perfectly conserved CCAAT boxes, E-boxes, and other sequences recognized by regulatory proteins. More such DNA conservation will surely be found soon, as more genomes are published and sequence comparison is optimized. This reveals a control system for animal development conserved since the Precambrian.
Collapse
Affiliation(s)
- Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Computational Bio Big Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Shengliang Ni
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| |
Collapse
|
8
|
Zhang Z, Cui Y, Su V, Wang D, Tol MJ, Cheng L, Wu X, Kim J, Rajbhandari P, Zhang S, Li W, Tontonoz P, Villanueva CJ, Sallam T. A PPARγ/long noncoding RNA axis regulates adipose thermoneutral remodeling in mice. J Clin Invest 2023; 133:e170072. [PMID: 37909330 PMCID: PMC10617768 DOI: 10.1172/jci170072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/06/2023] [Indexed: 11/03/2023] Open
Abstract
Interplay between energy-storing white adipose cells and thermogenic beige adipocytes contributes to obesity and insulin resistance. Irrespective of specialized niche, adipocytes require the activity of the nuclear receptor PPARγ for proper function. Exposure to cold or adrenergic signaling enriches thermogenic cells though multiple pathways that act synergistically with PPARγ; however, the molecular mechanisms by which PPARγ licenses white adipose tissue to preferentially adopt a thermogenic or white adipose fate in response to dietary cues or thermoneutral conditions are not fully elucidated. Here, we show that a PPARγ/long noncoding RNA (lncRNA) axis integrates canonical and noncanonical thermogenesis to restrain white adipose tissue heat dissipation during thermoneutrality and diet-induced obesity. Pharmacologic inhibition or genetic deletion of the lncRNA Lexis enhances uncoupling protein 1-dependent (UCP1-dependent) and -independent thermogenesis. Adipose-specific deletion of Lexis counteracted diet-induced obesity, improved insulin sensitivity, and enhanced energy expenditure. Single-nuclei transcriptomics revealed that Lexis regulates a distinct population of thermogenic adipocytes. We systematically map Lexis motif preferences and show that it regulates the thermogenic program through the activity of the metabolic GWAS gene and WNT modulator TCF7L2. Collectively, our studies uncover a new mode of crosstalk between PPARγ and WNT that preserves white adipose tissue plasticity.
Collapse
Affiliation(s)
- Zhengyi Zhang
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Ya Cui
- Division of Computational Biomedicine, Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Vivien Su
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Dan Wang
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Marcus J. Tol
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Lijing Cheng
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Xiaohui Wu
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jason Kim
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sicheng Zhang
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Wei Li
- Division of Computational Biomedicine, Biological Chemistry, University of California, Irvine, Irvine, California, USA
| | - Peter Tontonoz
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
- Department of Biological Chemistry and
| | - Claudio J. Villanueva
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, College of Life Sciences, UCLA, Los Angeles, California, USA
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine
- Department of Physiology, and
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Lemster AL, Weingart A, Bottner J, Perner S, Sailer V, Offermann A, Kirfel J. Elevated PSPC1 and KDM5C expression indicates poor prognosis in prostate cancer. Hum Pathol 2023; 138:1-11. [PMID: 37209920 DOI: 10.1016/j.humpath.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Prostate cancer (PCa) remains the most commonly diagnosed cancer in men worldwide and is still the second leading cause of cancer-related death. One major cause of PCa development is epigenetic aberration, including histone modification. We have previously demonstrated that Lysine Demethylase 5C (KDM5C) plays an essential role in the development of PCa and drives PCa progression by promoting epithelial-mesenchymal transition. Epigenetic regulators often work in concert, for example, to regulate transcription. We identified Paraspeckle Component 1 (PSPC1) as an interacting protein of KDM5C, suggesting that these proteins might function together in PCa. Here, we systematically investigate the expression patterns of KDM5C and PSPC1 in 2 independent prostate cohorts (432 and 205 prostate tumors in total for PSPC1 and KDM5C, respectively) by immunohistochemistry. We demonstrate that the expression of PSPC1 correlates with that of KDM5C. In addition, PSPC1 is up-regulated in primary and metastatic PCa. Elevated PSPC1 expression correlates with a higher-grade group and an advanced T-stage. Patients with high PSPC1 expression have a worse biochemical recurrence-free survival. In addition, PSPC1 expression is an independent prognostic parameter. Our data indicate that KDM5C and PSPC1 are involved in PCa progression, and therapeutic inhibition of KDM5C and PSPC1 by selective compounds might be a promising approach for the treatment of PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anika Weingart
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Justus Bottner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Sven Perner
- MVZ HPH Institute of Pathology and Hematology, GmbH, 22547, Hamburg, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538, Luebeck, Germany.
| |
Collapse
|
10
|
Feng W, Zhou L, Zhao P, Du H, Diao C, Zhang Y, Liu Z, Jin W, Yu J, Han J, Okoth E, Mrode R, Liu JF. Comparative Genomic Analysis of Warthog and Sus Scrofa Identifies Adaptive Genes Associated with African Swine Fever. BIOLOGY 2023; 12:1001. [PMID: 37508430 PMCID: PMC10376286 DOI: 10.3390/biology12071001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND As warthogs (Phacochoerus africanus) have innate immunity against African swine fever (ASF), it is critical to understand the evolutionary novelty of warthogs to explain their specific ASF resistance. METHODS Here, we present two completed new genomes of one warthog and one Kenyan domestic pig as fundamental genomic references to elucidate the genetic mechanisms of ASF tolerance. RESULTS Multiple genomic variations, including gene losses, independent contraction, and the expansion of specific gene families, likely molded the warthog genome to adapt to the environment. Importantly, the analysis of the presence and absence of genomic sequences revealed that the DNA sequence of the warthog genome had an absence of the gene lactate dehydrogenase B (LDHB) on chromosome 2 compared with the reference genome. The overexpression and siRNA of LDHB inhibited the replication of the African swine fever virus. Combined with large-scale sequencing data from 42 pigs worldwide, the contraction and expansion of tripartite motif-containing (TRIM) gene families revealed that TRIM family genes in the warthog genome are potentially responsible for its tolerance to ASF. CONCLUSION Our results will help improve the understanding of genetic resistance to ASF in pigs.
