1
|
Segal A, Tiego J, Parkes L, Holmes AJ, Marquand AF, Fornito A. Embracing variability in the search for biological mechanisms of psychiatric illness. Trends Cogn Sci 2025; 29:85-99. [PMID: 39510933 PMCID: PMC11742270 DOI: 10.1016/j.tics.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Despite decades of research, we lack objective diagnostic or prognostic biomarkers of mental health problems. A key reason for this limited progress is a reliance on the traditional case-control paradigm, which assumes that each disorder has a single cause that can be uncovered by comparing average phenotypic values of patient and control samples. Here, we discuss the problematic assumptions on which this paradigm is based and highlight recent efforts that seek to characterize, rather than minimize, the inherent clinical and biological variability that underpins psychiatric populations. Embracing such variability is necessary to understand pathophysiological mechanisms and develop more targeted and effective treatments.
Collapse
Affiliation(s)
- Ashlea Segal
- Wu-Tsai Institute, and Department of Neuroscience, School of Medicine, Yale University, New Haven, CT 06520, USA; School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia.
| | - Jeggan Tiego
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| | - Linden Parkes
- Brain Health Institute, Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Avram J Holmes
- Brain Health Institute, Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Andre F Marquand
- Department of Cognitive Neuroscience, Radboud UMC, 6500 HB Nijmegen, The Netherlands; Donders Institute for Cognition, Brain and Behavior, 6525 EN Nijmegen, The Netherlands
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Melbourne 3800, Australia
| |
Collapse
|
2
|
Hübner S, Tambalo S, Novello L, Hilbert T, Kober T, Jovicich J. Advancing Thalamic Nuclei Segmentation: The Impact of Compressed Sensing on MRI Processing. Hum Brain Mapp 2024; 45:e70120. [PMID: 39722224 PMCID: PMC11669628 DOI: 10.1002/hbm.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
The thalamus is a collection of gray matter nuclei that play a crucial role in sensorimotor processing and modulation of cortical activity. Characterizing thalamic nuclei non-invasively with structural MRI is particularly relevant for patient populations with Parkinson's disease, epilepsy, dementia, and schizophrenia. However, severe head motion in these populations poses a significant challenge for in vivo mapping of thalamic nuclei. Recent advancements have leveraged the compressed sensing (CS) framework to accelerate structural MRI acquisition times in MPRAGE sequence variants, while fast segmentation tools like FastSurfer have reduced processing times in neuroimaging research. In this study, we evaluated thalamic nuclei segmentations derived from six different MPRAGE variants with varying degrees of CS acceleration (from about 9 to about 1-min acquisitions). Thalamic segmentations were initialized from either FastSurfer or FreeSurfer, and the robustness of the thalamic nuclei segmentation tool to different initialization inputs was evaluated. Our findings show minimal sequence effects with no systematic bias, and low volume variability across sequences for the whole thalamus and major thalamic nuclei. Notably, CS-accelerated sequences produced less variable volumes compared to non-CS sequences. Additionally, segmentations of thalamic nuclei initialized from FastSurfer and FreeSurfer were highly comparable. We provide the first evidence supporting that a good segmentation quality of thalamic nuclei with CS T1-weighted image acceleration in a clinical 3T MRI system is possible. Our findings encourage future applications of fast T1-weighted MRI to study deep gray matter. CS-accelerated sequences and rapid segmentation methods are promising tools for future studies aiming to characterize thalamic nuclei in vivo at 3T in both healthy individuals and clinical populations.
Collapse
Affiliation(s)
- Sebastian Hübner
- Center for Mind/Brain Sciences—CIMeCUniversity of TrentoRoveretoItaly
| | - Stefano Tambalo
- Center for Mind/Brain Sciences—CIMeCUniversity of TrentoRoveretoItaly
| | - Lisa Novello
- Center for Mind/Brain Sciences—CIMeCUniversity of TrentoRoveretoItaly
- Data Science for HealthFondazione Bruno KesslerTrentoItaly
| | - Tom Hilbert
- Advanced Clinical Imaging TechnologySiemens Healthineers International AGLausanneSwitzerland
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
- Signal Processing Laboratory 5 (LTS5)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Tobias Kober
- Advanced Clinical Imaging TechnologySiemens Healthineers International AGLausanneSwitzerland
- Department of RadiologyLausanne University Hospital and University of LausanneLausanneSwitzerland
- Signal Processing Laboratory 5 (LTS5)Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Jorge Jovicich
- Center for Mind/Brain Sciences—CIMeCUniversity of TrentoRoveretoItaly
| |
Collapse
|
3
|
Huang ZA, Liu R, Zhu Z, Tan KC. Multitask Learning for Joint Diagnosis of Multiple Mental Disorders in Resting-State fMRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8161-8175. [PMID: 36459608 DOI: 10.1109/tnnls.2022.3225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Facing the increasing worldwide prevalence of mental disorders, the symptom-based diagnostic criteria struggle to address the urgent public health concern due to the global shortfall in well-qualified professionals. Thanks to the recent advances in neuroimaging techniques, functional magnetic resonance imaging (fMRI) has surfaced as a new solution to characterize neuropathological biomarkers for detecting functional connectivity (FC) anomalies in mental disorders. However, the existing computer-aided diagnosis models for fMRI analysis suffer from unstable performance on large datasets. To address this issue, we propose an efficient multitask learning (MTL) framework for joint diagnosis of multiple mental disorders using resting-state fMRI data. A novel multiobjective evolutionary clustering algorithm is presented to group regions of interests (ROIs) into different clusters for FC pattern analysis. On the optimal clustering solution, the multicluster multigate mixture-of-expert model is used for the final classification by capturing the highly consistent feature patterns among related diagnostic tasks. Extensive simulation experiments demonstrate that the performance of the proposed framework is superior to that of the other state-of-the-art methods. Moreover, the potential for practical application of the framework is also validated in terms of limited computational resources, real-time analysis, and insufficient training data. The proposed model can identify the remarkable interpretative biomarkers associated with specific mental disorders for clinical interpretation analysis.
Collapse
|
4
|
Townsend L, Pillinger T, Selvaggi P, Veronese M, Turkheimer F, Howes O. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol Med 2023; 53:4880-4897. [PMID: 35730361 PMCID: PMC10476075 DOI: 10.1017/s003329172200174x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/16/2022] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Impaired brain metabolism may be central to schizophrenia pathophysiology, but the magnitude and consistency of metabolic dysfunction is unknown. METHODS We searched MEDLINE, PsychINFO and EMBASE between 01/01/1980 and 13/05/2021 for studies comparing regional brain glucose metabolism using 18FDG-PET, in schizophrenia/first-episode psychosis v. controls. Effect sizes (Hedges g) were pooled using a random-effects model. Primary measures were regional absolute and relative CMRGlu in frontal, temporal, parietal and occipital lobes, basal ganglia and thalamus. RESULTS Thirty-six studies (1335 subjects) were included. Frontal absolute glucose metabolism (Hedge's g = -0.74 ± 0.54, p = 0.01; I2 = 67%) and metabolism relative to whole brain (g = -0.44 ± 0.34, p = 0.01; I2 = 55%) were lower in schizophrenia v. controls with moderate heterogeneity. Absolute frontal metabolism was lower in chronic (g = -1.18 ± 0.73) v. first-episode patients (g = -0.09 ± 0.88) and controls. Medicated patients showed frontal hypometabolism relative to controls (-1.04 ± 0.26) while metabolism in drug-free patients did not differ significantly from controls. There were no differences in parietal, temporal or occipital lobe or thalamic metabolism in schizophrenia v. controls. Excluding outliers, absolute basal ganglia metabolism was lower in schizophrenia v. controls (-0.25 ± 0.24, p = 0.049; I2 = 5%). Studies identified reporting voxel-based morphometry measures of absolute 18FDG uptake (eight studies) were also analysed using signed differential mapping analysis, finding lower 18FDG uptake in the left anterior cingulate gyrus (Z = -4.143; p = 0.007) and the left inferior orbital frontal gyrus (Z = -4.239; p = 0.02) in schizophrenia. CONCLUSIONS We report evidence for hypometabolism with large effect sizes in the frontal cortex in schizophrenia without consistent evidence for alterations in other brain regions. Our findings support the hypothesis of hypofrontality in schizophrenia.
