1
|
Kravariti E, Fragkaki AM, Georgiades A, Cardno AG, Kane F, Kalidindi S, Schulze KK, McDonald C, Picchioni MM, Hall MH, Watson CJ, Glenthøj BY, Ebdrup BH, Fagerlund B, Lemvigh CK, Van Haren NEM, Kahn R, Murray RM, Rijsdijk F, Toulopoulou T. Transdiagnostic Neurocognitive Endophenotypes for Schizophrenia, Bipolar I Disorder and a Broad Psychosis/Bipolar I Disorder Phenotype: A Mega-Analysis of Twin and Sibling Data. Schizophr Bull 2025:sbaf050. [PMID: 40341418 DOI: 10.1093/schbul/sbaf050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
BACKGROUND Psychiatric research is increasingly embracing a paradigm shift from categorical diagnoses to neurobiologically meaningful dimensions that cross current diagnostic boundaries. This transposition calls for redefining endophenotypes to accommodate transdiagnostic vulnerabilities. We sought to identify shared and disorder-specific neurocognitive endophenotypes for schizophrenia, bipolar I disorder (BD-I) and a broad psychosis/BD-I phenotype in a mega-analysis of twin/sibling data. STUDY DESIGN We performed genetic model fitting to intelligence (IQ) and computerised neurocognitive data derived from 1050 twins/siblings from three research centres in the UK, Denmark and the Netherlands, affected (n = 257) or unaffected (n = 793) by schizophrenia, other primary psychoses and BD-I. We examined the endophenotypic status of IQ, spatial working memory (SWM), visual recognition, sustained attention/rapid visual processing (RVP), mental flexibility, and spatial planning/problem solving (all validated as endophenotypes for schizophrenia in previous studies) in relation to schizophrenia, BD-I and the broad phenotype. STUDY RESULTS After covarying for age, gender, education and research centre, IQ and SWM emerged as transdiagnostic endophenotypes, showing statistically significant heritabilities (h2 67-75% and 28-30%, respectively), phenotypic correlations (rph |0.14|-|0.25|) and genetic correlations (rg |0.18|-|0.42|) with all diagnostic phenotypes. Additionally, all remaining cognitive domains received validation as endophenotypes for the broad phenotype, and all, but RVP, for schizophrenia. CONCLUSIONS IQ and SWM tap into transdiagnostic elements of the genetic vulnerabilities to psychosis and BD-I. Our findings add to emergent evidence which spurs cautious optimism that a psychiatric nosology based on aetiology rather than phenotypical classifications may be feasible in the future, enabling biotyping and novel approaches to treatment.
Collapse
Affiliation(s)
- Eugenia Kravariti
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Anna-Maria Fragkaki
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- First Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens 115 27, Greece, Athens, Greece
| | - Anna Georgiades
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- Brent Early Intervention Service, CNWL, NHS Foundation Trust, 27-29 Fairlight Avenue, London NW10 8AL, United Kingdom
| | - Alastair G Cardno
- Division of Psychological and Social Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Fergus Kane
- Department of Clinical, Educational and Health Psychology, University College London, London WC1E 6BT, United Kingdom
| | - Sridevi Kalidindi
- Recovery and Rehabilitation Team, Croydon Directorate, South London and Maudsley NHS Foundation Trust, London CR0 2PR, United Kingdom
| | - Katja K Schulze
- Centre for Anxiety Disorders and Trauma (CADAT), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, United Kingdom
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Marco M Picchioni
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts MA 02478, United States
| | - Cameron J Watson
- South London and Maudsley NHS Foundation Trust, London SE5 8AZ, United Kingdom
- Neuropsychiatry Research and Education Group Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London SE5 8AF, London, United Kingdom
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR)/Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, DK 2600, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR)/Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, DK 2600, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR)/Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, DK 2600, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, 2900 Hellerup, Denmark
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR)/Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, DK 2600, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Neeltje E M Van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Rene Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Park Ave, New York, NY 10029, United States
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Fruhling Rijsdijk
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- Psychology Department, Faculty of Social Sciences, Anton de Kom University of Suriname, P.O.B. 9212 Paramaribo, Suriname, South America
| | - Timothea Toulopoulou
- First Department of Psychiatry, School of Medicine, National and Kapodistrian University of Athens 115 27, Greece, Athens, Greece
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara 06800, Turkey
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Park Ave, New York, NY 10029, United States
| |
Collapse
|
2
|
Jiang C, Wang J, Sun Y, Tan S, Percell SM, Zhou Z, Pan JQ, Hall MH. Unveiling distinct representations of P3a in schizophrenia through two-stimulus and three-stimulus auditory oddball paradigms. Schizophr Res 2025; 277:159-168. [PMID: 40073614 DOI: 10.1016/j.schres.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND P3a event-related potential (ERP) is considered a potential biomarker for schizophrenia (SZ), can be elicited through both passive two-stimulus and active three-stimulus auditory oddball paradigms. While both types of P3a reflect involuntary attention shifts, the nuanced understanding of what P3a represents in different contexts is important and rarely studied. This study aims to examine correlations between P3a ERPs elicited from different paradigms and associations of each P3a with cognitive function, clinical symptoms, and antipsychotic medication. METHODS Our sample included 178 SZ patients and 127 healthy controls (HC). Data on two-stimulus paradigm, three-stimulus oddball paradigm, Chinese version of MATRICS Consensus Cognitive Battery (MCCB), symptom severity, and medication use were collected. RESULTS In both paradigms, SZ group's P3a amplitude was significantly reduced compared to HC's (both p < 0.05). P3a evoked by the two-stimulus paradigm and the three-stimulus paradigm were not correlated (r = -0.06, p = 0.661). Three-stimulus paradigm-P3a was significantly correlated with attention/vigilance (r = 0.27, p = 0.017) in SZ, and with working memory (r = 0.39, p = 0.001) and overall MCCB score (r = 0.25, p = 0.042) in HC. Additionally, the two-stimulus paradigm-P3a correlated with olanzapine equivalent antipsychotic dose (r = -0.26, p = 0.022). CONCLUSIONS Our findings offer new insights into the role of P3a in clinical research. P3a ERPs from different paradigms may represent functionally distinct components. The context in which the P3a is elicited should be taken into account when discussing its functional or neurocognitive significance.