Collapse
Affiliation(s)
- Wen Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen 518107, China
| | - Lei Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengju Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Heng Du
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chenguang Diao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenjiao Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianlin Han
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100193, China
| | - Edward Okoth
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Raphael Mrode
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Jian-Feng Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture; Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Zhang XL, Chen XH, Xu B, Chen M, Zhu S, Meng N, Wang JZ, Zhu H, Chen D, Liu JB, Yan GR. K235 acetylation couples with PSPC1 to regulate the m 6A demethylation activity of ALKBH5 and tumorigenesis. Nat Commun 2023; 14:3815. [PMID: 37369679 DOI: 10.1038/s41467-023-39414-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
N6-methyladenosine (m6A) modification plays important roles in bioprocesses and diseases. AlkB homolog 5 (ALKBH5) is one of two m6A demethylases. Here, we reveal that ALKBH5 is acetylated at lysine 235 (K235) by lysine acetyltransferase 8 and deacetylated by histone deacetylase 7. K235 acetylation strengthens the m6A demethylation activity of ALKBH5 by increasing its recognition of m6A on mRNA. RNA-binding protein paraspeckle component 1 (PSCP1) is a regulatory subunit of ALKBH5 and preferentially interacts with K235-acetylated ALKBH5 to recruit and facilitate the recognition of m6A mRNA by ALKBH5, thereby promoting m6A erasure. Mitogenic signals promote ALKBH5 K235 acetylation. K235 acetylation of ALKBH5 is upregulated in cancers and promotes tumorigenesis. Thus, our findings reveal that the m6A demethylation activity of ALKBH5 is orchestrated by its K235 acetylation and regulatory subunit PSPC1 and that K235 acetylation is necessary for the m6A demethylase activity and oncogenic roles of ALKBH5.
Collapse
Affiliation(s)
- Xiao-Lan Zhang
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Binwu Xu
- Blood Transfusion Department, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Min Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Song Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Nan Meng
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ji-Zhong Wang
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - De Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Jin-Bao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
12
|
Reddy D, Bhattacharya S, Levy M, Zhang Y, Gogol M, Li H, Florens L, Workman JL. Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing. EMBO Rep 2023; 24:e55345. [PMID: 36354291 PMCID: PMC9827562 DOI: 10.15252/embr.202255345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Paraspeckles are subnuclear RNA-protein structures that are implicated in important processes including cellular stress response, differentiation, and cancer progression. However, it is unclear how paraspeckles impart their physiological effect at the molecular level. Through biochemical analyses, we show that paraspeckles interact with the SWI/SNF chromatin-remodeling complex. This is specifically mediated by the direct interaction of the long-non-coding RNA NEAT1 of the paraspeckles with ARID1B of the cBAF-type SWI/SNF complex. Strikingly, ARID1B depletion, in addition to resulting in loss of interaction with the SWI/SNF complex, decreases the binding of paraspeckle proteins to chromatin modifiers, transcription factors, and histones. Functionally, the loss of ARID1B and NEAT1 influences the transcription and the alternative splicing of a common set of genes. Our findings reveal that dynamic granules such as the paraspeckles may leverage the specificity of epigenetic modifiers to impart their regulatory effect, thus providing a molecular basis for their function.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | | | - Ying Zhang
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | - Hua Li
- Stowers Institute for Medical ResearchKansas CityMOUSA
| | | | | |
Collapse
|
13
|
Kok V, Tang JY, Eng G, Tan SY, Chin J, Quek C, Lai WX, Lim TK, Lin Q, Chua J, Cheong J. SFPQ promotes RAS-mutant cancer cell growth by modulating 5'-UTR mediated translational control of CK1α. NAR Cancer 2022; 4:zcac027. [PMID: 36177382 PMCID: PMC9513841 DOI: 10.1093/narcan/zcac027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Oncogenic mutations in the RAS family of small GTPases are commonly found in human cancers and they promote tumorigenesis by altering gene expression networks. We previously demonstrated that Casein Kinase 1α (CK1α), a member of the CK1 family of serine/threonine kinases, is post-transcriptionally upregulated by oncogenic RAS signaling. Here, we report that the CK1α mRNA contains an exceptionally long 5'-untranslated region (UTR) harbouring several translational control elements, implicating its involvement in translational regulation. We demonstrate that the CK1α 5'-UTR functions as an IRES element in HCT-116 colon cancer cells to promote cap-independent translation. Using tobramycin-affinity RNA-pulldown assays coupled with identification via mass spectrometry, we identified several CK1α 5'-UTR-binding proteins, including SFPQ. We show that RNA interference targeting SFPQ reduced CK1α protein abundance and partially blocked RAS-mutant colon cancer cell growth. Importantly, transcript and protein levels of SFPQ and other CK1α 5'-UTR-associated RNA-binding proteins (RBPs) are found to be elevated in early stages of RAS-mutant cancers, including colorectal and lung adenocarcinoma. Taken together, our study uncovers a previously unappreciated role of RBPs in promoting RAS-mutant cancer cell growth and their potential to serve as promising biomarkers as well as tractable therapeutic targets in cancers driven by oncogenic RAS.