Collapse
Affiliation(s)
- Leigh Townsend
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
| | - Toby Pillinger
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Perez SM, Lodge DJ. Orexin Modulation of VTA Dopamine Neuron Activity: Relevance to Schizophrenia. Int J Neuropsychopharmacol 2021; 24:344-353. [PMID: 33587746 PMCID: PMC8059491 DOI: 10.1093/ijnp/pyaa080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The hippocampus is a region consistently implicated in schizophrenia and has been advanced as a therapeutic target for positive, negative, and cognitive deficits associated with the disease. Recently, we reported that the paraventricular nucleus of the thalamus (PVT) works in concert with the ventral hippocampus to regulate dopamine system function; however, the PVT has yet to be investigated as target for the treatment of the disease. Given the dense expression of orexin receptors in the thalamus, we believe these to be a possible target for pharmacological regulation of PVT activity. METHODS Here we used the methylazoxymethanol acetate (MAM) rodent model, which displays pathological alterations consistent with schizophrenia to determine whether orexin receptor blockade can restore ventral tegmental area dopamine system function. We measured dopamine neuron population activity, using in vivo electrophysiology, following administration of the dual orexin antagonist, TCS 1102 (both intraperitoneal and intracranial into the PVT in MAM- and saline-treated rats), and orexin A and B peptides (intracranial into the PVT in naïve rats). RESULTS Aberrant dopamine system function in MAM-treated rats was normalized by the systemic administration of TCS 1102. To investigate the potential site of action, the orexin peptides A and B were administered directly into the PVT, where they significantly increased ventral tegmental area dopamine neuron population activity in control rats. In addition, the direct administration of TCS 1102 into the PVT reproduced the beneficial effects seen with the systemic administration in MAM-treated rats. CONCLUSION Taken together, these data suggest the orexin system may represent a novel site of therapeutic intervention for psychosis via an action in the PVT.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, USA
- South Texas Veterans Health Care System, Audie L. Murphy Division, USA
| |
Collapse
|
6
|
Abstract
Nootropics are drugs used to either treat or benefit cognition deficits. Among this class, methylphenidate is a popular agent, which acts through indirect dopaminergic and noradrenergic agonism and, therefore, is proposed to enhance performance in catecholamine-dependent cognitive domains such as attention, memory and prefrontal cortex-dependent executive functions. However, investigation into the efficacy of methylphenidate as a cognitive enhancer has yielded variable results across all domains, leading to debate within the scientific community surrounding its off-label use in healthy individuals seeking scholaristic benefit or increased productivity. Through analysis of experimental data and methodological evaluation, it is apparent that there are dose-, task- and domain-dependent considerations surrounding the use of methylphenidate in healthy individuals, whereby tailored dose administration is likely to provide benefit on an individual basis dependent on the domain of cognition in which benefit is required. Additionally, it is apparent that there are subjective effects of methylphenidate, which may increase user productivity irrespective of cognitive benefit. Whilst there is not extensive study in healthy older adults, it is plausible that there are dose-dependent benefits to methylphenidate in older adults in selective cognitive domains that might improve quality of life and reduce fall risk. Methylphenidate appears to produce dose-dependent benefits to individuals with attention-deficit/hyperactivity disorder, but the evidence for benefit in Parkinson's disease and schizophrenia is inconclusive. As with any off-label use of pharmacological agents, and especially regarding drugs with neuromodulatory effects, there are inherent safety concerns; epidemiological and experimental evidence suggests there are sympathomimetic, cardiovascular and addictive considerations, which might further restrict their use within certain demographics.
Collapse
|
7
|
Xi C, Liu ZN, Yang J, Zhang W, Deng MJ, Pan YZ, Cheng YQ, Pu WD. Schizophrenia patients and their healthy siblings share decreased prefronto-thalamic connectivity but not increased sensorimotor-thalamic connectivity. Schizophr Res 2020; 222:354-361. [PMID: 32507372 DOI: 10.1016/j.schres.2020.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/12/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
The pattern of decreased prefronto-thalamic connectivity and increased sensorimotor-thalamic connectivity has been consistently documented in schizophrenia. However, whether this thalamo-cortical abnormality pattern is of genetic predisposition remains unknown. The present study for the first time aimed to investigate the common and distinct characteristics of this circuit in schizophrenia patients and their unaffected siblings who share half of the patient's genotype. Totally 293 participants were recruited into this study including 94 patients with schizophrenia, 96 their healthy siblings, and 103 healthy controls scanned using gradient-echo echo-planar imaging at rest. By using a fine-grained atlas of thalamus with 16 sub-regions, we mapped the thalamocortical network in three groups. Decreased thalamo-prefronto-cerebellar connectivity was shared between schizophrenia and their healthy siblings, but increased sensorimotor-thalamic connectivity was only found in schizophrenia. The shared thalamo-prefronto-cerebellar dysconnectivity showed an impressively gradient reduction pattern in patients and siblings comparing to controls: higher in the controls, lower in the patients and intermediate in the siblings. Anatomically, the decreased thalamic connectivity mostly centered on the pre-frontal thalamic subregions locating at the mediodorsal nucleus, while the increased functional connectivity with sensorimotor cortices was only observed in the caudal temporal thalamic subregion anchoring at the dorsal and ventral lateral nuclei. Moreover, both decreased thalamo-prefronto-cerebellar connectivity and increased sensorimotor-thalamic connectivity were related to clinical symptoms in patients. Our findings extend the evidence that the decreased thalamo-prefronto-cerebellar connectivity may be related to the high genetic risk in schizophrenia, while increased sensorimotor-thalamic connectivity potentially represents a neural biomarker for this severe mental disorder.
Collapse
Affiliation(s)
- Chang Xi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China; Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Zhe-Ning Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Jie Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Wen Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Meng-Jie Deng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Yun-Zhi Pan
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei-Dan Pu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha 410011, China; The China National Clinical Research Center for Mental Health Disorders, Changsha, China.
| |
Collapse
|
8
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Positive association between cerebral grey matter metabolism and dopamine D 2/D 3 receptor availability in healthy and schizophrenia subjects: An 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography study. World J Biol Psychiatry 2020; 21:368-382. [PMID: 31552783 DOI: 10.1080/15622975.2019.1671609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objectives: Overlapping decreases in extrastriatal dopamine D2/D3-receptor availability and glucose metabolism have been reported in subjects with schizophrenia. It remains unknown whether these findings are physiologically related or coincidental.Methods: To ascertain this, we used two consecutive 18F-fluorodeoxyglucose and 18F-fallypride positron emission tomography scans in 19 healthy and 25 unmedicated schizophrenia subjects. Matrices of correlations between 18F-fluorodeoxyglucose uptake and 18F-fallypride binding in voxels at the same xyz location and AFNI-generated regions of interest were evaluated in both diagnostic groups.Results:18F-fluorodeoxyglucose uptake and 18F-fallypride binding potential were predominantly positively correlated across the striatal and extrastriatal grey matter in both healthy and schizophrenia subjects. In comparison to healthy subjects, significantly weaker correlations in subjects with schizophrenia were confirmed in the right cingulate gyrus and thalamus, including the mediodorsal, lateral dorsal, anterior, and midline nuclei. Schizophrenia subjects showed decreased D2/D3-receptor availability in the hypothalamus, mamillary bodies, thalamus and several thalamic nuclei, and increased glucose uptake in three lobules of the cerebellar vermis.Conclusions: Dopaminergic system may be involved in modulation of grey matter metabolism and neurometabolic coupling in both healthy human brain and psychopathology. Hyperdopaminergic state in untreated schizophrenia may at least partly account for the corresponding decreases in grey matter metabolism.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City,NY, USA.,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, Elmhurst, IL, USA
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine School of Medicine, Orange, CA, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
9
|
van Haren N, Cahn W, Hulshoff Pol H, Kahn R. Schizophrenia as a progressive brain disease. Eur Psychiatry 2020; 23:245-54. [DOI: 10.1016/j.eurpsy.2007.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/11/2007] [Accepted: 10/18/2007] [Indexed: 01/06/2023] Open
Abstract
AbstractThere is convincing evidence that schizophrenia is characterized by abnormalities in brain volume. At the Department of Psychiatry of the University Medical Centre Utrecht, Netherlands, we have been carrying out neuroimaging studies in schizophrenia since 1995. We focused our research on three main questions. First, are brain volume abnormalities static or progressive in nature? Secondly, can brain volume abnormalities in schizophrenia be explained (in part) by genetic influences? Finally, what environmental factors are associated with the brain volume abnormalities in schizophrenia?Based on our findings we suggest that schizophrenia is a progressive brain disease. We showed different age-related trajectories of brain tissue loss suggesting that brain maturation that occurs in the third and fourth decade of life is abnormal in schizophrenia. Moreover, brain volume has been shown to be a useful phenotype for studying schizophrenia. Brain volume is highly heritable and twin and family studies show that unaffected relatives show abnormalities that are similar, but usually present to a lesser extent, to those found in the patients. However, also environmental factors play a role. Medication intake is indeed a confounding factor when interpreting brain volume (change) abnormalities, while independent of antipsychotic medication intake brain volume abnormalities appear influenced by the outcome of the illness.In conclusion, schizophrenia can be considered as a progressive brain disease with brain volume abnormalities that are for a large part influenced by genetic factors. Whether the progressive volume change is also mediated by genes awaits the results of longitudinal twin analyses. One of the main challenges for the coming years, however, will be the search for gene-by-environment interactions on the progressive brain changes in schizophrenia.
Collapse
|
10
|
B Hughes R, Whittingham-Dowd J, Simmons RE, Clapcote SJ, Broughton SJ, Dawson N. Ketamine Restores Thalamic-Prefrontal Cortex Functional Connectivity in a Mouse Model of Neurodevelopmental Disorder-Associated 2p16.3 Deletion. Cereb Cortex 2020; 30:2358-2371. [PMID: 31812984 PMCID: PMC7175007 DOI: 10.1093/cercor/bhz244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
2p16.3 deletions, involving heterozygous NEUREXIN1 (NRXN1) deletion, dramatically increase the risk of developing neurodevelopmental disorders, including autism and schizophrenia. We have little understanding of how NRXN1 heterozygosity increases the risk of developing these disorders, particularly in terms of the impact on brain and neurotransmitter system function and brain network connectivity. Thus, here we characterize cerebral metabolism and functional brain network connectivity in Nrxn1α heterozygous mice (Nrxn1α+/- mice), and assess the impact of ketamine and dextro-amphetamine on cerebral metabolism in these animals. We show that heterozygous Nrxn1α deletion alters cerebral metabolism in neural systems implicated in autism and schizophrenia including the thalamus, mesolimbic system, and select cortical regions. Nrxn1α heterozygosity also reduces the efficiency of functional brain networks, through lost thalamic "rich club" and prefrontal cortex (PFC) hub connectivity and through reduced thalamic-PFC and thalamic "rich club" regional interconnectivity. Subanesthetic ketamine administration normalizes the thalamic hypermetabolism and partially normalizes thalamic disconnectivity present in Nrxn1α+/- mice, while cerebral metabolic responses to dextro-amphetamine are unaltered. The data provide new insight into the systems-level impact of heterozygous Nrxn1α deletion and how this increases the risk of developing neurodevelopmental disorders. The data also suggest that the thalamic dysfunction induced by heterozygous Nrxn1α deletion may be NMDA receptor-dependent.