Collapse
Affiliation(s)
- Chenguang Jiang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Jun Wang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Yifan Sun
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Shaun M Percell
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Zhenhe Zhou
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China.
| | - Jen Q Pan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States.
| | - Mei-Hua Hall
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, United States.
| |
Collapse
|
3
|
Li S, Chan SY, Higgins A, Hall MH. Sensory gating, neurocognition, social cognition and real-life functioning: a 2-year follow-up of early psychosis. Psychol Med 2023; 53:2540-2552. [PMID: 37310299 DOI: 10.1017/s0033291721004463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Diminished sensory gating (SG) is a robust finding in psychotic disorders, but studies of early psychosis (EP) are rare. It is unknown whether SG deficit leads to poor neurocognitive, social, and/or real-world functioning. This study aimed to explore the longitudinal relationships between SG and these variables. METHODS Seventy-nine EP patients and 88 healthy controls (HCs) were recruited at baseline. Thirty-three and 20 EP patients completed 12-month and 24-month follow-up, respectively. SG was measured using the auditory dual-click (S1 & S2) paradigm and quantified as P50 ratio (S2/S1) and difference (S1-S2). Cognition, real-life functioning, and symptoms were assessed using the MATRICS Consensus Cognitive Battery, Global Functioning: Social (GFS) and Role (GFR), Multnomah Community Ability Scale (MCAS), Awareness of Social Inference Test (TASIT), and the Positive and Negative Syndrome Scale (PANSS). Analysis of variance (ANOVA), chi-square, mixed model, correlation and regression analyses were used for group comparisons and relationships among variables controlling for potential confounding variables. RESULTS In EP patients, P50 ratio (p < 0.05) and difference (p < 0.001) at 24-month showed significant differences compared with that at baseline. At baseline, P50 indices (ratio, S1-S2 difference, S1) were independently associated with GFR in HCs (all p < 0.05); in EP patients, S2 amplitude was independently associated with GFS (p = 0.037). At 12-month and 24-month, P50 indices (ratio, S1, S2) was independently associated with MCAS (all p < 0.05). S1-S2 difference was a trending predictor of future function (GFS or MCAS). CONCLUSIONS SG showed progressive reduction in EP patients. P50 indices were related to real-life functioning.
Collapse
Affiliation(s)
- Shen Li
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Department of Psychiatry, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shi Yu Chan
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Translational Neurosciences, Singapore Institute for Clinical Sciences 117609, Singapore
| | - Amy Higgins
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Mei-Hua Hall
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|
4
|
P50 sensory gating, cognitive deficits and depressive symptoms in first-episode antipsychotics-naïve schizophrenia. J Affect Disord 2023; 324:153-161. [PMID: 36587903 DOI: 10.1016/j.jad.2022.12.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Sensory gating P50 (SG-P50) may be involved in the pathophysiological mechanisms of impaired cognition in schizophrenia (SCZ). Comorbid depressive symptoms are common in SCZ patients and are also found to be associated with their cognitive impairment. However, it is unclear whether SG-P50 is abnormal in first episode antipsychotics naïve (FEAN) SCZ patients with depressive symptoms. Our aimed to investigate the relationships between SG-P50, depressive symptoms and neurocognition in FEAN-SCZ patients. METHODS We recruited 103 FEAN-SCZ patients (depression: n = 63; non-depression: n = 40) and 55 healthy controls. SG-P50 was measured using the standard auditory dual-click (S1&S2) paradigm. Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Hamilton Depression Rating Scale-17 (HDRS-17). Cognitive performance was evaluated using the MATRICS Consensus Cognitive Battery (MCCB). RESULTS Compared with non-depressive patients, depressive patients had a significantly larger S2 amplitude (p = 0.005) and a higher S2/S1 ratio at trend level (p = 0.075) after corrected. There were significant differences in the scores of CPT-IP and Mazes (NAB) between depressive and non-depressive FEAN-SCZ patients (both p values < 0.05). For all patients, the SG-P50 S2/S1 ratio was significantly correlated with HDRS-17 score (r = 0.23, p = 0.020) and MCCB-Symbol coding (r = -0.16, p = 0.043). For depressive FEAN-SCZ patients, S2 amplitude was an independent predictor of the MCCB-Mazes (NAB) (β = -0.31, t = -2.52, p = 0.015). CONCLUSIONS SG-P50 deficit may be an informational biomarker for depressive symptoms and neurocognitive impairments in FEAN-SCZ patients.
Collapse
|
5
|
Li X, Deng W, Xue R, Wang Q, Ren H, Wei W, Zhang Y, Li M, Zhao L, Du X, Meng Y, Ma X, Hall MH, Li T. Auditory event-related potentials, neurocognition, and global functioning in drug naïve first-episode schizophrenia and bipolar disorder. Psychol Med 2023; 53:785-794. [PMID: 34474699 DOI: 10.1017/s0033291721002130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Deficits in event-related potential (ERP) including duration mismatch negativity (MMN) and P3a have been demonstrated widely in chronic schizophrenia (SZ) but inconsistent findings were reported in first-episode patients. Psychotropic medications and diagnosis might contribute to different findings on MMN/P3a ERP in first-episode patients. The present study examined MMN and P3a in first episode drug naïve SZ and bipolar disorder (BPD) patients and explored the relationships among ERPs, neurocognition and global functioning. METHODS Twenty SZ, 24 BPD and 49 age and sex-matched healthy controls were enrolled in this study. Data of clinical symptoms [Positive and Negative Symptoms Scale (PANSS), Young Manic Rating Scale (YMRS), Hamilton Depression Rating Scale (HAMD)], neurocognition [Wechsler Adult Intelligence Scale (WAIS), Cattell's Culture Fair Intelligence Test (CCFT), Delay Matching to Sample (DMS), Rapid Visual Information Processing (RVP)], and functioning [Functioning Assessment Short Test (FAST)] were collected. P3a and MMN were elicited using a passive auditory oddball paradigm. RESULTS Significant MMN and P3a deficits and impaired neurocognition were found in both SZ and BPD patients. In SZ, MMN was significantly correlated with FAST (r = 0.48) and CCFT (r = -0.31). In BPD, MMN was significantly correlated with DMS (r = -0.54). For P3a, RVP and FAST scores were significant predictors in SZ, whereas RVP, WAIS and FAST were significant predictors in BPD. CONCLUSIONS The present study found deficits in MMN, P3a, neurocognition in drug naïve SZ and BPD patients. These deficits appeared to link with levels of higher-order cognition and functioning.