Collapse
Affiliation(s)
- Venetia Jing Tong Kok
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Jia Ying Tang
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Gracie Wee Ling Eng
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Shin Yi Tan
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Joseph Tin Foong Chin
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
| | - Chun Hian Quek
- School of Applied Science, Temasek Polytechnic, Singapore
| | - Wei Xuan Lai
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, YLLSoM, National University of Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, YLLSoM, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine (YLLSoM), National University of Singapore, Singapore
- NUS Centre for Cancer Research, National University of Singapore, Singapore
- Department of Biochemistry, YLLSoM, National University of Singapore, Singapore
| |
Collapse
|
14
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
15
|
Fonseca TL, Russo SC, Luongo C, Salvatore D, Bianco AC. Inactivation of Type 3 Deiodinase Results in Life-long Changes in the Brown Adipose Tissue Transcriptome in the Male Mouse. Endocrinology 2022; 163:bqac026. [PMID: 35238380 PMCID: PMC8988869 DOI: 10.1210/endocr/bqac026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Adaptive thermogenesis in small mammals and infants takes place in brown adipose tissue (BAT). Heat is produced via uncoupling protein 1 (UCP1)-mediated uncoupling between oxidation of energy substrates and adenosine 5'-triphosphate synthesis. Thyroid hormone (TH) signaling plays a role in this process. The deiodinases activate thyroxine (T4) to 3,5,3'-triiodothyronine (T3) (D2) or inactivate T4 and T3 to 3,3,5'-triiodothyronine and T2 (D3), respectively. Using a mouse model with selective inactivation of Dio3 in BAT (flox-Dio3 × UCP1-cre = BAT-D3KO), we now show that knocking out D3 resulted in premature exposure of developing brown adipocytes (embryonic days 16.5-18.5) to T3 signaling, leading to an earlier expression of key BAT genes, including Cidea, Cox8b, Dio2, Ucp1, and Pgc1α. Adult BAT-D3KO mice exhibited increased expression of 1591 genes as assessed by RNA sequencing, including 19 gene sets related to mitochondria, 8 related to fat, and 8 related to glucose homeostasis. The expression of 243 genes was changed by more than 1.5-fold, 36 of which play a role in metabolic/thermogenic processes. BAT-D3KO mice weigh less and exhibit smaller white adipocyte area, but maintain normal energy expenditure at room temperature (22 °C) and in the cold (4 °C). They also defend their core temperature more effectively and do not lose as much body weight when exposed to cold. We conclude that the coordinated actions of Dio3 in the embryonic BAT define the timing and intensity of T3 signaling during brown adipogenesis. Enhanced T3 signaling during BAT embryogenesis (Dio3 inactivation) results in selective life-long modifications in the BAT transcriptome.
Collapse
Affiliation(s)
- Tatiana L Fonseca
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Samuel C Russo
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| | - Cristina Luongo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples Federico II, Naples 80131, Italy
| | - Antonio C Bianco
- Section of Adult and Pediatric Endocrinology, Diabetes & Metabolism, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Lang YD, Jou YS. PSPC1 is a new contextual determinant of aberrant subcellular translocation of oncogenes in tumor progression. J Biomed Sci 2021; 28:57. [PMID: 34340703 PMCID: PMC8327449 DOI: 10.1186/s12929-021-00753-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/24/2021] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of nucleocytoplasmic shuttling is commonly observed in cancers and emerging as a cancer hallmark for the development of anticancer therapeutic strategies. Despite its severe adverse effects, selinexor, a selective first-in-class inhibitor of the common nuclear export receptor XPO1, was developed to target nucleocytoplasmic protein shuttling and received accelerated FDA approval in 2019 in combination with dexamethasone as a fifth-line therapeutic option for adults with relapsed refractory multiple myeloma (RRMM). To explore innovative targets in nucleocytoplasmic shuttling, we propose that the aberrant contextual determinants of nucleocytoplasmic shuttling, such as PSPC1 (Paraspeckle component 1), TGIF1 (TGF-β Induced Factor Homeobox 1), NPM1 (Nucleophosmin), Mortalin and EBP50, that modulate shuttling (or cargo) proteins with opposite tumorigenic functions in different subcellular locations could be theranostic targets for developing anticancer strategies. For instance, PSPC1 was recently shown to be the contextual determinant of the TGF-β prometastatic switch and PTK6/β-catenin reciprocal oncogenic nucleocytoplasmic shuttling during hepatocellular carcinoma (HCC) progression. The innovative nucleocytoplasmic shuttling inhibitor PSPC1 C-terminal 131 polypeptide (PSPC1-CT131), which was developed to target both the shuttling determinant PSPC1 and the shuttling protein PTK6, maintained their tumor-suppressive characteristics and exhibited synergistic effects on tumor suppression in HCC cells and mouse models. In summary, targeting the contextual determinants of nucleocytoplasmic shuttling with cargo proteins having opposite tumorigenic functions in different subcellular locations could be an innovative strategy for developing new therapeutic biomarkers and agents to improve cancer therapy.
Collapse
Affiliation(s)
- Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
17
|
Regulation of cold-induced thermogenesis by the RNA binding protein FAM195A. Proc Natl Acad Sci U S A 2021; 118:2104650118. [PMID: 34088848 DOI: 10.1073/pnas.2104650118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homeothermic vertebrates produce heat in cold environments through thermogenesis, in which brown adipose tissue (BAT) increases mitochondrial oxidation along with uncoupling of the electron transport chain and activation of uncoupling protein 1 (UCP1). Although the transcription factors regulating the expression of UCP1 and nutrient oxidation genes have been extensively studied, only a few other proteins essential for BAT function have been identified. We describe the discovery of FAM195A, a BAT-enriched RNA binding protein, which is required for cold-dependent thermogenesis in mice. FAM195A knockout (KO) mice display whitening of BAT and an inability to thermoregulate. In BAT of FAM195A KO mice, enzymes involved in branched-chain amino acid (BCAA) metabolism are down-regulated, impairing their response to cold. Knockdown of FAM195A in brown adipocytes in vitro also impairs expression of leucine oxidation enzymes, revealing FAM195A to be a regulator of BCAA metabolism and a potential target for metabolic disorders.
Collapse
|
18
|
Partial Deficiency of Zfp217 Resists High-Fat Diet-Induced Obesity by Increasing Energy Metabolism in Mice. Int J Mol Sci 2021; 22:ijms22105390. [PMID: 34065474 PMCID: PMC8161011 DOI: 10.3390/ijms22105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.