Collapse
Affiliation(s)
- Rebecca B Hughes
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jayde Whittingham-Dowd
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Rachel E Simmons
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Susan J Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
11
|
Bai Y, Pascal Z, Hu W, Calhoun VD, Wang YP. Biomarker Identification Through Integrating fMRI and Epigenetics. IEEE Trans Biomed Eng 2019; 67:1186-1196. [PMID: 31395533 DOI: 10.1109/tbme.2019.2932895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Integration of multiple datasets is a hot topic in many fields. When studying complex mental disorders, great effort has been dedicated to fusing genetic and brain imaging data. However, an increasing number of studies have pointed out the importance of epigenetic factors in the cause of psychiatric diseases. In this study, we endeavor to fill the gap by combining epigenetics (e.g., DNA methylation) with imaging data (e.g., fMRI) to identify biomarkers for schizophrenia (SZ). METHODS We propose to combine linear regression with canonical correlation analysis (CCA) in a relaxed yet coupled manner to extract discriminative features for SZ that are co-expressed in the fMRI and DNA methylation data. RESULT After validation through simulations, we applied our method to real imaging epigenetics data of 184 subjects from the Mental Illness and Neuroscience Discovery Clinical Imaging Consortium. After significance test, we identified 14 brain regions and 44 cytosine-phosphate-guanine(CpG) sites. Average classification accuracy is [Formula: see text]. By linking the CpG sites to genes, we identified pathways Guanosine ribonucleotides de novo biosynthesis and Guanosine nucleotides de novo biosynthesis, and a GO term Perikaryon. CONCLUSION This imaging epigenetics study has identified both brain regions and genes that are associated with neuron development and memory processing. These biomarkers contribute to a good understanding of the mechanism underlying SZ but are overlooked by previous imaging genetics studies. SIGNIFICANCE Our study sheds light on the understanding and diagnosis of SZ with a imaging epigenetics approach, which is demonstrated to be effective in extracting novel biomarkers associated with SZ.
Collapse
|
12
|
Hazlett EA, Vaccaro DH, Haznedar MM, Goldstein KE. Reprint of: F-18Fluorodeoxyglucose positron emission tomography studies of the schizophrenia spectrum: The legacy of Monte S. Buchsbaum, M.D. Psychiatry Res 2019; 277:39-44. [PMID: 31229307 DOI: 10.1016/j.psychres.2019.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
This is a selective review of the work of Buchsbaum and colleagues. It revisits and pays tribute to four decades of publications employing positron emission tomography (PET) with F-18fluorodeoxyglucose (FDG) to examine the neurobiology of schizophrenia-spectrum disorders (including schizotypal personality disorder (SPD) and schizophrenia). Beginning with a landmark FDG-PET study in 1982 reporting hypofrontality in unmedicated schizophrenia patients, Buchsbaum and colleagues published high-impact work on regional glucose metabolic rate (GMR) abnormalities in the spectrum. Several key discoveries were made, including the delineation of schizophrenia-spectrum abnormalities in frontal and temporal lobe, cingulate, thalamus, and striatal regions using three-dimensional mapping with coregistered MRI and PET. These findings indicated that SPD patients have less marked frontal lobe and striatal dysfunction compared with schizophrenia patients, possibly mitigating frank psychosis. Additionally, these investigations were among the first to conduct early seed-based functional connectivity analyses with FDG-PET, showing aberrant cortical-subcortical circuitry and, in particular, revealing a thalamocortical circuitry abnormality in schizophrenia. Finally, pioneering work employing the first double-blind randomized antipsychotic (haloperidol) vs. placebo FDG-PET study design in schizophrenia indicated that GMR in the striatum, more than in any other region, was related to clinical response.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States.
| | - Daniel H Vaccaro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| |
Collapse
|
13
|
Arbabshirani MR, Preda A, Vaidya JG, Potkin SG, Pearlson G, Voyvodic J, Mathalon D, van Erp T, Michael A, Kiehl KA, Turner JA, Calhoun VD. Autoconnectivity: A new perspective on human brain function. J Neurosci Methods 2019; 323:68-76. [PMID: 31005575 DOI: 10.1016/j.jneumeth.2019.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autocorrelation (AC) in fMRI time-series is a well-known phenomenon, typically attributed to colored noise and therefore removed from the data. We hypothesize that AC reflects systematic and meaningful signal fluctuations that may be tied to neural activity and provide evidence to support this hypothesis. NEW METHOD Each fMRI time-series is modeled as an autoregressive process from which the autocorrelation is quantified. Then, autocorrelation during resting-state fMRI and auditory oddball (AOD) task in schizophrenia and healthy volunteers is examined. RESULTS During resting-state, AC was higher in the visual cortex while during AOD task, frontal part of the brain exhibited higher AC in both groups. AC values were significantly lower in specific brain regions in schizophrenia patients (such as thalamus during resting-state) compared to healthy controls in two independent datasets. Moreover, AC values had significant negative correlation with patients' symptoms. AC differences discriminated patients from healthy controls with high accuracy (resting-state). COMPARISON WITH EXISTING METHODS Contrary to most prior works, the results suggest AC shows meaningful patterns that are discriminative between patients and controls. Our results are in line with recent works attributing autocorrelation to feedback loop of brain's regulatory circuit. CONCLUSIONS Autoconnectivity is cognitive state dependent (resting-state vs. task) and mental state dependent (healthy vs. schizophrenia). The concept of autoconnectivity resembles a recurrent neural network and provides a new perspective of functional integration in the brain. These findings may have important implications for understanding of brain function in health and disease as well as for analysis of fMRI time-series.
Collapse
Affiliation(s)
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | | | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - James Voyvodic
- Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Daniel Mathalon
- Department of Psychiatry, University of California, San Francisco, CA, USA; San Francisco VA Medical Center, San Francisco, CA, USA
| | - Theo van Erp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Andrew Michael
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | | | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; Department of ECE, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
14
|
Hazlett EA, Vaccaro DH, Haznedar MM, Goldstein KE. F-18Fluorodeoxyglucose positron emission tomography studies of the schizophrenia spectrum: The legacy of Monte S. Buchsbaum, M.D. Psychiatry Res 2019; 271:535-540. [PMID: 30553101 DOI: 10.1016/j.psychres.2018.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
This is a selective review of the work of Buchsbaum and colleagues. It revisits and pays tribute to four decades of publications employing positron emission tomography (PET) with F-18fluorodeoxyglucose (FDG) to examine the neurobiology of schizophrenia-spectrum disorders (including schizotypal personality disorder (SPD) and schizophrenia). Beginning with a landmark FDG-PET study in 1982 reporting hypofrontality in unmedicated schizophrenia patients, Buchsbaum and colleagues published high-impact work on regional glucose metabolic rate (GMR) abnormalities in the spectrum. Several key discoveries were made, including the delineation of schizophrenia-spectrum abnormalities in frontal and temporal lobe, cingulate, thalamus, and striatal regions using three-dimensional mapping with coregistered MRI and PET. These findings indicated that SPD patients have less marked frontal lobe and striatal dysfunction compared with schizophrenia patients, possibly mitigating frank psychosis. Additionally, these investigations were among the first to conduct early seed-based functional connectivity analyses with FDG-PET, showing aberrant cortical-subcortical circuitry and, in particular, revealing a thalamocortical circuitry abnormality in schizophrenia. Finally, pioneering work employing the first double-blind randomized antipsychotic (haloperidol) vs. placebo FDG-PET study design in schizophrenia indicated that GMR in the striatum, more than in any other region, was related to clinical response.
Collapse
Affiliation(s)
- Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States.
| | - Daniel H Vaccaro
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - M Mehmet Haznedar
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| | - Kim E Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Mental Illness Research, Education, and Clinical Center (VISN 2), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Room 6A-44, Bronx, NY, United States
| |
Collapse
|
15
|
Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van Leemput K, Greve DN, van der Kouwe A, Fischl B, Caballero-Gaudes C, Paz-Alonso PM. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 2018; 183:314-326. [PMID: 30121337 PMCID: PMC6215335 DOI: 10.1016/j.neuroimage.2018.08.012] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023] Open
Abstract
The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer.
Collapse
Affiliation(s)
- Juan Eugenio Iglesias
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; BCBL. Basque Center on Cognition, Brain and Language, Spain.