Collapse
Affiliation(s)
- Xiaojing Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Rui Xue
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Hongyan Ren
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wei
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiangdong Du
- Suzhou Psychiatry hospital, The Affiliated Guangji Hospital of Soochow University, Jiangsu, China
| | - Yajing Meng
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Tao Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Mental Health Education Center, Sichuan University, Chengdu, Sichuan, China
- Suzhou Psychiatry hospital, The Affiliated Guangji Hospital of Soochow University, Jiangsu, China
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
van der Merwe J, Biagio-de Jager L, Mahomed-Asmail F, Hall JW. Documentation of Peripheral Auditory Function in Studies of the Auditory P300 Response. J PSYCHOPHYSIOL 2022. [DOI: 10.1027/0269-8803/a000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract. A critical review was conducted to examine whether the peripheral hearing status of participants with neurological and psychological disorders was documented in published clinical studies of the auditory P300 response. Literature searches were conducted with three databases: PubMed, PsycINFO, and Scopus. Studies of participants with seven neurological or psychological disorders were included in the study. Each disorder was coupled with the main search phrase in separate searches on each database. Of the total 102 papers which met the inclusion criteria, the majority (64%) did not describe the peripheral hearing sensitivity of participants. In this review with studies that included participants at risk for hearing impairment, particularly age-related hearing loss, only a single publication adequately described formal hearing evaluation. Peripheral hearing status is rarely defined in studies of the P300 response. The inclusion of participants with a hearing loss likely affects the validity of findings for these studies. We recommend formal hearing assessment prior to inclusion of participants in studies of the auditory P300 response. The findings of this study may increase the awareness among researchers outside the field of audiology of the effects of peripheral hearing loss on the auditory P300.
Collapse
Affiliation(s)
- Janushca van der Merwe
- Department of Speech Language Pathology and Audiology, University of Pretoria, South Africa
| | - Leigh Biagio-de Jager
- Department of Speech Language Pathology and Audiology, University of Pretoria, South Africa
| | - Faheema Mahomed-Asmail
- Department of Speech Language Pathology and Audiology, University of Pretoria, South Africa
- Virtual Hearing Lab, Collaborative Initiative between University of Colorado and the University of Pretoria, Aurora, CO, USA
| | - James W. Hall
- Department of Speech Language Pathology and Audiology, University of Pretoria, South Africa
- George Osborne College of Audiology, Salus University, Elkins Park, PA, USA
- Department of Communication Science and Disorders, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
7
|
Chan SY, Nickerson LD, Pathak R, Öngür D, Hall MH. Impact of Substance Use Disorder on Between-Network Brain Connectivity in Early Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac014. [PMID: 35386953 PMCID: PMC8976260 DOI: 10.1093/schizbullopen/sgac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Triple Network Model of psychopathology identifies the salience network (SN), central executive network (CEN), and default mode network (DMN) as key networks underlying the pathophysiology of psychiatric disorders. In particular, abnormal SN-initiated network switching impacts the engagement and disengagement of the CEN and DMN, and is proposed to lead to the generation of psychosis symptoms. Between-network connectivity has been shown to be abnormal in both substance use disorders (SUD) and psychosis. However, none have studied how SUD affects connectivity between sub-networks of the DMN, SN, and CEN in early stage psychosis (ESP) patients. In this study, we collected data from 113 ESP patients and 50 healthy controls to investigate the effect of SUD on between-network connectivity. In addition, we performed sub-group analysis by exploring whether past SUD vs current SUD co-morbidity, or diagnosis (affective vs non-affective psychosis) had a modulatory effect. Connectivity between four network-pairs, consisting of sub-networks of the SN, CEN, and DMN, was significantly different between ESP patients and controls. Two patterns of connectivity were observed when patients were divided into sub-groups with current vs past SUD. In particular, connectivity between right CEN and the cingulo-opercular salience sub-network (rCEN-CON) showed a gradient effect where the severity of abnormalities increased from no history of SUD to past+ to current+. We also observed diagnosis-specific effects, suggesting non-affective psychosis patients were particularly vulnerable to effects of substance use on rCEN-CON connectivity. Our findings reveal insights into how comorbid SUD affects between-network connectivity and symptom severity in ESP.