Collapse
|
19
|
He H, Zhang L, Lin K, Huang Z, Zhou Y, Lin S, Su Y, Pan J. The Prognosis Value of PSPC1 Expression in Nasopharyngeal Cancer. Cancer Manag Res 2021; 13:3281-3291. [PMID: 33883941 PMCID: PMC8053714 DOI: 10.2147/cmar.s300567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022] Open
Abstract
Background Paraspeckle component 1 (PSPC1) is overexpressed in various cancer and correlated with poor survival in the patients. However, little is known about its expression and role in the progression of nasopharyngeal carcinomas (NPC). The purpose of this study is to examine PSPC1 expression in NPC and explore its role in clinical prognosis of radiation therapy. Methods The association of PSPC1 expression with clinicopathological features of 109 NPC patients was examined using partial correlation analysis. Cancer tissues were obtained prior to clinical treatment. All cases were diagnosed and pathologically confirmed to be poorly differentiated or undifferentiated NPC without distant metastasis. The patients were then treated with radiation and followed-up. Survival analysis was performed. Results Partial correlation analysis revealed that the PSPC1 expression in NPC was correlated with N classification, recurrence, prognosis and radiosensitivity in NPC patients, but not with the gender, age, pathohistological pattern, clinical stage, and T classification. The overexpression of PSPC1 was detected in 64 samples (58.72%). Kaplan–Meier survival analysis revealed that the overall survival (OS) was longer in NPC patients with PSPC1 low expression than that in those with PSPC1 high expression. Moreover, patients with the overexpression of PSPC1 had a low progression-free survival and distant metastasis-free survival rate, compared to those who had a low expression of PSPC1. Although not statistically significant, patients with high expression of PSPC1 had a lower locoregional recurrence-free survival rate than those with low expression, and the curves between the two groups was well separated. Conclusion PSPC1 overexpression was associated with poor prognosis for NPC, which might be a novel useful biomarker to predict the response of NPC to radiation therapy and its clinical outcome.
Collapse
Affiliation(s)
- Huocong He
- Laboratory of Radiation Biology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Lurong Zhang
- Laboratory of Radiation Biology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Keyu Lin
- Laboratory of Radiation Biology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Zhengrong Huang
- Department of Integrative Medicine, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Yan Zhou
- Department of Epidemiology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Shaojun Lin
- Department of Radiation Oncology, Fujian Cancer Hospital & Fujian Medical University, Fuzhou, Fujian, 350014, People's Republic of China
| | - Ying Su
- Laboratory of Radiation Biology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, People's Republic of China
| | - Jianru Pan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350002, People's Republic of China
| |
Collapse
|
20
|
He Y, Wu Y, Mei B, Fang X, Cai G, Cai N, Wu Q, Huang Z, Ge C, Liang H, Zhang B, Chen X, Chu L. A small nucleolar RNA, SNORD126, promotes adipogenesis in cells and rats by activating the PI3K-AKT pathway. J Cell Physiol 2021; 236:3001-3014. [PMID: 32960468 DOI: 10.1002/jcp.30066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/07/2022]
Abstract
Small nucleolar RNA (snoRNA) plays important role in various histogenesis. Whether snoRNA plays a role in adipogenesis is unknown. SNORD126 is a C/D box snoRNA. We previously demonstrated that SNORD126 promoted hepatocellular carcinoma cell growth by activating the phosphoinositide 3-kinase-protein kinase B (Akt) pathway through upregulating fibroblast growth factor receptor 2 expression. In the present study, we found that the expression of SNORD126 was downregulated in the obesity-related tissues in high-fat diet-fed rats. Overexpression of SNORD126 in 3T3-L1 cells promoted adipocytes differentiation. SNORD126 significantly increased the expression of CCAAT/enhancer-binding protein α, fatty acid-binding protein 4, peroxisome proliferative-activated receptor-γ, and the phosphorylation of Akt and p70S6K. Overexpression of SNORD126 in human adipose-derived stem cells stimulated adipogenesis and increased phosphorylation of Akt. Meanwhile, SNORD126 increased the messenger RNA and protein levels of cyclin D1 and cyclin-dependent kinase 2, which promoted mitotic clonal expansion progression during the early stage of 3T3-L1 cell differentiation. We further found that SNORD126 accelerated the growth of the groin fat pad and increased phosphorylation of Akt and p70S6K in rats. Overall, our results suggested that SNORD126 promoted adipocyte differentiation through increasing phosphorylation of Akt and p70S6K both in vitro and in vivo.
Collapse
Affiliation(s)
- Yi He
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Mei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guangzhen Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqi Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Ge
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Tyzack GE, Manferrari G, Newcombe J, Luscombe NM, Luisier R, Patani R. Paraspeckle components NONO and PSPC1 are not mislocalized from motor neuron nuclei in sporadic ALS. Brain 2020; 143:e66. [PMID: 32844195 PMCID: PMC7447511 DOI: 10.1093/brain/awaa205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Giulia E Tyzack
- The Francis Crick Institute, London NW1 1AT, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Giulia Manferrari
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Jia Newcombe
- NeuroResource, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, London NW1 1AT, UK.,UCL Genetics Institute, University College London, London WC1E 6BT, UK.,Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Raphaelle Luisier
- Idiap Research Institute, Centre du Parc, Office 206, PO Box 592, CH-1920 Martigny, Switzerland
| | - Rickie Patani
- The Francis Crick Institute, London NW1 1AT, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
22
|
Jen HW, Gu DL, Lang YD, Jou YS. PSPC1 Potentiates IGF1R Expression to Augment Cell Adhesion and Motility. Cells 2020; 9:cells9061490. [PMID: 32570949 PMCID: PMC7349238 DOI: 10.3390/cells9061490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 02/05/2023] Open
Abstract
Paraspeckle protein 1 (PSPC1) overexpression in cancers is known to be the pro-metastatic switch of tumor progression associated with poor prognosis of cancer patients. However, the detail molecular mechanisms to facilitate cancer cell migration remain elusive. Here, we conducted integrated analysis of human phospho-kinase antibody array, transcriptome analysis with RNA-seq, and proteomic analysis of protein pulldown to study the molecular detail of PSPC1-potentiated phenotypical transformation, adhesion, and motility in human hepatocellular carcinoma (HCC) cells. We found that PSPC1 overexpression re-assembles and augments stress fiber formations to promote recruitment of focal adhesion contacts at the protruding edge to facilitate cell migration. PSPC1 activated focal adhesion-associated kinases especially FAK/Src signaling to enhance cell adhesion and motility toward extracellular matrix (ECM). Integrated transcriptome and gene set enrichment analysis indicated that PSPC1 modulated receptor tyrosine kinase IGF1R involved in the focal adhesion pathway and induction of diverse integrins expression. Knockdown IGF1R expression and treatment of IGF1R inhibitor suppressed PSPC1-induced cell motility. Interestingly, knockdown PSPC1-interacted paraspeckle components including NONO, FUS, and the lncRNA Neat1 abolished PSPC1-activated IGF1R expression. Together, PSPC1 overexpression induced focal adhesion formation and facilitated cell motility via activation of IGF1R signaling. PSPC1 overexpression in tumors could be a potential biomarker of target therapy with IGF1R inhibitor for improvement of HCC therapy.