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Spain
| | | | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, United Kingdom
| | - Koen Van Leemput
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Douglas N Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
| | - Andre van der Kouwe
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; MIT Computer Science and Artificial Intelligence Laboratory, USA
| | | | | |
Collapse
|
16
|
Wolf R, Dobrowolny H, Nullmeier S, Bogerts B, Schwegler H. Effects of neonatal excitotoxic lesions in ventral thalamus on social interaction in the rat. Eur Arch Psychiatry Clin Neurosci 2018; 268:461-470. [PMID: 28361258 DOI: 10.1007/s00406-017-0781-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
Abstract
The role of the thalamus in schizophrenia has increasingly been studied in recent years. Deficits in the ventral thalamus have been described in only few postmortem and neuroimaging studies. We utilised our previously introduced neurodevelopmental animal model, the neonatal excitotoxic lesion of the ventral thalamus of Sprague-Dawley rats (Wolf et al., Pharmacopsychiatry 43:99-109, 22). At postnatal day (PD7), male pubs received bilateral thalamic infusions with ibotenic acid (IBA) or artificial cerebrospinal fluid (control). In adulthood, social interaction of two animals not familiar to each other was studied by a computerised video tracking system. This study displays clear lesion effects on social interaction of adult male rats. The significant reduction of total contact time and the significant increase in distance between the animals in the IBA group compared to controls can be interpreted as social withdrawal modelling a negative symptom of schizophrenia. The significant increase of total distance travelled in the IBA group can be hypothesised as agitation modelling a positive symptom of schizophrenia. Using a triple concept of social interaction, the percentage of no social interaction (Non-SI%) was significantly larger, and inversely, the percentage of passive social interaction (SI-passive%) was significantly smaller in the IBA group when compared to controls. In conclusion, on the background of findings in schizophrenic patients, the effects of neonatal ventral thalamic IBA lesions in adult male rats support the hypothesis of face and construct validity as animal model of schizophrenia.
Collapse
Affiliation(s)
- Rainer Wolf
- Department of Psychiatry, Ruhr-University Bochum, Alexandrinenstr. 1, 44791, Bochum, Germany.
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany.
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
| | - Sven Nullmeier
- Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke University, Magdeburg, Germany
| | - Herbert Schwegler
- Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
17
|
Cahn W, Hulshoff Pol HE, Bongers M, Schnack HG, Mandl RCW, Van Haren NEM, Durston S, Koning H, Van Der Linden JA, Kahn RS. Brain morphology in antipsychotic-naïve schizophrenia: A study of multiple brain structures. Br J Psychiatry 2018; 43:s66-72. [PMID: 12271803 DOI: 10.1192/bjp.181.43.s66] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BackgroundAlthough brain volume changes are found in schizophrenia, only a limited number of structural magnetic resonance imaging studies have exclusively examined antipsychotic-naïve patients.AimsTo comprehensively investigate multiple brain structures in a single sample of patients who were antipsychotic-naïve.MethodTwenty antipsychotic-naïve patients with first-episode schizophrenia and 20 healthy comparison subjects were included. Intracranial, total brain, frontal lobe, grey and white matter, cerebellar, hippocampal, parahippocampal, thalamic, caudate nucleus and lateral and third ventricular volumes were measured. Repeated-measures analyses of (co)variance were conducted with intracranial volume as covariate.ResultsThird ventricle volume enlargement was found in patients compared with the healthy subjects. No differences were found in other brain regions.ConclusionsThese findings suggest that some brain abnormalities are present in the early stages of schizophrenia. Moreover, it suggests that brain abnormalities reported in patients with chronic schizophrenia develop in a later stage of the disease and/or are medication induced.
Collapse
Affiliation(s)
- W Cahn
- Department of Psychiatry, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bansal S, Bray LCJ, Schwartz BL, Joiner WM. Transsaccadic Perception Deficits in Schizophrenia Reflect the Improper Internal Monitoring of Eye Movement Rather Than Abnormal Sensory Processing. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017. [PMID: 29529412 DOI: 10.1016/j.bpsc.2017.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Symptoms of psychosis in schizophrenia reflect disturbances in sense of agency-difficulty distinguishing internally from externally generated sensory and perceptual experiences. One theory attributes these anomalies to a disruption in corollary discharge (CD), an internal copy of generated motor commands used to distinguish self-movement-generated sensations from externally generated stimulation. METHODS We used a transsaccadic shift detection paradigm to examine possible deficits in CD and sense of agency based on the ability to perceive visual changes in 31 schizophrenia patients (SZPs) and 31 healthy control subjects. We derived perceptual measures based on manual responses indicating the transsaccadic target shift direction. We also developed a distance-from-unity-line measure to quantify use of CD versus purely sensory (visual) information in evaluating visual changes in the environment after an eye movement. RESULTS SZPs had higher perceptual thresholds in detecting shift of target location than healthy control subjects, regardless of movement direction or amplitude. Despite producing similar hypometric saccades, healthy control subjects overestimated target location, whereas SZPs relied more on the experienced visual error and consequently underestimated the target position. We show that in SZPs the postsaccadic judgment of the initial target location was largely aligned with the measure based only on visual error, suggesting a deficit in the use of CD. This CD deficit also correlated with positive schizophrenia symptoms and disturbances in sense of agency. CONCLUSIONS These results provide a novel approach in quantifying abnormal use of CD in SZPs and provide a framework to distinguish deficits in sensory processing versus defects in the internal CD-based monitoring of movement.
Collapse
Affiliation(s)
- Sonia Bansal
- Department of Neuroscience, George Mason University, Fairfax, Virginia; Mental Health Service Line, Washington DC Veterans Affairs Medical Center, Washington, DC
| | | | - Barbara L Schwartz
- Mental Health Service Line, Washington DC Veterans Affairs Medical Center, Washington, DC; Department of Psychiatry, Georgetown University School of Medicine, Washington, DC
| | - Wilsaan M Joiner
- Department of Neuroscience, George Mason University, Fairfax, Virginia; Department of Bioengineering, George Mason University, Fairfax, Virginia; Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.
| |
Collapse
|
19
|
Schizophrenia and neurosurgery: A dark past with hope of a brighter future. J Clin Neurosci 2016; 34:53-58. [DOI: 10.1016/j.jocn.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/05/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
|
20
|
Lewis DA. Is There a Neuropathology of Schizophrenia? Recent Findings Converge on Altered Thalamic-Prefrontal Cortical Connectivity. Neuroscientist 2016. [DOI: 10.1177/107385840000600311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a serious and chronic brain disorder whose underlying neuropathology has proven difficult to identify. This article reviews the current status of neuropathological studies in terms of how they inform the diagnosis, pathogenesis, pathophysiology, and mechanisms of treatment of schizophrenia. Although additional studies are required, substantial data converge on the hypothesis that the pathophysiology of schizophrenia is associated with alterations in thalamic-prefrontal cortical connectivity.
Collapse
Affiliation(s)
- David A. Lewis
- Departments of Psychiatry and Neuroscience University of Pittsburgh Pittsburgh, Pennsylvania,
| |
Collapse
|
21
|
KIRTAŞ D, KARADAĞ RF, BALCI ŞENGÜL MC, KIROĞLU Y. 1H-magnetic resonance spectroscopy in first episode and chronic schizophrenia patients. Turk J Med Sci 2016; 46:862-71. [DOI: 10.3906/sag-1502-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/16/2015] [Indexed: 11/03/2022] Open
|
22
|
The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci Biobehav Rev 2015; 54:57-75. [DOI: 10.1016/j.neubiorev.2015.01.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/19/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023]
|
23
|
Delta frequency optogenetic stimulation of the thalamic nucleus reuniens is sufficient to produce working memory deficits: relevance to schizophrenia. Biol Psychiatry 2015; 77:1098-107. [PMID: 25891221 PMCID: PMC4444380 DOI: 10.1016/j.biopsych.2015.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/05/2015] [Accepted: 01/15/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Low-frequency (delta/theta) oscillations in the thalamocortical system are elevated in schizophrenia during wakefulness and are also induced in the N-methyl-D-asparate receptor hypofunction rat model. To determine whether abnormal delta oscillations might produce functional deficits, we used optogenetic methods in awake rats. We illuminated channelrhodopsin-2 in the thalamic nucleus reuniens (RE) at delta frequency and measured the effect on working memory (WM) performance (the RE is involved in WM, a process affected in schizophrenia [SZ]). METHODS We injected RE with adeno-associated virus to transduce cells with channelrhodopsin-2. An optical fiber was implanted just dorsal to the hippocampus in order to illuminate RE axon terminals. RESULTS During optogenetic delta frequency stimulation, rats displayed a strong WM deficit. On the following day, performance was normal if illumination was omitted. CONCLUSIONS The optogenetic experiments show that delta frequency stimulation of a thalamic nucleus is sufficient to produce deficits in WM. This result supports the hypothesis that delta frequency bursting in particular thalamic nuclei has a causal role in producing WM deficits in SZ. The action potentials in these bursts may "jam" communication through the thalamus, thereby interfering with behaviors dependent on WM. Studies in thalamic slices using the N-methyl-D-asparate receptor hypofunction model show that delta frequency bursting is dependent on T-type Ca(2+) channels, a result that we confirmed here in vivo. These channels, which are strongly implicated in SZ by genome-wide association studies, may thus be a therapeutic target for treatment of SZ.
Collapse
|
24
|
Validation of a protocol for manual segmentation of the thalamus on magnetic resonance imaging scans. Psychiatry Res 2015; 232:98-105. [PMID: 25752844 DOI: 10.1016/j.pscychresns.2015.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/14/2014] [Accepted: 02/04/2015] [Indexed: 01/18/2023]
Abstract
We present a validated protocol for manual segmentation of the thalamus on T1-weighted magnetic resonance imaging (MRI) scans using brain image analysis software. The MRI scans of five normal control subjects were randomly selected from a larger cohort recruited from Lund University Hospital and Landskrona Hospital, Sweden. MRIs were performed using a 3.0T Philips MR scanner, with an eight-channel head coil, and high resolution images were acquired using a T1-weighted turbo field echo (T1 TFE) pulse sequence, with resulting voxel size 1×1×1 mm3. Manual segmentation of the left and right thalami and volume measurement was performed on 28-30 contiguous coronal slices, using ANALYZE 11.0 software. Reliability of image analysis was performed by measuring intra-class correlations between initial segmentation and random repeated segmentation of the left and right thalami (in total 10 thalami for segmentation); inter-rater reliability was measured using volumes obtained by two other experienced tracers. Intra-class correlations for two independent raters were 0.95 and 0.98; inter-class correlations between the expert rater and two independent raters were 0.92 and 0.98. We anticipate that mapping thalamic morphology in various neuropsychiatric disorders may yield clinically useful disease-specific biomarkers.