Collapse
Affiliation(s)
- Shi Yu Chan
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lisa D Nickerson
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Applied Neuroimaging Statistics Laboratory, McLean Hospital, Belmont, MA, USA
| | - Roma Pathak
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Brandeis University, Waltham, MA, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA
- Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Atagun MI, Drukker M, Hall MH, Altun IK, Tatli SZ, Guloksuz S, van Os J, van Amelsvoort T. Meta-analysis of auditory P50 sensory gating in schizophrenia and bipolar disorder. Psychiatry Res Neuroimaging 2020; 300:111078. [PMID: 32361172 DOI: 10.1016/j.pscychresns.2020.111078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022]
Abstract
The ability of the brain to reduce the amount of trivial or redundant sensory inputs is called gating function. Dysfunction of sensory gating may lead to cognitive fragmentation and poor real-world functioning. The auditory dual-click paradigm is a pertinent neurophysiological measure of sensory gating function. This meta-analysis aimed to examine the subcomponents of abnormal P50 waveforms in bipolar disorder and schizophrenia to assess P50 sensory gating deficits and examine effects of diagnoses, illness states (first-episode psychosis vs. schizophrenia, remission vs. episodes in bipolar disorder), and treatment status (medication-free vs. medicated). Literature search of PubMed between Jan 1st 1980 and March 31st 2019 identified 2091 records for schizophrenia, 362 for bipolar disorder. 115 studies in schizophrenia (4932 patients), 16 in bipolar disorder (975 patients) and 10 in first-degree relatives (848 subjects) met the inclusion criteria. P50 sensory gating ratio (S2/S1) and S1-S2 difference were significantly altered in schizophrenia, bipolar disorder and their first-degree relatives. First-episode psychosis did not differ from schizophrenia, however episodes altered P50 sensory gating in bipolar disorder. Medications improve P50 sensory gating alterations in schizophrenia significantly and at trend level in bipolar disorder. Future studies should examine longitudinal course of P50 sensory gating in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Murat Ilhan Atagun
- Department of Psychiatry, Ankara Yildirim Beyazit University Medical School, Universities Region, Ihsan Dogramaci Boulevard. No: 6, Bilkent, Cankaya, Ankara Turkey.
| | - Marjan Drukker
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| | - Mei Hua Hall
- Psychosis Neurobiology Laboratory, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Ilkay Keles Altun
- Department of Psychiatry, Bursa Higher Education Training and Education Hospital, Bursa, Turkey
| | | | - Sinan Guloksuz
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands; King's Health Partners Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, United Kingdom; Department of Psychiatry, Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht, the Netherlands
| |
Collapse
|
9
|
Chan SY, Brady R, Hwang M, Higgins A, Nielsen K, Öngür D, Hall MH. Heterogeneity of Outcomes and Network Connectivity in Early-Stage Psychosis: A Longitudinal Study. Schizophr Bull 2020; 47:138-148. [PMID: 32572485 PMCID: PMC7825010 DOI: 10.1093/schbul/sbaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Imaging studies in psychotic disorders typically examine cross-sectional relationships between magnetic resonance imaging (MRI) signals and diagnosis or symptoms. We sought to examine changes in network connectivity identified using resting-state functional MRI (fMRI) corresponding to divergent functional recovery trajectories and relapse in early-stage psychosis (ESP). Prior studies have linked schizophrenia to hyperconnectivity in the default mode network (DMN). Given the correlations between the DMN and behavioral impairments in psychosis, we hypothesized that dynamic changes in DMN connectivity reflect the heterogeneity of outcomes in ESP. Longitudinal data were collected from 66 ESP patients and 20 healthy controls. Longitudinal cluster analysis identified subgroups of patients with similar trajectories in terms of symptom severity and functional outcomes. DMN connectivity was measured in a subset of patients (n = 36) longitudinally over 2 scans separated by a mean of 12 months. We then compared connectivity between patients and controls, and among the different outcome trajectory subgroups. Among ESP participants, 4 subgroups were empirically identified corresponding to: "Poor," "Middle," "Catch-up," and "Good" trajectory outcomes in the complete dataset (n = 36), and an independent replication (n = 30). DMN connectivity changes differed significantly between functional subgroups (F3,32 = 6.06, P-FDR corrected = .01); DMN connectivity increased over time in the "Poor" outcome cluster (β = +0.145) but decreased over time in the "Catch-up" cluster (β = -0.212). DMN connectivity is dynamic and correlates with a change in functional status over time in ESP. This approach identifies a brain-based marker that reflects important neurobiological processes required to sustain functional recovery.
Collapse
Affiliation(s)
- Shi Yu Chan
- Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, MA,Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, Boston, MA,To whom correspondence should be addressed; Psychosis Neurobiology Lab/Schizophrenia and Bipolar Disorders Program, McLean Hospital, 115 Mill Street, Belmont, MA 02478; tel: 1-617-855-3528, fax: 1-617-855-2895, e-mail:
| | - Roscoe Brady
- Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, Boston, MA,Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Boston, MA
| | - Melissa Hwang
- Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, MA
| | - Amy Higgins
- Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, MA,Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA
| | - Kathryn Nielsen
- Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, MA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, MA,Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mei-Hua Hall
- Schizophrenia and Bipolar Disorder Research Program, McLean Hospital, Belmont, MA,Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Keshavan MS, Kelly S, Hall MH. The Core Deficit of “Classical” Schizophrenia Cuts Across the
Psychosis Spectrum. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2020; 65:231-234. [PMID: 31961197 PMCID: PMC7385419 DOI: 10.1177/0706743719898911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Matcheri S. Keshavan
- Harvard Medical School, Boston, MA, USA
- Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA,
USA
| | | | | |
Collapse
|
11
|
Qu X, Liukasemsarn S, Tu J, Higgins A, Hickey TJ, Hall MH. Identifying Clinically and Functionally Distinct Groups Among Healthy Controls and First Episode Psychosis Patients by Clustering on EEG Patterns. Front Psychiatry 2020; 11:541659. [PMID: 33061914 PMCID: PMC7530247 DOI: 10.3389/fpsyt.2020.541659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The mismatch negativity (MMN) is considered as a promising biomarker that can inform future therapeutic studies. However, there is a large variability among patients with first episode psychosis (FEP). Also, most studies report a single electrode site and on comparing case-control group differences. Few have taken advantage of the full wealth of multi-channel EEG signals to examine observable patterns. None, to our knowledge, have used machine learning (ML) approaches to investigate neurophysiological derived subgroups with distinct cognitive and functional outcome characteristics. In this study, we applied ML to empirically stratify individuals into homogeneous subgroups based on multi-channel MMN data. We then characterized the functional, cognitive, and clinical profiles of these neurobiologically derived subgroups. We also explored the underlying low frequency range responses (delta, theta, alpha) during MMN. METHODS Clinical, neurocognitive, functioning data of 33 healthy controls and 20 FEP patients were collected. 90% of the patients had 6-month follow-up data. Neurocognition, social cognition, and functioning measures were assessed using the NCCB Cognitive Battery, the Awareness of Social Inference Test, UCSD Performance-Based Skills Assessment, and Multnomah Community Ability Scale. Symptom severity was collected using the PANSS. MMN amplitude and single-trial derived low frequency activity across 24 frontocentral channels were used as main variables in the ML k-means clustering analyses. RESULTS We found a consistent pattern of two distinctive subgroups. We labeled them as "better functioning" and "poorer functioning" clusters, respectively. Each subgroup can be mapped onto either better or poorer clinical, cognitive, and functioning profiles. Also, we identified two subgroups of patients: one showed improved MMN and one showed worsening of MMN over time. Patients with improved MMN had better follow-up clinical, cognitive, and functioning profile than those with worsening MMN. Among the low frequency bands, delta frequency appeared to be the most relevant to the observed MMN responses in all individuals. However, higher delta responses were not necessarily associated with a better functioning profile, suggesting that delta frequency alone may not be useful in clinical characterization. CONCLUSIONS The ML approach could be a robust tool to explore heterogeneity and facilitate the identification of neurobiological homogeneous subgroups in FEP.