Collapse
Affiliation(s)
- Hsin-Wei Jen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
| | - De-Leung Gu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
| | - Yaw-Dong Lang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
| | - Yuh-Shan Jou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; (D.-L.G.); (Y.-D.L.)
- Correspondence:
| |
Collapse
|
23
|
Zaiou M. The Emerging Role and Promise of Circular RNAs in Obesity and Related Metabolic Disorders. Cells 2020; 9:1473. [PMID: 32560220 PMCID: PMC7349386 DOI: 10.3390/cells9061473] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.
Collapse
Affiliation(s)
- Mohamed Zaiou
- School of Pharmacy, The University of Lorraine, 7 Avenue de la Foret de Haye, CEDEX BP 90170, F-54500 Vandoeuvre-les-Nancy, France; ; Tel.: +3303-7277-90-15; Fax: +3303-8368-23-01
- Institut Jean Lamour, UMR 7198, CNRS, The University of Lorraine, 2 allée André Guinier, BP 50840, 54011 Nancy, France
| |
Collapse
|
24
|
Mitobe Y, Iino K, Takayama KI, Ikeda K, Suzuki T, Aogi K, Kawabata H, Suzuki Y, Horie-Inoue K, Inoue S. PSF Promotes ER-Positive Breast Cancer Progression via Posttranscriptional Regulation of ESR1 and SCFD2. Cancer Res 2020; 80:2230-2242. [PMID: 32213542 DOI: 10.1158/0008-5472.can-19-3095] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Endocrine therapy is standard treatment for estrogen receptor (ER)-positive breast cancer, yet long-term treatment often causes acquired resistance, which results in recurrence and metastasis. Recent studies have revealed that RNA-binding proteins (RBP) are involved in tumorigenesis. Here, we demonstrate that PSF/SFPQ is an RBP that potentially predicts poor prognosis of patients with ER-positive breast cancer by posttranscriptionally regulating ERα (ESR1) mRNA expression. Strong PSF immunoreactivity correlated with shorter overall survival in patients with ER-positive breast cancer. PSF was predominantly expressed in a model of tamoxifen-resistant breast cancer cells, and depletion of PSF attenuated proliferation of cultured cells and xenografted tumors. PSF expression was significantly associated with estrogen signaling. PSF siRNA downregulated ESR1 mRNA by inhibiting nuclear export of the RNA. Integrative analyses of microarray and RNA immunoprecipitation sequencing also identified SCFD2, TRA2B, and ASPM as targets of PSF. Among the PSF targets, SCFD2 was a poor prognostic indicator of breast cancer and SCFD2 knockdown significantly suppressed breast cancer cell proliferation. Collectively, this study shows that PSF plays a pathophysiologic role in ER-positive breast cancer by posttranscriptionally regulating expression of its target genes such as ESR1 and SCFD2. Overall, PSF and SCFD2 could be potential diagnostic and therapeutic targets for primary and hormone-refractory breast cancers. SIGNIFICANCE: This study defines oncogenic roles of RNA-binding protein PSF, which exhibits posttranscriptional regulation in ER-positive breast cancer.
Collapse
Affiliation(s)
- Yuichi Mitobe
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kaori Iino
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kenjiro Aogi
- Department of Surgery, National Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon Hospital, Minato-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan. .,Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
25
|
Siang DTC, Lim YC, Kyaw AMM, Win KN, Chia SY, Degirmenci U, Hu X, Tan BC, Walet ACE, Sun L, Xu D. The RNA-binding protein HuR is a negative regulator in adipogenesis. Nat Commun 2020; 11:213. [PMID: 31924774 PMCID: PMC6954112 DOI: 10.1038/s41467-019-14001-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
Human antigen R (HuR) is an essential regulator of RNA metabolism, but its function in metabolism remains unclear. This study identifies HuR as a major repressor during adipogenesis. Knockdown and overexpression of HuR in primary adipocyte culture enhances and inhibits adipogenesis in vitro, respectively. Fat-specific knockout of HuR significantly enhances adipogenic gene program in adipose tissues, accompanied by a systemic glucose intolerance and insulin resistance. HuR knockout also results in depot-specific phenotypes: it can repress myogenesis program in brown fat, enhance inflammation program in epidydimal white fat and induce browning program in inguinal white fat. Mechanistically, HuR may inhibit adipogenesis by recognizing and modulating the stability of hundreds of adipocyte transcripts including Insig1, a negative regulator during adipogenesis. Taken together, our work establishes HuR as an important posttranscriptional regulator of adipogenesis and provides insights into how RNA processing contributes to adipocyte development.