Collapse
|
25
|
Pratt JA, Morris BJ. The thalamic reticular nucleus: a functional hub for thalamocortical network dysfunction in schizophrenia and a target for drug discovery. J Psychopharmacol 2015; 29:127-37. [PMID: 25586397 DOI: 10.1177/0269881114565805] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The thalamus (comprising many distinct nuclei) plays a key role in facilitating sensory discrimination and cognitive processes through connections with the cortex. Impaired thalamocortical processing has long been considered to be involved in schizophrenia. In this review we focus on the thalamic reticular nucleus (TRN) providing evidence for it being an important communication hub between the thalamus and cortex and how it may play a key role in the pathophysiology of schizophrenia. We first highlight the functional neuroanatomy, neurotransmitter localisation and physiology of the TRN. We then present evidence of the physiological roles of the TRN in relation to oscillatory activity, cognition and behaviour. Next we discuss the role of the TRN in rodent models of risk factors for schizophrenia (genetic and pharmacological) and provide evidence for TRN deficits in schizophrenia. Finally we discuss new drug targets for schizophrenia in relation to restoring TRN circuitry dysfunction.
Collapse
Affiliation(s)
- Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow and University of Strathclyde, Glasgow, UK
| | - Brian J Morris
- Psychiatric Research Institute of Neuroscience in Glasgow (PsyRING), University of Glasgow and University of Strathclyde, Glasgow, UK Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Hagenmuller F, Heekeren K, Theodoridou A, Walitza S, Haker H, Rössler W, Kawohl W. Early somatosensory processing in individuals at risk for developing psychoses. Front Behav Neurosci 2014; 8:308. [PMID: 25309363 PMCID: PMC4161002 DOI: 10.3389/fnbeh.2014.00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 08/24/2014] [Indexed: 11/13/2022] Open
Abstract
Human cortical somatosensory evoked potentials (SEPs) allow an accurate investigation of thalamocortical and early cortical processing. SEPs reveal a burst of superimposed early (N20) high-frequency oscillations around 600 Hz. Previous studies reported alterations of SEPs in patients with schizophrenia. This study addresses the question whether those alterations are also observable in populations at risk for developing schizophrenia or bipolar disorders. To our knowledge to date, this is the first study investigating SEPs in a population at risk for developing psychoses. Median nerve SEPs were investigated using multichannel EEG in individuals at risk for developing bipolar disorders (n = 25), individuals with high-risk status (n = 59) and ultra-high-risk status for schizophrenia (n = 73) and a gender and age-matched control group (n = 45). Strengths and latencies of low- and high-frequency components as estimated by dipole source analysis were compared between groups. Low- and high-frequency source activity was reduced in both groups at risk for schizophrenia, in comparison to the group at risk for bipolar disorders. HFO amplitudes were also significant reduced in subjects with high-risk status for schizophrenia compared to healthy controls. These differences were accentuated among cannabis non-users. Reduced N20 source strengths were related to higher positive symptom load. These results suggest that the risk for schizophrenia, in contrast to bipolar disorders, may involve an impairment of early cerebral somatosensory processing. Neurophysiologic alterations in schizophrenia precede the onset of initial psychotic episode and may serve as indicator of vulnerability for developing schizophrenia.
Collapse
Affiliation(s)
- Florence Hagenmuller
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| | - Susanne Walitza
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Department of Child and Adolescent Psychiatry, University of Zurich Zurich, Switzerland
| | - Helene Haker
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, University of Sao Paulo Sao Paulo, Brazil
| | - Wolfram Kawohl
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric Hospital, University of Zurich Zurich, Switzerland ; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich Zurich, Switzerland
| |
Collapse
|
27
|
Klingner CM, Langbein K, Dietzek M, Smesny S, Witte OW, Sauer H, Nenadic I. Thalamocortical connectivity during resting state in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2014; 264:111-9. [PMID: 23892770 DOI: 10.1007/s00406-013-0417-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/15/2013] [Indexed: 12/21/2022]
Abstract
Schizophrenia has been linked to disturbed connectivity between large-scale brain networks. Altered thalamocortical connectivity might be a major mechanism mediating regionally distributed dysfunction, yet it is only incompletely understood. We analysed functional magnetic resonance imaging data obtained during resting state from 22 DSM-IV schizophrenia patients and 22 matched healthy controls to directly assess the differences in thalamocortical functional connectivity. We identified significantly higher overall thalamocortical functional connectivity in patients, which was mostly accounted for by difference in thalamic connections to right ventrolateral prefrontal and bilateral secondary motor and sensory (superior temporal and lateral occipital) cortical areas. Voxelwise analysis showed group differences at the thalamic level to be mostly in medial and anterior thalamic nuclei and arising thalamocortical changes to be mostly due to higher positive correlations in prefrontal and superior temporal correlations, as well as absent negative correlations to sensory areas in patients. Our findings demonstrate that different types of thalamocortical dysfunction contribute to network alterations, including lack of inhibitory interaction attributed to the lack of significant negative thalamic/sensory cortical connections. These results emphasize the functional importance of the thalamus in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Carsten M Klingner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Ota M, Ishikawa M, Sato N, Hori H, Sasayama D, Hattori K, Teraishi T, Noda T, Obu S, Nakata Y, Higuchi T, Kunugi H. Discrimination between schizophrenia and major depressive disorder by magnetic resonance imaging of the female brain. J Psychiatr Res 2013; 47:1383-8. [PMID: 23830450 DOI: 10.1016/j.jpsychires.2013.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Although schizophrenia and major depressive disorder (MDD) differ on a variety of neuroanatomical measures, a diagnostic tool to discriminate these disorders has not yet been established. We tried to identify structural changes of the brain that best discriminate between schizophrenia and MDD on the basis of gray matter volume, ventricle volume, and diffusion tensor imaging (DTI). METHOD The first exploration sample consisted of 25 female patients with schizophrenia and 25 females with MDD. Regional brain volumes and fractional anisotropy (FA) values were entered into a discriminant analysis. The second validation sample consisted of 18 female schizophrenia and 16 female MDD patients. RESULTS The stepwise discriminant analysis resulted in correct classification rates of 0.80 in the schizophrenic group and 0.76 in MDD. In the second validation sample, the obtained model yielded correct classification rates of 0.72 in the schizophrenia group and 0.88 in the MDD group. CONCLUSION Our results suggest that schizophrenia and MDD have differential structural changes in the examined brain regions and that the obtained discriminant score may be useful to discriminate the two disorders.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ji B, Mei W, Zhang JX, Jing J, Wu Q, Zhuo Y, Xiao Z. Abnormal auditory sensory gating-out in first-episode and never-medicated paranoid schizophrenia patients: an fMRI study. Exp Brain Res 2013; 229:139-47. [DOI: 10.1007/s00221-013-3600-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
|
30
|
Fiber pathway pathology, synapse loss and decline of cortical function in schizophrenia. PLoS One 2013; 8:e60518. [PMID: 23593232 PMCID: PMC3620229 DOI: 10.1371/journal.pone.0060518] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
A quantitative cortical model is developed, based on both computational and simulation approaches, which relates measured changes in cortical activity of gray matter with changes in the integrity of longitudinal fiber pathways. The model consists of modules of up to 5,000 neurons each, 80% excitatory and 20% inhibitory, with these having different degrees of synaptic connectiveness both within a module as well as between modules. It is shown that if the inter-modular synaptic connections are reduced to zero while maintaining the intra-modular synaptic connections constant, then activity in the modules is reduced by about 50%. This agrees with experimental observations in which cortical electrical activity in a region of interest, measured using the rate of oxidative glucose metabolism (CMRglc(ox)), is reduced by about 50% when the cortical region is isolated, either by surgical means or by transient cold block. There is also a 50% decrease in measured cortical activity following inactivation of the nucleus of Meynert and the intra-laminar nuclei of the thalamus, which arise either following appropriate lesions or in sleep. This occurs in the model if the inter-modular synaptic connections require input from these nuclei in order to function. In schizophrenia there is a 24% decrease in functional anisotropy of longitudinal fasciculi accompanied by a 7% decrease in cortical activity (CMRglc(ox)).The cortical model predicts this, namely for a 24% decrease in the functioning of the inter-modular connections, either through the complete loss of 24% of axons subserving the connections or due to such a decrease in the efficacy of all the inter-modular connections, there will be about a 7% decrease in the activity of the modules. This work suggests that deterioration of longitudinal fasciculi in schizophrenia explains the loss of activity in the gray matter.