Collapse
Affiliation(s)
- Xiaodong Qu
- Department of Computer Science, Brandeis University, Waltham, MA, United States
| | - Saran Liukasemsarn
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, United States.,Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, United States
| | - Jingxuan Tu
- Department of Computer Science, Brandeis University, Waltham, MA, United States
| | - Amy Higgins
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, United States.,Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, United States
| | - Timothy J Hickey
- Department of Computer Science, Brandeis University, Waltham, MA, United States
| | - Mei-Hua Hall
- Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, United States.,Schizophrenia and Bipolar Disorders Program, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
12
|
Lavoie S, Polari AR, Goldstone S, Nelson B, McGorry PD. Staging model in psychiatry: Review of the evolution of electroencephalography abnormalities in major psychiatric disorders. Early Interv Psychiatry 2019; 13:1319-1328. [PMID: 30688016 DOI: 10.1111/eip.12792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/03/2018] [Accepted: 12/29/2018] [Indexed: 12/29/2022]
Abstract
AIM Clinical staging in psychiatry aims to classify patients according to the severity of their symptoms, from stage 0 (increased risk, asymptomatic) to stage 4 (severe illness), enabling adapted treatment at each stage of the illness. The staging model would gain specificity if one or more quantifiable biological markers could be identified. Several biomarkers reflecting possible causal mechanisms and/or consequences of the pathophysiology are candidates for integration into the clinical staging model of psychiatric illnesses. METHODS This review covers the evolution (from stage 0 to stage 4) of the most important brain functioning impairments as measured with electroencephalography (EEG), in psychosis spectrum and in severe mood disorders. RESULTS The present review of the literature demonstrates that it is currently not possible to draw any conclusion with regard to the state or trait character of any of the EEG impairments in both major depressive disorder and bipolar disorder. As for schizophrenia, the most promising markers of the stage of the illness are the pitch mismatch negativity as well as the p300 event-related potentials, as these components seem to deteriorate with increasing severity of the illness. CONCLUSIONS Given the complexity of major psychiatric disorders, and that not a single impairment can be observed in all patients, future research should most likely consider combinations of markers in the quest for a better identification of the stages of the psychiatric illnesses.
Collapse
Affiliation(s)
- Suzie Lavoie
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea R Polari
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Orygen Youth Health, Melbourne Health, Melbourne, Victoria, Australia
| | - Sherilyn Goldstone
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Victoria, Australia.,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrion RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Association Between P300 Responses to Auditory Oddball Stimuli and Clinical Outcomes in the Psychosis Risk Syndrome. JAMA Psychiatry 2019; 76:1187-1197. [PMID: 31389974 PMCID: PMC6686970 DOI: 10.1001/jamapsychiatry.2019.2135] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE In most patients, a prodromal period precedes the onset of schizophrenia. Although clinical criteria for identifying the psychosis risk syndrome (PRS) show promising predictive validity, assessment of neurophysiologic abnormalities in at-risk individuals may improve clinical prediction and clarify the pathogenesis of schizophrenia. OBJECTIVE To determine whether P300 event-related potential amplitude, which is deficient in schizophrenia, is reduced in the PRS and associated with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Auditory P300 data were collected as part of the multisite, case-control North American Prodrome Longitudinal Study (NAPLS-2) at 8 university-based outpatient programs. Participants included 552 individuals meeting PRS criteria and 236 healthy controls with P300 data. Auditory P300 data of participants at risk who converted to psychosis (n = 73) were compared with those of nonconverters who were followed up for 24 months and continued to be symptomatic (n = 135) or remitted from the PRS (n = 90). Data were collected from May 27, 2009, to September 17, 2014, and were analyzed from December 3, 2015, to May 1, 2019. MAIN OUTCOMES AND MEASURES Baseline electroencephalography was recorded during an auditory oddball task. Two P300 subcomponents were measured: P3b, elicited by infrequent target stimuli, and P3a, elicited by infrequent nontarget novel stimuli. RESULTS This study included 788 participants. The PRS group (n = 552) included 236 females (42.8%) (mean [SD] age, 19.21 [4.38] years), and the healthy control group (n = 236) included 111 females (47.0%) (mean [SD] age, 20.44 [4.73] years). Target P3b and novelty P3a amplitudes were reduced in at-risk individuals vs healthy controls (d = 0.37). Target P3b, but not novelty P3a, was significantly reduced in psychosis converters vs nonconverters (d = 0.26), and smaller target P3b amplitude was associated with a shorter time to psychosis onset in at-risk individuals (hazard ratio, 1.45; 95% CI, 1.04-2.00; P = .03). Participants with the PRS who remitted had baseline target P3b amplitudes that were similar to those of healthy controls and greater than those of converters (d = 0.51) and at-risk individuals who remained symptomatic (d = 0.41). CONCLUSIONS AND RELEVANCE In this study, deficits in P300 amplitude appeared to precede psychosis onset. Target P3b amplitudes, in particular, may be sensitive to clinical outcomes in the PRS, including both conversion to psychosis and clinical remission. Auditory target P3b amplitude shows promise as a putative prognostic biomarker of clinical outcome in the PRS.