Collapse
Affiliation(s)
- Diana Teh Chee Siang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yen Ching Lim
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Aung Maung Maung Kyaw
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Khaing Nwe Win
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sook Yoong Chia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ufuk Degirmenci
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Xiang Hu
- Departments of Endocrine and Metabolic Diseases, The first Affiliated Hospital of Wenzhou Medical University, Wenzhou, , Zhejiang, 325035, China
| | - Bryan C Tan
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Arcinas Camille Esther Walet
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Dan Xu
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
26
|
Lu H, Ye Z, Zhai Y, Wang L, Liu Y, Wang J, Zhang W, Luo W, Lu Z, Chen J. QKI regulates adipose tissue metabolism by acting as a brake on thermogenesis and promoting obesity. EMBO Rep 2020; 21:e47929. [PMID: 31868295 PMCID: PMC6944952 DOI: 10.15252/embr.201947929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Adipose tissue controls numerous physiological processes, and its dysfunction has a causative role in the development of systemic metabolic disorders. The role of posttranscriptional regulation in adipose metabolism has yet to be fully understood. Here, we show that the RNA-binding protein quaking (QKI) plays an important role in controlling metabolic homeostasis of the adipose tissue. QKI-deficient mice are resistant to high-fat-diet (HFD)-induced obesity. Additionally, QKI depletion increased brown fat energy dissipation and browning of subcutaneous white fat. Adipose tissue-specific depletion of QKI in mice enhances cold-induced thermogenesis, thereby preventing hypothermia in response to cold stimulus. Further mechanistic analysis reveals that QKI is transcriptionally induced by the cAMP-cAMP response element-binding protein (CREB) axis and restricts adipose tissue energy consumption by decreasing stability, nuclear export, and translation of mRNAs encoding UCP1 and PGC1α. These findings extend our knowledge of the significance of posttranscriptional regulation in adipose metabolic homeostasis and provide a potential therapeutic target to defend against obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Huanyu Lu
- Department of Occupational and Environmental Healththe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthFourth Military Medical UniversityXi'anChina
| | - Zichen Ye
- State Key Laboratory of Cancer BiologyDepartment of PharmacogenomicsSchool of PharmacyFourth Military Medical UniversityXi'anChina
| | - Yue Zhai
- Department of Cell BiologyFourth Military Medical UniversityXi'anChina
| | - Li Wang
- State Key Laboratory of Cancer BiologyDepartment of PharmacogenomicsSchool of PharmacyFourth Military Medical UniversityXi'anChina
| | - Ying Liu
- Department of Occupational and Environmental Healththe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthFourth Military Medical UniversityXi'anChina
| | - Jiye Wang
- Department of Occupational and Environmental Healththe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthFourth Military Medical UniversityXi'anChina
| | - Wenbin Zhang
- Department of Occupational and Environmental Healththe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthFourth Military Medical UniversityXi'anChina
| | - Wenjing Luo
- Department of Occupational and Environmental Healththe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthFourth Military Medical UniversityXi'anChina
| | - Zifan Lu
- State Key Laboratory of Cancer BiologyDepartment of PharmacogenomicsSchool of PharmacyFourth Military Medical UniversityXi'anChina
| | - Jingyuan Chen
- Department of Occupational and Environmental Healththe Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational EnvironmentSchool of Public HealthFourth Military Medical UniversityXi'anChina
| |
Collapse
|
27
|
Song Y, Shao L, Xue Y, Ruan X, Liu X, Yang C, Zheng J, Shen S, Chen J, Li Z, Liu Y. Inhibition of the aberrant A1CF-FAM224A-miR-590-3p-ZNF143 positive feedback loop attenuated malignant biological behaviors of glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:248. [PMID: 31186064 PMCID: PMC6558706 DOI: 10.1186/s13046-019-1200-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/29/2019] [Indexed: 01/22/2023]
Abstract
Background Glioma is the most common and lethal type of malignant brain tumor. Accumulating evidence has highlighted that RNA binding protein APOBEC1 complementation factor (A1CF) is involved in various cellular processes by modulating RNA expression, and acts as an oncogene in breast cancer. However, the function of A1CF in glioma remained unclear. Methods Quantitative RT-PCR and western blot analysis were employed to detect the expression levels of A1CF, lncRNA family with sequence similarity 224 member A (FAM224A), miR-590-3p, zinc finger protein 143 (ZNF143) and ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 (ASAP3) in glioma tissues and cell lines. The Cell Counting Kit-8 assay, migration and invasion assays, and flow cytometry analysis were conducted to evaluate the function of A1CF, FAM224A, miR-590-3p, ZNF143 and ASAP3 in the malignant biological behaviors of glioma cells. Moreover, luciferase reporter, RIP and ChIP assays were used to investigate the interactions among A1CF, FAM224A, miR-590-3p, ZNF143, ASAP3 and MYB. Finally, the xenograft tumor growth assay further ascertained the biological roles of A1CF, FAM224A and miR-590-3p in glioma cells. Results A1CF was upregulated and functioned as an oncogene via stabilizing and increasing FAM224A expression; moreover, high A1CF and FAM224A expression levels indicated a poorer prognosis for glioma patients. Conversely, miR-590-3p was downregulated and exerted a tumor-suppressive function in glioma cells. Inhibition of A1CF significantly restrained cell proliferation, migration and invasion, and promoted apoptosis by upregulating miR-590-3p in a FAM224A-dependent manner. FAM224A was a molecular sponge of miR-590-3p and they were in an RNA-induced silencing complex. ZNF143 was upregulated in glioma tissues and cell lines. MiR-590-3p could negatively modulate the expression of ZNF143 via binding to the ZNF143 3′ UTR. Moreover, ZNF143 participated in miR-590-3p-induced tumor-suppressive activity on glioma cells. ASAP3 and MYB were transcriptionally activated by ZNF143, and importantly, ZNF143 could directly target the promoter of FAM224A and stimulate its expression, collectively forming a positive feedback loop. Conclusions The present study clarifies that the A1CF-FAM224A-miR-590-3p-ZNF143 positive feedback loop conducts critical regulatory effects on the malignant progression of glioma cells, which provides a novel molecular target for glioma therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1200-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yichen Song
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Lianqi Shao
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Shuyuan Shen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Jiajia Chen
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China. .,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
28
|
Luan S, Luo J, Liu H, Li Z. Regulation of RNA decay and cellular function by 3'-5' exoribonuclease DIS3L2. RNA Biol 2019; 16:160-165. [PMID: 30638126 DOI: 10.1080/15476286.2018.1564466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DIS3L2, in which mutations have been linked to Perlman syndrome, is an RNA-binding protein with 3'-5' exoribonuclease activity. It contains two CSD domains and one S1 domain, all of which are RNA-binding domains, and one RNB domain that is responsible for the exoribonuclease activity. The 3' polyuridine of RNA substrates can serve as a degradation signal for DIS3L2. Because DIS3L2 is predominantly localized in the cytoplasm, it can recognize, bind, and mediate the degradation of cytoplasmic uridylated RNA, including pre-microRNA, mature microRNA, mRNA, and some other non-coding RNAs. Therefore, DIS3L2 plays an important role in cytoplasmic RNA surveillance and decay. DIS3L2 is involved in multiple biological and physiological processes such as cell division, proliferation, differentiation, and apoptosis. Nonetheless, the function of DIS3L2, especially its association with cancer, remains largely unknown. We summarize here the RNA substrates degraded by DIS3L2 with its exonucleolytic activity, together with the corresponding biological functions it is implicated in. Furthermore, we discuss whether DIS3L2 can function independently of its 3'-5' exoribonuclease activity, as well as its potential tumor-suppressive or oncogenic roles during cancer progression.