Collapse
|
31
|
Pynn LK, DeSouza JFX. The function of efference copy signals: implications for symptoms of schizophrenia. Vision Res 2012; 76:124-33. [PMID: 23159418 DOI: 10.1016/j.visres.2012.10.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 09/12/2012] [Accepted: 10/31/2012] [Indexed: 11/29/2022]
Abstract
Efference copy signals are used to reduce cognitive load by decreasing sensory processing of reafferent information (those incoming sensory signals that are produced by an organism's own motor output). Attenuated sensory processing of self-generated afferents is seen across species and in multiple sensory systems involving many different neural structures and circuits including both cortical and subcortical structures with thalamic nuclei playing a particularly important role. It has been proposed that the failure to disambiguate self-induced from externally generated sensory input may cause some of the positive symptoms in schizophrenia such as auditory hallucinations and delusions of passivity. Here, we review the current data on the role of efference copy signals within different sensory modalities as well as the behavioral, structural and functional abnormalities in clinical groups that support this hypothesis.
Collapse
Affiliation(s)
- Laura K Pynn
- Centre for Vision Research, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
32
|
López Hill X, Scorza MC. Role of the anterior thalamic nucleus in the motor hyperactivity induced by systemic MK-801 administration in rats. Neuropharmacology 2012; 62:2440-6. [PMID: 22353285 DOI: 10.1016/j.neuropharm.2012.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/04/2012] [Accepted: 01/28/2012] [Indexed: 10/28/2022]
Abstract
Non-competitive N-methyl-D-aspartate receptor (NMDA-R) antagonists have been extensively used in rodents to model psychotic symptoms of schizophrenia. Although the motor syndrome induced by acute and systemic administration of low doses of dizocilpine (MK-801) has been extensively characterized, its neurobiological basis is not fully understood. NMDA-R antagonists can disinhibit excitatory inputs in certain brain areas, but the precise circuitry is not fully known. We examined the involvement of the anterior thalamic nucleus (ATN) in hyperlocomotion and other related behaviors (stereotypies, ataxia signs) induced after acute systemic administration of MK-801. Since GABAergic neurons of the reticular thalamic nucleus (RTN) exert the main inhibitory control on thalamic projection neurons, we hypothesized that systemically injected MK-801 might block NMDA-R on RTN GABAergic neurons. This effect would subsequently result in disinhibition of GABAergic inputs onto ATN projections to cortical motor areas, thereby inducing behavioral effects. We evaluated the behavioral syndrome induced by the systemic administration MK-801 (0.2 mg/kg) in control rats and in rats subjected to a bilateral stereotaxic infusion of the GABA(A) agonist muscimol (0.2 μl of 2.5 and 5.0 mM; 0.5-1 nmol per application, respectively) into the ATN. As previously reported, MK-801-induced hyperlocomotion in parallel with disorganized movements (e.g. not guided by normal exploration) slight ataxia signs and stereotypies. All responses were antagonized by pre-infusion of muscimol but not saline into the ATN. According to our results we suggest that the ATN plays a role on hyperlocomotion evoked by MK-801 and could involve a thalamic GABAergic disinhibition mechanism.
Collapse
Affiliation(s)
- Ximena López Hill
- Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay
| | | |
Collapse
|
33
|
Somenarain L, Jones LB. Dendritic and spine alterations in areas 9 and 17 in schizophrenia and Huntington chorea and the role of neuroleptic exposure. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojpsych.2012.23032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Brown GG, Lee JS, Strigo IA, Caligiuri MP, Meloy MJ, Lohr J. Voxel-based morphometry of patients with schizophrenia or bipolar I disorder: a matched control study. Psychiatry Res 2011; 194:149-56. [PMID: 21924872 PMCID: PMC3196272 DOI: 10.1016/j.pscychresns.2011.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 05/06/2011] [Accepted: 05/15/2011] [Indexed: 12/25/2022]
Abstract
Controlled trials provide critical tests of hypotheses generated by meta-analyses. Two recent meta-analyses have reported that gray matter volumes of schizophrenia and bipolar I patients differ in the amygdala, hippocampus, or perigenual anterior cingulate. The present magnetic resonance imaging study tested these hypotheses in a cross-sectional voxel-based morphometry (VBM) design of 17 chronic schizophrenia and 15 chronic bipolar patients and 21 healthy subjects matched for age, gender and duration of illness. Whole brain gray matter volume of both the schizophrenia and bipolar groups was smaller than among healthy control subjects. Regional voxel-wise comparisons showed that gray matter volume was smallest within frontal and temporal regions of both patient groups. Region of interest analyses found moderately large to large differences between schizophrenia and healthy subjects in the amygdala and hippocampus. There were no group differences in the perigenual anterior cingulate. When schizophrenia and bipolar groups were directly compared, the schizophrenia group showed smaller gray matter volumes in right subcortical regions involving the right hippocampus, putamen, and amygdala. The hippocampal and amygdala findings confirm predictions derived from recent meta-analyses. These structural abnormalities may be important factors in the differential manifestations of these two functional psychotic disorders.
Collapse
|
35
|
Mouchet-Mages S, Rodrigo S, Cachia A, Mouaffak F, Olie JP, Meder JF, Oppenheim C, Krebs MO. Correlations of cerebello-thalamo-prefrontal structure and neurological soft signs in patients with first-episode psychosis. Acta Psychiatr Scand 2011; 123:451-8. [PMID: 21219267 DOI: 10.1111/j.1600-0447.2010.01667.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study aimed at determining brain structural imaging correlates of neurological soft signs (NSS) in patients suffering from a first-episode psychosis. METHOD Fifty-two patients with a DSMIV diagnosis of first-episode psychosis (schizophrenia or schizophrenia spectrum disorder) were consecutively included. Subjects were assessed using a standardized neurological examination for motor coordination, motor integration and sensory integration. Anatomical magnetic resonance images (MRI) were analysed in the whole brain using optimized voxel-based morphometry. RESULTS Neurological soft signs (NSS) total score (P-corrected = 0.013) and motor integration subscore (P-corrected = 0.035) were found to negatively correlate with grey matter structure of the dorsolateral prefrontal cortices. Motor coordination subscore was positively correlated with grey matter structure of the thalami (P-corrected = 0.002) and negatively with white matter structure of the cerebellum (P-corrected = 0.034). The addition of age and gender as covariate yielded similar results. We did not find any correlation between neither sensory integration subscore and grey matter structure nor NSS total score, motor integration subscore and voxel-based morphometry (VBM) white matter structure. CONCLUSION Structural alteration in the cerebello-thalamo-prefrontal network is associated with neurological soft signs in schizophrenia, a candidate network for 'cognitive dysmetria'.
Collapse
Affiliation(s)
- S Mouchet-Mages
- INSERM, U, Laboratory of Pathophysiology of Psychiatric Diseases, Faculty of Medecine Paris Descartes, Service Hospitalo Universitaire, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cortical regional differences of delta waves during all-night sleep in schizophrenia. Schizophr Res 2011; 126:284-90. [PMID: 21112744 DOI: 10.1016/j.schres.2010.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/25/2010] [Accepted: 11/01/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Delta sleep is mediated by thalamocortical circuits and is postulated to be abnormal in schizophrenia. Delta wave deficits during sleep have been observed in patients with schizophrenia. Negative symptoms have been reported to reflect frontal lobe dysfunction and to be associated with decreased delta wave sleep. This investigation was undertaken to identify cortical functional abnormalities in patients with schizophrenia shown on the electroencephalogram. METHODS We compared seventeen male, medically treated or neuroleptic-naive outpatients with schizophrenia and 18 healthy male volunteers by all-night polysomnography and investigated cortical regional differences of delta waves. All-night sleep data was evaluated by period amplitude analyses. Delta waves during sleep were investigated in bilateral frontal, central, parietal, and occipital regions by computer analysis. The associations between delta waves in all regions and measures of clinical variables were also estimated. RESULTS Patients with schizophrenia showed lower total delta wave counts during all-night sleep than did control subjects in all regions. Control subjects showed significantly higher delta wave counts in the right frontal and central region than in the left, which was not observed in patients with schizophrenia. Significant inverse correlations were observed between negative symptom scores and delta wave counts in all regions. Control subjects showed significant inverse correlations between delta wave counts and age, which were not identified in patients with schizophrenia. CONCLUSIONS Delta wave deficits in all regions may reflect thalamocortical dysfunction in schizophrenia. Reduced right frontal and central delta wave dominance is suggested to be involved in the pathophysiology of schizophrenia.