Collapse
Affiliation(s)
- Holly K. Hamilton
- Department of Psychiatry, University of California, San Francisco,San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Peter M. Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Ricardo E. Carrion
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Erica Duncan
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jason K. Johannesen
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut,Veterans Affairs Connecticut Health Care System, West Haven, Connecticut
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Margaret A. Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, Massachusetts,Veterans Affairs Boston Healthcare System, Brockton, Massachusetts
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles,Department of Psychology, University of California, Los Angeles
| | | | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York,Department of Molecular Medicine, Hofstra North Shore-Long Island Jewish School of Medicine, Hempstead, New York
| | - Thomas H. McGlashan
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Elaine F. Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W. Woods
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Tyrone D. Cannon
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut,Department of Psychology, School of Medicine, Yale University, New Haven, Connecticut
| | - Daniel H. Mathalon
- Department of Psychiatry, University of California, San Francisco,San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
14
|
Lau-Zhu A, Tye C, Rijsdijk F, McLoughlin G. No evidence of associations between ADHD and event-related brain potentials from a continuous performance task in a population-based sample of adolescent twins. PLoS One 2019; 14:e0223460. [PMID: 31584981 PMCID: PMC6777760 DOI: 10.1371/journal.pone.0223460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
We investigated key event-related brain potential markers (ERPs) derived from a flanked continuous performance task (CPT) and whether these would show phenotypic associations with ADHD (attention-deficit/hyperactivity disorder) in a population-based sample. We further explored whether there was preliminary evidence that such ERPs could also index genetic risk for ADHD (depending on finding phenotypic associations). Sixty-seven male-only twin pairs (N = 134; aged 12–15) from a subsample of the Twins’ Early Development Study, concordant and discordant for ADHD symptoms, performed the flanked CPT (or CPT-OX) while electroencephalography (EEG) was recorded. ERPs were obtained for cue (P3, CNV or contingency negative variation), go (P3, N2) and nogo trials (P3, N2). We found no phenotypic associations between CPT-derived ERPs and ADHD—the sizes of the estimated phenotypic correlations were nonsignificant and very small (r’s = -.11 to .04). Twin-model fitting analyses using structural equation modelling provided preliminary evidence that some of the ERPs were heritable (with the most robust effect for go-P3 latency), but there was limited evidence of any genetic associations between ERPs and ADHD, although with the caveat that our sample was small and hence had limited power. Overall, unlike in previous research, there was no evidence of phenotypic (nor preliminary evidence for genetic) associations between ADHD and CPT-derived ERPs in this study. Hence, it may be currently premature for genetic analyses of ADHD to be guided by CPT-derived ERP parameters (unlike alternative cognitive-neurophysiological approaches which may be more promising). Further research with better-powered, population-based, genetically-informative and cross-disorder samples are required, which could be facilitated by emerging mobile EEG technologies.
Collapse
Affiliation(s)
- Alex Lau-Zhu
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, United Kingdom
- Centre for Psychiatry, Brain Sciences Division, Imperial College London, London, England, United Kingdom
- * E-mail:
| | - Charlotte Tye
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, United Kingdom
| | - Frühling Rijsdijk
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, United Kingdom
| | - Grainne McLoughlin
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, England, United Kingdom
| |
Collapse
|
15
|
Hamilton HK, Woods SW, Roach BJ, Llerena K, McGlashan TH, Srihari VH, Ford JM, Mathalon DH. Auditory and Visual Oddball Stimulus Processing Deficits in Schizophrenia and the Psychosis Risk Syndrome: Forecasting Psychosis Risk With P300. Schizophr Bull 2019; 45:1068-1080. [PMID: 30753731 PMCID: PMC6737543 DOI: 10.1093/schbul/sby167] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Identification of neurophysiological abnormalities associated with schizophrenia that predate and predict psychosis onset may improve clinical prediction in the psychosis risk syndrome (PRS) and help elucidate the pathogenesis of schizophrenia. Amplitude reduction of the P300 event-related potential component reflects attention-mediated processing deficits and is among the most replicated biological findings in schizophrenia, making it a candidate biomarker of psychosis risk. The relative extent to which deficits in P300 amplitudes elicited by auditory and visual oddball stimuli precede psychosis onset during the PRS and predict transition to psychosis, however, remains unclear. Forty-three individuals meeting PRS criteria, 19 schizophrenia patients, and 43 healthy control (HC) participants completed baseline electroencephalography recording during separate auditory and visual oddball tasks. Two subcomponents of P300 were measured: P3b, elicited by infrequent target stimuli, and P3a, elicited by infrequent nontarget novel stimuli. Auditory and visual target P3b and novel P3a amplitudes were reduced in PRS and schizophrenia participants relative to HC participants. In addition, baseline auditory and visual target P3b, but not novel P3a, amplitudes were reduced in 15 PRS participants who later converted to psychosis, relative to 18 PRS non-converters who were followed for at least 22 months. Furthermore, target P3b amplitudes predicted time to psychosis onset among PRS participants. These results suggest that P300 amplitude deficits across auditory and visual modalities emerge early in the schizophrenia illness course and precede onset of full psychosis. Moreover, target P3b may represent an important neurophysiological vulnerability marker of the imminence of risk for psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Northern California Institute for Research and Education, San Francisco, CA