Collapse
Affiliation(s)
- Siyu Luan
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Junyun Luo
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Hui Liu
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| | - Zhaoyong Li
- a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology , Hunan University , Changsha , China
| |
Collapse
|
29
|
Shih DM, Meng Y, Sallam T, Vergnes L, Shu ML, Reue K, Tontonoz P, Fogelman AM, Lusis AJ, Reddy ST. PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity. Antioxidants (Basel) 2019; 8:antiox8010019. [PMID: 30641857 PMCID: PMC6356528 DOI: 10.3390/antiox8010019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/29/2023] Open
Abstract
(1) Background: Paraoxonase 2 (PON2) is a ubiquitously expressed protein localized to endoplasmic reticulum and mitochondria. Previous studies have shown that PON2 exhibits anti-oxidant and anti-inflammatory functions, and PON2-deficient (PON2-def) mice are more susceptible to atherosclerosis. Furthermore, PON2 deficiency leads to impaired mitochondrial function. (2) Methods: In this study, we examined the susceptibility of PON2-def mice to diet-induced obesity. (3) Results: After feeding of an obesifying diet, the PON2-def mice exhibited significantly increased body weight due to increased fat mass weight as compared to the wild-type (WT) mice. The increased adiposity was due, in part, to increased adipocyte hypertrophy. PON2-def mice had increased fasting insulin levels and impaired glucose tolerance after diet-induced obesity. PON2-def mice had decreased oxygen consumption and energy expenditure. Furthermore, the oxygen consumption rate of subcutaneous fat pads from PON2-def mice was lower compared to WT mice. Gene expression analysis of the subcutaneous fat pads revealed decreased expression levels of markers for beige adipocytes in PON2-def mice. (4) Conclusions: We concluded that altered systemic energy balance, perhaps due to decreased beige adipocytes and mitochondrial dysfunction in white adipose tissue of PON2-def mice, leads to increased obesity in these mice.
Collapse
Affiliation(s)
- Diana M Shih
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yonghong Meng
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Tamer Sallam
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michelle L Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Liu L, Liu L, Liu H, Ren S, Dou C, Cheng P, Wang C, Wang L, Chen X, Zhang H, Chen M. Levamisole suppresses adipogenesis of aplastic anaemia-derived bone marrow mesenchymal stem cells through ZFP36L1-PPARGC1B axis. J Cell Mol Med 2018; 22:4496-4506. [PMID: 29993187 PMCID: PMC6111807 DOI: 10.1111/jcmm.13761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/08/2018] [Indexed: 11/26/2022] Open
Abstract
Aplastic anaemia (AA) is a life-threatening hematopoietic disorder characterized by hypoplasia and pancytopenia with increasing fat cells in the bone marrow (BM). The BM-derived mesenchymal stem cells (MSCs) from AA are more susceptible to be induced into adipogenic differentiation compared with that from control, which may be causatively associated with the fatty BM and defective hematopoiesis of AA. Here in this study, we first demonstrated that levamisole displayed a significant suppressive effect on the in vitro adipogenic differentiation of AA BM-MSCs. Mechanistic investigation revealed that levamisole could increase the expression of ZFP36L1 which was subsequently demonstrated to function as a negative regulator of adipogenic differentiation of AA BM-MSCs through lentivirus-mediated ZFP36L1 knock-down and overexpression assay. Peroxisome proliferator-activated receptor gamma coactivator 1 beta (PPARGC1B) whose 3'-untranslated region bears adenine-uridine-rich elements was verified as a direct downstream target of ZFP36L1, and knock-down of PPARGC1B impaired the adipogenesis of AA BM-MSCs. Collectively, our work demonstrated that ZFP36L1-mediated post-transcriptional control of PPARGC1B expression underlies the suppressive effect of levamisole on the adipogenic differentiation of AA BM-MSCs, which not only provides novel therapeutic targets for alleviating the BM fatty phenomenon of AA patients, but also lays the theoretical and experimental foundation for the clinical application of levamisole in AA therapy.
Collapse
Affiliation(s)
- Lu‐Lu Liu
- Central LaboratoryAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Lei Liu
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Hai‐Hui Liu
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
- Department of Graduate SchoolJining Medical UniversityJiningChina
| | - Sai‐Sai Ren
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Cui‐Yun Dou
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Pan‐Pan Cheng
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Cui‐Ling Wang
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Li‐Na Wang
- Central LaboratoryAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Xiao‐Li Chen
- Department of Graduate SchoolJining Medical UniversityJiningChina
| | - Hao Zhang
- Department of HematologyAffiliated Hospital of Jining Medical UniversityJiningChina
| | - Ming‐Tai Chen
- Central LaboratoryAffiliated Hospital of Jining Medical UniversityJiningChina
| |
Collapse
|
31
|
Mugabo Y, Sadeghi M, Fang NN, Mayor T, Lim GE. Elucidation of the 14-3-3ζ interactome reveals critical roles of RNA-splicing factors during adipogenesis. J Biol Chem 2018. [PMID: 29530978 DOI: 10.1074/jbc.m117.816272] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Adipogenesis involves a complex signaling network requiring strict temporal and spatial organization of effector molecules. Molecular scaffolds, such as 14-3-3 proteins, facilitate such organization, and we have previously identified 14-3-3ζ as an essential scaffold in adipocyte differentiation. The interactome of 14-3-3ζ is large and diverse, and it is possible that novel adipogenic factors may be present within it, but this possibility has not yet been tested. Herein, we generated mouse embryonic fibroblasts from mice overexpressing a tandem affinity purification (TAP) epitope-tagged 14-3-3ζ molecule. After inducing adipogenesis, TAP-14-3-3ζ complexes were purified, followed by MS analysis to determine the 14-3-3ζ interactome. We observed more than 100 proteins that were unique to adipocyte differentiation, 56 of which were novel interacting partners. Among these, we were able to identify previously established regulators of adipogenesis (i.e. Ptrf/Cavin1) within the 14-3-3ζ interactome, confirming the utility of this approach to detect adipogenic factors. We found that proteins related to RNA metabolism, processing, and splicing were enriched in the interactome. Analysis of transcriptomic data revealed that 14-3-3ζ depletion in 3T3-L1 cells affected alternative splicing of mRNA during adipocyte differentiation. siRNA-mediated depletion of RNA-splicing factors within the 14-3-3ζ interactome, that is, of Hnrpf, Hnrpk, Ddx6, and Sfpq, revealed that they have essential roles in adipogenesis and in the alternative splicing of Pparg and the adipogenesis-associated gene Lpin1 In summary, we have identified novel adipogenic factors within the 14-3-3ζ interactome. Further characterization of additional proteins within the 14-3-3ζ interactome may help identify novel targets to block obesity-associated expansion of adipose tissues.