Collapse
|
37
|
Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 2011; 36:316-38. [PMID: 20844478 PMCID: PMC3052853 DOI: 10.1038/npp.2010.156] [Citation(s) in RCA: 373] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 12/27/2022]
Abstract
Although schizophrenia is an illness that has been historically characterized by the presence of positive symptomatology, decades of research highlight the importance of cognitive deficits in this disorder. This review proposes that the theoretical model of cognitive control, which is based on contemporary cognitive neuroscience, provides a unifying theory for the cognitive and neural abnormalities underlying higher cognitive dysfunction in schizophrenia. To support this model, we outline converging evidence from multiple modalities (eg, structural and functional neuroimaging, pharmacological data, and animal models) and samples (eg, clinical high risk, genetic high risk, first episode, and chronic subjects) to emphasize how dysfunction in cognitive control mechanisms supported by the prefrontal cortex contribute to the pathophysiology of higher cognitive deficits in schizophrenia. Our model provides a theoretical link between cellular abnormalities (eg, reductions in dentritic spines, interneuronal dysfunction), functional disturbances in local circuit function (eg, gamma abnormalities), altered inter-regional cortical connectivity, a range of higher cognitive deficits, and symptom presentation (eg, disorganization) in the disorder. Finally, we discuss recent advances in the neuropharmacology of cognition and how they can inform a targeted approach to the development of effective therapies for this disabling aspect of schizophrenia.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry, UC Davis Imaging Research Center, Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Tara A Niendam
- Department of Psychiatry, UC Davis Imaging Research Center, Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Michael J Minzenberg
- Department of Psychiatry, UC Davis Imaging Research Center, Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Cameron S Carter
- Department of Psychiatry, UC Davis Imaging Research Center, Davis School of Medicine, University of California, Sacramento, CA, USA
| |
Collapse
|
38
|
Abstract
BACKGROUND People with schizophrenia are often found to have smaller brains and larger brain ventricles than normal, but the role of antipsychotic medication remains unclear. METHOD We conducted a systematic review of magnetic resonance imaging (MRI) studies. We included longitudinal studies of brain changes in patients taking antipsychotic drugs and we examined studies of antipsychotic-naive patients for comparison purposes. RESULTS Fourteen out of 26 longitudinal studies showed a decline in global brain or grey-matter volume or an increase in ventricular or cerebrospinal fluid (CSF) volume during the course of drug treatment, including the largest studies conducted. The frontal lobe was most consistently affected, but overall changes were diffuse. One large study found different degrees of volume loss with different antipsychotics, and another found that volume changes were associated with taking medication compared with taking none. Analyses of linear associations between drug exposure and brain volume changes produced mixed results. Five out of 21 studies of patients who were drug naive, or had only minimal prior treatment, showed some differences from controls in volumes of interest. No global differences were reported in three studies of drug-naive patients with long-term illness. Studies of high-risk groups have not demonstrated differences from controls in global or lobar brain volumes. CONCLUSIONS Some evidence points towards the possibility that antipsychotic drugs reduce the volume of brain matter and increase ventricular or fluid volume. Antipsychotics may contribute to the genesis of some of the abnormalities usually attributed to schizophrenia.
Collapse
Affiliation(s)
- J Moncrieff
- Department of Mental Health Sciences, University College London, UK.
| | | |
Collapse
|
39
|
Mamah D, Conturo TE, Harms MP, Akbudak E, Wang L, McMichael AR, Gado MH, Barch DM, Csernansky JG. Anterior thalamic radiation integrity in schizophrenia: a diffusion-tensor imaging study. Psychiatry Res 2010; 183:144-50. [PMID: 20619618 PMCID: PMC3887223 DOI: 10.1016/j.pscychresns.2010.04.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 03/30/2010] [Accepted: 04/26/2010] [Indexed: 11/26/2022]
Abstract
The anterior limb of the internal capsule (ALIC) is a white matter structure, the medial portion of which includes the anterior thalamic radiation (ATR) carrying nerve fibers between thalamus and prefrontal cortex. ATR abnormalities have a possible link with cognitive abnormalities and negative symptoms in schizophrenia. We aimed to study the fiber integrity of the ATR more selectively by isolating the medial portion of the ALIC using region-of-interest based methodology. Diffusion-tensor imaging was used to measure the anisotropy of total ALIC (tALIC) and medial ALIC (mALIC) in 39 schizophrenia and 33 control participants, matched for age/gender/handedness. Relationships between anisotropy, psychopathology, and cognitive performance were analyzed. Compared with controls, schizophrenia participants had 4.55% lower anisotropy in right tALIC, and 5.38% lower anisotropy in right mALIC. There were no significant group anisotropy differences on the left. Significant correlations were observed between right ALIC integrity and relevant domains of cognitive function (e.g., executive function, working memory). Our study suggests an asymmetric microstructural change in ALIC in schizophrenia involving the right side, which is only minimally stronger in mALIC, and which correlates with cognitive impairment. Microstructural changes in the ALIC may be linked to cognitive dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - Thomas E. Conturo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael P. Harms
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Erbil Akbudak
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amanda R. McMichael
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Mokhtar H. Gado
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri,Department of Psychology, Washington University School of Medicine, St. Louis, Missouri
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
40
|
Welsh RC, Chen AC, Taylor SF. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull 2010; 36:713-22. [PMID: 18990709 PMCID: PMC2894601 DOI: 10.1093/schbul/sbn145] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The thalamus plays a central and dynamic role in information transmission and processing in the brain. Multiple studies reveal increasing association between schizophrenia and dysfunction of the thalamus, in particular the medial dorsal nucleus (MDN), and its projection targets. The medial dorsal thalamic connections to the prefrontal cortex are of particular interest, and explicit in vivo evidence of this connection in healthy humans is sparse. Additionally, recent neuroimaging evidence has demonstrated disconnection among a variety of cortical regions in schizophrenia, though the MDN thalamic prefrontal cortex network has not been extensively probed in schizophrenia. To this end, we have examined thalamo-anterior cingulate cortex connectivity using detection of low-frequency blood oxygen level dependence fluctuations (LFBF) during a resting-state paradigm. Eleven schizophrenic patients and 12 healthy control participants were enrolled in a study of brain thalamocortical connectivity. Resting-state data were collected, and seed-based connectivity analysis was performed to identify the thalamocortical network. First, we have shown there is MDN thalamocortical connectivity in healthy controls, thus demonstrating that LFBF analysis is a manner to probe the thalamocortical network. Additionally, we have found there is statistically significantly reduced thalamocortical connectivity in schizophrenics compared with matched healthy controls. We did not observe any significant difference in motor networks between groups. We have shown that the thalamocortical network is observable using resting-state connectivity in healthy controls and that this network is altered in schizophrenia. These data support a disruption model of the thalamocortical network and are consistent with a disconnection hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Robert C Welsh
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0553, USA.
| | | | | |
Collapse
|
41
|
Rao NP, Kalmady S, Arasappa R, Venkatasubramanian G. Clinical correlates of thalamus volume deficits in anti-psychotic-naïve schizophrenia patients: A 3-Tesla MRI study. Indian J Psychiatry 2010; 52:229-35. [PMID: 21180407 PMCID: PMC2990822 DOI: 10.4103/0019-5545.70975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Thalamus, the sensory and motor gateway to the cortex, plays an important role in cognitive and perceptual disturbances in schizophrenia. Studies examining the volume of the thalamus in schizophrenia have reported conflicting findings due to the presence of potential confounding factors such as low-resolution imaging and anti-psychotics. The thalamus volume in anti-psychotic-naïve patients determined using high-resolution 3-Tesla magnetic resonance imaging (MRI) has not yet been examined. MATERIALS AND METHODS Using 3-Tesla MRI, this study for the first time examined anti-psychotic-naïve schizophrenia patients (n=18; M:F:11:7) in comparison with healthy controls (n=19;M:F:9:10) group-matched for age, sex, handedness, education, and socioeconomic status. The volume of the thalamus was measured using a three-dimensional, interactive, semi-automated analysis with good inter-rater and intra-rater reliability. Psychopathology was assessed using the Scale for Assessment of Negative Symptoms (SANS) and the Scale for Assessment of Positive Symptoms (SAPS). RESULTS Right, left, and total thalamus volumes of patients were significantly smaller than those of controls after controlling for the potential confounding effect of intracranial volume. Thalamus volumes had significant positive correlation with positive symptoms score (SAPS) and significant negative correlation with negative symptoms score (SANS). CONCLUSIONS Thalamus volume deficits in anti-psychotic-naïve schizophrenia patients support a neurodevelopmental pathogenesis. The contrasting correlation of thalamus volume deficits with psychopathology scores suggests that contrasting pruning aberrations underlie symptom genesis in schizophrenia.
Collapse
Affiliation(s)
- Naren P. Rao
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore - 560 029, India
| | - Sunil Kalmady
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore - 560 029, India
| | - Rashmi Arasappa
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore - 560 029, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore - 560 029, India
| |
Collapse
|
42
|
de Manzano O, Cervenka S, Karabanov A, Farde L, Ullén F. Thinking outside a less intact box: thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS One 2010; 5:e10670. [PMID: 20498850 PMCID: PMC2871784 DOI: 10.1371/journal.pone.0010670] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 04/11/2010] [Indexed: 11/29/2022] Open
Abstract
Several lines of evidence support that dopaminergic neurotransmission plays a role in creative thought and behavior. Here, we investigated the relationship between creative ability and dopamine D2 receptor expression in healthy individuals, with a focus on regions where aberrations in dopaminergic function have previously been associated with psychotic symptoms and a genetic liability to schizophrenia. Scores on divergent thinking tests (Inventiveness battery, Berliner Intelligenz Struktur Test) were correlated with regional D2 receptor densities, as measured by Positron Emission Tomography, and the radioligands [11C]raclopride and [11C]FLB 457. The results show a negative correlation between divergent thinking scores and D2 density in the thalamus, also when controlling for age and general cognitive ability. Hence, the results demonstrate that the D2 receptor system, and specifically thalamic function, is important for creative performance, and may be one crucial link between creativity and psychopathology. We suggest that decreased D2 receptor densities in the thalamus lower thalamic gating thresholds, thus increasing thalamocortical information flow. In healthy individuals, who do not suffer from the detrimental effects of psychiatric disease, this may increase performance on divergent thinking tests. In combination with the cognitive functions of higher order cortical networks, this could constitute a basis for the generative and selective processes that underlie real life creativity.