| | - Katiah Llerena
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | | | | | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| |
Collapse
|
16
|
Lin YF, Chen CY, Öngür D, Betensky R, Smoller JW, Blacker D, Hall MH. Polygenic pleiotropy and potential causal relationships between educational attainment, neurobiological profile, and positive psychotic symptoms. Transl Psychiatry 2018; 8:97. [PMID: 29765027 PMCID: PMC5954124 DOI: 10.1038/s41398-018-0144-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/30/2018] [Accepted: 04/03/2018] [Indexed: 11/23/2022] Open
Abstract
Event-related potential (ERP) components have been used to assess cognitive functions in patients with psychotic illness. Evidence suggests that among patients with psychosis there is a distinct heritable neurophysiologic phenotypic subtype captured by impairments across a range of ERP measures. In this study, we investigated the genetic basis of this "globally impaired" ERP cluster and its relationship to psychosis and cognitive abilities. We applied K-means clustering to six ERP measures to re-derive the globally impaired (n = 60) and the non-globally impaired ERP clusters (n = 323) in a sample of cases with schizophrenia (SCZ = 136) or bipolar disorder (BPD = 121) and healthy controls (n = 126). We used genome-wide association study (GWAS) results for SCZ, BPD, college completion, and childhood intelligence as the discovery datasets to derive polygenic risk scores (PRS) in our study sample and tested their associations with globally impaired ERP. We conducted mediation analyses to estimate the proportion of each PRS effect on severity of psychotic symptoms that is mediated through membership in the globally impaired ERP. Individuals with globally impaired ERP had significantly higher PANSS-positive scores (β = 3.95, P = 0.005). The SCZ-PRS was nominally associated with globally impaired ERP (unadjusted P = 0.01; R2 = 3.07%). We also found a significant positive association between the college-PRS and globally impaired ERP (FDR-corrected P = 0.004; R2 = 6.15%). The effect of college-PRS on PANSS positivity was almost entirely (97.1%) mediated through globally impaired ERP. These results suggest that the globally impaired ERP phenotype may represent some aspects of brain physiology on the path between genetic influences on educational attainment and psychotic symptoms.
Collapse
Affiliation(s)
- Yen-Feng Lin
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA. .,Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan.
| | - Chia-Yen Chen
- 0000 0004 0386 9924grid.32224.35Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Dost Öngür
- 000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,0000 0000 8795 072Xgrid.240206.2Psychotic Disorders Division, McLean Hospital, Belmont, MA USA
| | - Rebecca Betensky
- 000000041936754Xgrid.38142.3cDepartment of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA USA
| | - Jordan W. Smoller
- 000000041936754Xgrid.38142.3cDepartment of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Deborah Blacker
- 000000041936754Xgrid.38142.3cDepartment of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA USA ,000000041936754Xgrid.38142.3cDepartment of Psychiatry, Harvard Medical School, Boston, MA USA ,0000 0004 0386 9924grid.32224.35Gerontology Research Unit, Massachusetts General Hospital, Boston, MA USA
| | - Mei-Hua Hall
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Psychosis Neurobiology Laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
17
|
Ranlund S, Calafato S, Thygesen JH, Lin K, Cahn W, Crespo‐Facorro B, de Zwarte SM, Díez Á, Di Forti M, GROUP, Iyegbe C, Jablensky A, Jones R, Hall M, Kahn R, Kalaydjieva L, Kravariti E, McDonald C, McIntosh AM, McQuillin A, PEIC, Picchioni M, Prata DP, Rujescu D, Schulze K, Shaikh M, Toulopoulou T, van Haren N, van Os J, Vassos E, Walshe M, WTCCC2, Lewis C, Murray RM, Powell J, Bramon E. A polygenic risk score analysis of psychosis endophenotypes across brain functional, structural, and cognitive domains. Am J Med Genet B Neuropsychiatr Genet 2018; 177:21-34. [PMID: 28851104 PMCID: PMC5763362 DOI: 10.1002/ajmg.b.32581] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022]
Abstract
This large multi-center study investigates the relationships between genetic risk for schizophrenia and bipolar disorder, and multi-modal endophenotypes for psychosis. The sample included 4,242 individuals; 1,087 patients with psychosis, 822 unaffected first-degree relatives of patients, and 2,333 controls. Endophenotypes included the P300 event-related potential (N = 515), lateral ventricular volume (N = 798), and the cognitive measures block design (N = 3,089), digit span (N = 1,437), and the Ray Auditory Verbal Learning Task (N = 2,406). Data were collected across 11 sites in Europe and Australia; all genotyping and genetic analyses were done at the same laboratory in the United Kingdom. We calculated polygenic risk scores for schizophrenia and bipolar disorder separately, and used linear regression to test whether polygenic scores influenced the endophenotypes. Results showed that higher polygenic scores for schizophrenia were associated with poorer performance on the block design task and explained 0.2% (p = 0.009) of the variance. Associations in the same direction were found for bipolar disorder scores, but this was not statistically significant at the 1% level (p = 0.02). The schizophrenia score explained 0.4% of variance in lateral ventricular volumes, the largest across all phenotypes examined, although this was not significant (p = 0.063). None of the remaining associations reached significance after correction for multiple testing (with alpha at 1%). These results indicate that common genetic variants associated with schizophrenia predict performance in spatial visualization, providing additional evidence that this measure is an endophenotype for the disorder with shared genetic risk variants. The use of endophenotypes such as this will help to characterize the effects of common genetic variation in psychosis.