Collapse
Affiliation(s)
- Yves Mugabo
- From the Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 029, Canada.,the Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada, and
| | - Mina Sadeghi
- From the Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 029, Canada.,the Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada, and
| | - Nancy N Fang
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Thibault Mayor
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gareth E Lim
- From the Centre Hospitalier de l'Université de Montréal, Montréal, Québec H2X 029, Canada, .,the Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada, and
| |
Collapse
|
32
|
The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab 2018; 27:404-418.e7. [PMID: 29358041 PMCID: PMC6996513 DOI: 10.1016/j.cmet.2017.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/05/2017] [Accepted: 12/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanisms by which feeding and fasting drive rhythmic gene expression for physiological adaptation to daily rhythm in nutrient availability are not well understood. Here we show that, upon feeding, the RNA-binding protein NONO accumulates within speckle-like structures in liver cell nuclei. Combining RNA-immunoprecipitation and sequencing (RIP-seq), we find that an increased number of RNAs are bound by NONO after feeding. We further show that NONO binds and regulates the rhythmicity of genes involved in nutrient metabolism post-transcriptionally. Finally, we show that disrupted rhythmicity of NONO target genes has profound metabolic impact. Indeed, NONO-deficient mice exhibit impaired glucose tolerance and lower hepatic glycogen and lipids. Accordingly, these mice shift from glucose storage to fat oxidation, and therefore remain lean throughout adulthood. In conclusion, our study demonstrates that NONO post-transcriptionally coordinates circadian mRNA expression of metabolic genes with the feeding/fasting cycle, thereby playing a critical role in energy homeostasis.
Collapse
|
33
|
Xu D, Xu S, Kyaw AMM, Lim YC, Chia SY, Chee Siang DT, Alvarez-Dominguez JR, Chen P, Leow MKS, Sun L. RNA Binding Protein Ybx2 Regulates RNA Stability During Cold-Induced Brown Fat Activation. Diabetes 2017; 66:2987-3000. [PMID: 28970281 DOI: 10.2337/db17-0655] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022]
Abstract
Recent years have seen an upsurge of interest in brown adipose tissue (BAT) to combat the epidemic of obesity and diabetes. How its development and activation are regulated at the posttranscriptional level, however, has yet to be fully understood. RNA binding proteins (RBPs) lie in the center of posttranscriptional regulation. To systemically study the role of RBPs in BAT, we profiled >400 RBPs in different adipose depots and identified Y-box binding protein 2 (Ybx2) as a novel regulator in BAT activation. Knockdown of Ybx2 blocks brown adipogenesis, whereas its overexpression promotes BAT marker expression in brown and white adipocytes. Ybx2-knockout mice could form BAT but failed to express a full thermogenic program. Integrative analysis of RNA sequencing and RNA-immunoprecipitation study revealed a set of Ybx2's mRNA targets, including Pgc1α, that were destabilized by Ybx2 depletion during cold-induced activation. Thus, Ybx2 is a novel regulator that controls BAT activation by regulating mRNA stability.
Collapse
Affiliation(s)
- Dan Xu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Shaohai Xu
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | | | - Yen Ching Lim
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sook Yoong Chia
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Diana Teh Chee Siang
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Juan R Alvarez-Dominguez
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Peng Chen
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Office of Clinical Sciences, Duke-NUS Medical School, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
- Institute of Molecular and Cell Biology, Singapore
| |
Collapse
|
34
|
Firmin FF, Oger F, Gheeraert C, Dubois-Chevalier J, Vercoutter-Edouart AS, Alzaid F, Mazuy C, Dehondt H, Alexandre J, Derudas B, Dhalluin Q, Ploton M, Berthier A, Woitrain E, Lefebvre T, Venteclef N, Pattou F, Staels B, Eeckhoute J, Lefebvre P. The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ. Sci Rep 2017; 7:14087. [PMID: 29075020 PMCID: PMC5658386 DOI: 10.1038/s41598-017-14570-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/12/2017] [Indexed: 02/03/2023] Open
Abstract
Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors. Using an unbiased genome-wide approach, we identified and characterized a novel long intergenic non-coding RNA (lincRNA) strongly induced during adipocyte differentiation. This lincRNA favors adipocyte differentiation and coactivates the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARγ) through interaction with the paraspeckle component and hnRNP-like RNA binding protein 14 (RBM14/NCoAA), and was therefore called PPARγ-activator RBM14-associated lncRNA (Paral1). Paral1 expression is restricted to adipocytes and decreased in humans with increasing body mass index. A decreased expression was also observed in diet-induced or genetic mouse models of obesity and this down-regulation was mimicked in vitro by TNF treatment. In conclusion, we have identified a novel component of the adipogenic transcriptional regulatory network defining the lincRNA Paral1 as an obesity-sensitive regulator of adipocyte differentiation and function.
Collapse
Affiliation(s)
- François F Firmin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Frederik Oger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Julie Dubois-Chevalier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Fawaz Alzaid
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - Claire Mazuy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Hélène Dehondt
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jeremy Alexandre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Quentin Dhalluin
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Maheul Ploton
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eloise Woitrain
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Tony Lefebvre
- CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, FRABio FR 3688, Univ, Lille, Villeneuve d'Ascq, F-59650, France
| | - Nicolas Venteclef
- INSERM UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, F-75006, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190- EGID, F-59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|