Collapse
Affiliation(s)
- Orjan de Manzano
- Neuropediatric Research Unit, Department of Women's and Children's Health and Stockholm Brain Institute, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
43
|
Dopamine D2 receptor density in the limbic striatum is related to implicit but not explicit movement sequence learning. Proc Natl Acad Sci U S A 2010; 107:7574-9. [PMID: 20368439 DOI: 10.1073/pnas.0911805107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A large body of literature suggests that motor sequence learning involves dopamine-modulated plastic processes in the basal ganglia. Sequence learning can occur both implicitly, without conscious awareness and intention to learn, and explicitly, i.e., under conscious control. Here, we investigated whether individual differences in implicit and explicit sequence learning of movement sequences in a group of 15 healthy participants are related to dopamine D2 receptor densities in functional subregions of the striatum. Sequence learning was assessed using the serial reaction time task, and measures of implicit and explicit knowledge were estimated using a process dissociation procedure. Correlation analyses were performed between these measures and D2 receptor densities, which had been measured previously with positron emission tomography. Striatal D2 densities were negatively related to measures of sequence learning. In the limbic subregion, D2 densities were specifically related to implicit but not explicit learning. These findings suggest that individual differences in striatal DA function underlie differences in sequence learning ability and support that implicit and explicit sequence learning depend on partly distinct neural circuitry. The findings are also in line with the general view that implicit learning systems are evolutionarily primitive and tend to rely more on phylogenetically old neural circuitry than does explicit learning and cognition.
Collapse
|
44
|
|
45
|
Oganesyan GA, Kambarova DK, Dobek VA, Titkov ES, Zhernovaya NN, Oganesyan SG. Dissolution of the wakefulness-sleep cycle in patients with catatonic form of schizophrenia. J EVOL BIOCHEM PHYS+ 2009. [DOI: 10.1134/s0022093009040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Selemon LD, Begović A, Rakic P. Selective reduction of neuron number and volume of the mediodorsal nucleus of the thalamus in macaques following irradiation at early gestational ages. J Comp Neurol 2009; 515:454-64. [PMID: 19459221 PMCID: PMC2716797 DOI: 10.1002/cne.22078] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurons in the macaque brain arise from progenitors located near the cerebral ventricles in a temporally segregated manner such that lethal doses of ionizing irradiation, if administered over a discrete time interval, can deplete individual nuclei selectively. A previous study showed that neuron number in the dorsal lateral geniculate nucleus is reduced following early gestational exposure to x-irradiation (Algan and Rakic [1997] J. Comp. Neurol. 12:335-352). Here we examine whether similarly timed irradiation decreases neuron number in three associational thalamic nuclei: mediodorsal (MD), anterior, and pulvinar. Ten macaques were exposed to multiple doses of x-rays (total exposure (175-350 cGy) in early gestation (E33-E42) or midgestation (E70-E90); eight nonirradiated macaques were controls. Only the early-irradiated monkeys, not the midgestationally irradiated animals, exhibited deficits in whole-thalamic neuron (-15%) and glia numbers (-21%) compared with controls. Reduction of neuron number (-26%) and volume (-29%) was particularly pronounced in MD. In contrast, cell number and volume were not significantly decreased in the anterior or pulvinar nuclei following early gestational irradiation. Thus, reduced thalamic neuron number was associated specifically with irradiation in early gestation. Persistence of the thalamic neuronal deficit in adult animals indicates that prenatally deleted neurons had not been replenished during maturation or in adulthood. The selective reduction of MD neuron number also supports the protomap hypothesis that neurons of each thalamic nucleus originate sequentially from separate lines of neuronal stem cells (Rakic [1977a] J. Comp. Neurol. 176:23-52). The early gestationally irradiated macaque is discussed as a potentially useful model for studying the neurodevelopmental pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Lynn D Selemon
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8001, USA.
| | | | | |
Collapse
|
47
|
Episodic Memory in Schizophrenia. Neuropsychol Rev 2009; 19:312-23. [DOI: 10.1007/s11065-009-9107-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/29/2009] [Indexed: 01/25/2023]
|
48
|
Yoo SY, Yeon S, Choi CH, Kang DH, Lee JM, Shin NY, Jung WH, Choi JS, Jang DP, Kwon JS. Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus. Schizophr Res 2009; 111:86-93. [PMID: 19406622 DOI: 10.1016/j.schres.2009.03.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/21/2009] [Accepted: 03/21/2009] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Reduced N-acetylaspartate levels in regions of the frontal cortex, including the anterior cingulate cortex, dorsolateral prefrontal cortex, and thalamus, involved in the pathophysiology of schizophrenia suggest that brain metabolite abnormalities may be a marker of genetic vulnerability to schizophrenia. We used proton magnetic resonance spectroscopy (H-MRS) to acquire absolute concentrations of brain metabolites in subjects with a high genetic risk of schizophrenia to investigate the potential relationship between unexpressed genetic liability to schizophrenia and neuronal dysfunction. METHOD Included in the study were 22 subjects who had at least two relatives with schizophrenia (high genetic risk group) and 22 controls with no second-degree relatives with schizophrenia. Absolute concentrations of N-acetylaspartate, creatine, choline, glutamate/glutamine, and myo-inositol and the ratios of metabolites in the anterior cingulate cortex, left dorsolateral prefrontal cortex, and left thalamus were measured using H-MRS at 1.5 Tesla. RESULTS Relative to the controls, the high genetic risk group showed significant differences in absolute metabolite levels in the spectra of the regions of the left thalamus, including significant decreases in N-acetylaspartate, creatine, and choline concentrations. CONCLUSIONS The study points to neuronal dysfunction, and in particular thalamic dysfunction, as a key region of the vulnerability marker of schizophrenia. Further studies should examine the nature of the thalamus more intensively to further our understanding of thalamic dysfunction as a vulnerability marker.
Collapse
Affiliation(s)
- So Young Yoo
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Coscia DM, Narr KL, Robinson DG, Hamilton LS, Sevy S, Burdick KE, Gunduz‐Bruce H, McCormack J, Bilder RM, Szeszko PR. Volumetric and shape analysis of the thalamus in first-episode schizophrenia. Hum Brain Mapp 2009; 30:1236-45. [PMID: 18570200 PMCID: PMC6870587 DOI: 10.1002/hbm.20595] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 03/11/2008] [Accepted: 03/20/2008] [Indexed: 01/17/2023] Open
Abstract
Thalamic abnormalities have been implicated in the pathogenesis of schizophrenia, although the majority of studies used chronic samples treated extensively with antipsychotics. Moreover, the clinical and neuropsychological correlates of these abnormalities remain largely unknown. Using high-resolution MR imaging and novel methods for shape analysis, we investigated thalamic subregions in 35 (25 M/10 F) first-episode schizophrenia patients compared with 33 (23 M/10 F) healthy volunteers. The right and left thalami were traced bilaterally on coronal brain slices and volumes were compared between groups. In addition, regional abnormalities were identified by comparing distances, measured from homologous thalamic surface points to the central core of each individual's surface model, between groups in 3D space. Patients had significantly less total thalamic volume compared with healthy volunteers. Statistical mapping demonstrated most pronounced shape abnormalities in the pulvinar; however, estimated false discovery rates in these regions were sizable. Smaller thalamus volume was significantly correlated with worse overall neuropsychological functioning and specific deficits were observed in the language, motor, and executive domains. There were no significant associations between thalamus volume and positive or negative symptoms. Our findings suggest that thalamic abnormalities are evident at the onset of a first episode of schizophrenia prior to extensive pharmacologic intervention and that these abnormalities have neuropsychological correlates.
Collapse
Affiliation(s)
- Denise M. Coscia
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore ‐ Long Island Jewish Health System, Glen Oaks, New York
| | - Katherine L. Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, UCLA Geffen School of Medicine, Los Angeles, California
| | - Delbert G. Robinson
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore ‐ Long Island Jewish Health System, Glen Oaks, New York
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, New York
- Feinstein Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, New York
| | - Liberty S. Hamilton
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, UCLA Geffen School of Medicine, Los Angeles, California
| | - Serge Sevy
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore ‐ Long Island Jewish Health System, Glen Oaks, New York
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, New York
| | - Katherine E. Burdick
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore ‐ Long Island Jewish Health System, Glen Oaks, New York
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, New York
- Feinstein Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, New York
| | - Handan Gunduz‐Bruce
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Joanne McCormack
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore ‐ Long Island Jewish Health System, Glen Oaks, New York
| | - Robert M. Bilder
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, UCLA Geffen School of Medicine, Los Angeles, California
| | - Philip R. Szeszko
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore ‐ Long Island Jewish Health System, Glen Oaks, New York
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, New York
- Feinstein Institute for Medical Research, North Shore – Long Island Jewish Health System, Manhasset, New York
| |
Collapse
|
50
|
Byne W, Hazlett EA, Buchsbaum MS, Kemether E. The thalamus and schizophrenia: current status of research. Acta Neuropathol 2009; 117:347-68. [PMID: 18604544 DOI: 10.1007/s00401-008-0404-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 12/21/2022]
Abstract
The thalamus provides a nodal link for multiple functional circuits that are impaired in schizophrenia (SZ). Despite inconsistencies in the literature, a meta analysis suggests that the volume of the thalamus relative to that of the brain is decreased in SZ. Morphometric neuroimaging studies employing deformation, voxel-based and region of interest methodologies suggest that the volume deficit preferentially affects the thalamic regions containing the anterior and mediodorsal nuclei, and the pulvinar. Postmortem design-based stereological studies have produced mixed results regarding volume and neuronal deficits in these nuclei. This review examines those aspects of thalamic circuitry and function that suggest salience to SZ. Evidence for anomalies of thalamic structure and function obtained from postmortem and neuroimaging studies is then examined and directions for further research proposed.
Collapse
Affiliation(s)
- William Byne
- Department of Psychiatry, James J Peters VA Medical Center, Research Bldg. Room 2F39, Bronx, NY 10468, USA.
| | | | | | | |
Collapse
|