Collapse
Affiliation(s)
- Siri Ranlund
- Division of PsychiatryUniversity College LondonLondonUK
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | | | | | - Kuang Lin
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Wiepke Cahn
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Benedicto Crespo‐Facorro
- CIBERSAMCentro Investigación Biomédica en Red Salud MentalMadridSpain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of MedicineUniversity of Cantabria–IDIVALSantanderSpain
| | - Sonja M.C. de Zwarte
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Álvaro Díez
- Division of PsychiatryUniversity College LondonLondonUK
- Laboratory of Cognitive and Computational Neuroscience—Centre for Biomedical Technology (CTB)Complutense University and Technical University of MadridMadridSpain
| | - Marta Di Forti
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | | | - Conrad Iyegbe
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Assen Jablensky
- Centre for Clinical Research in NeuropsychiatryThe University of Western AustraliaPerth, Western AustraliaAustralia
| | - Rebecca Jones
- Division of PsychiatryUniversity College LondonLondonUK
| | - Mei‐Hua Hall
- Psychosis Neurobiology Laboratory, Harvard Medical SchoolMcLean HospitalBelmontMassachusetts
| | - Rene Kahn
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Luba Kalaydjieva
- Harry Perkins Institute of Medical Research and Centre for Medical ResearchThe University of Western AustraliaPerthAustralia
| | - Eugenia Kravariti
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Colm McDonald
- The Centre for Neuroimaging & Cognitive Genomics (NICOG) and NCBES Galway Neuroscience CentreNational University of Ireland GalwayGalwayIreland
| | - Andrew M. McIntosh
- Division of Psychiatry, University of EdinburghRoyal Edinburgh HospitalEdinburghUK
- Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
| | | | | | - Marco Picchioni
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Diana P. Prata
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Faculdade de Medicina, Instituto de Medicina MolecularUniversidade de LisboaPortugal
| | - Dan Rujescu
- Department of PsychiatryLudwig‐Maximilians University of MunichMunichGermany
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Halle WittenbergHalleGermany
| | - Katja Schulze
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Madiha Shaikh
- North East London Foundation TrustLondonUK
- Research Department of Clinical, Educational and Health PsychologyUniversity College LondonLondonUK
| | - Timothea Toulopoulou
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Department of Psychology, Bilkent UniversityMain CampusBilkent, AnkaraTurkey
- Department of PsychologyThe University of Hong Kong, Pokfulam RdHong Kong SARChina
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong KongThe Hong Kong Jockey Club Building for Interdisciplinary ResearchHong Kong SARChina
| | - Neeltje van Haren
- Department of Psychiatry, Brain Centre Rudolf MagnusUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jim van Os
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Department of Psychiatry and Psychology, Maastricht University Medical CentreEURONMaastrichtThe Netherlands
| | - Evangelos Vassos
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Muriel Walshe
- Division of PsychiatryUniversity College LondonLondonUK
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | | | - Cathryn Lewis
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Robin M. Murray
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - John Powell
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
| | - Elvira Bramon
- Division of PsychiatryUniversity College LondonLondonUK
- Institute of Psychiatry Psychology and Neuroscience at King's College London and South LondonMaudsley NHS Foundation TrustLondonUK
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| |
Collapse
|
18
|
Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res 2018; 191:25-34. [PMID: 28709770 PMCID: PMC5745291 DOI: 10.1016/j.schres.2017.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/29/2017] [Accepted: 07/04/2017] [Indexed: 12/23/2022]
Abstract
Mismatch negativity (MMN) deficits in schizophrenia (SCZ) have been studied extensively since the early 1990s, with the vast majority of studies using simple auditory oddball task deviants that vary in a single acoustic dimension such as pitch or duration. There has been a growing interest in using more complex deviants that violate more abstract rules to probe higher order cognitive deficits. It is still unclear how sensory processing deficits compare to and contribute to higher order cognitive dysfunction, which can be investigated with later attention-dependent auditory event-related potential (ERP) components such as a subcomponent of P300, P3b. In this meta-analysis, we compared MMN deficits in SCZ using simple deviants to more complex deviants. We also pooled studies that measured MMN and P3b in the same study sample and examined the relationship between MMN and P3b deficits within study samples. Our analysis reveals that, to date, studies using simple deviants demonstrate larger deficits than those using complex deviants, with effect sizes in the range of moderate to large. The difference in effect sizes between deviant types was reduced significantly when accounting for magnitude of MMN measured in healthy controls. P3b deficits, while large, were only modestly greater than MMN deficits (d=0.21). Taken together, our findings suggest that MMN to simple deviants may still be optimal as a biomarker for SCZ and that sensory processing dysfunction contributes significantly to MMN deficit and disease pathophysiology.
Collapse
Affiliation(s)
- Michael Avissar
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States.
| | - Shanghong Xie
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Blair Vail
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Javier Lopez-Calderon
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States
| | - Yuanjia Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Daniel C Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, United States; Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute, Orangeburg, NY, United States
| |
Collapse
|
19
|
Zhang Z, Huang J, Shen Y, Li R. BACE1-Dependent Neuregulin-1 Signaling: An Implication for Schizophrenia. Front Mol Neurosci 2017; 10:302. [PMID: 28993723 PMCID: PMC5622153 DOI: 10.3389/fnmol.2017.00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a chronic psychiatric disorder with a lifetime prevalence of about 1% in the general population. Recent studies have shown that Neuregulin-1 (Nrg1) is a candidate gene for schizophrenia. At least 15 alternative splicing of NRG1 isoforms all contain an extracellular epidermal growth factor (EGF)-like domain, which is sufficient for Nrg1 biological activity including the formation of myelin sheaths and the regulation of synaptic plasticity. It is known that Nrg1 can be cleaved by β-secretase (BACE1) and the resulting N-terminal fragment (Nrg1-ntf) binds to receptor tyrosine kinase ErbB4, which activates Nrg1/ErbB4 signaling. While changes in Nrg1 expression levels in schizophrenia still remain controversial, understanding the BACE1-cleaved Nrg1-ntf and Nrg1/ErbB4 signaling in schizophrenia neuropathogenesis is essential and important. In this review paper, we included three major parts: (1) Nrg1 structure and cleavage pattern by BACE1; (2) BACE1-dependent Nrg1 cleavage associated with schizophrenia in human studies; and (3) Animal studies of Nrg1 and BACE1 mutations with behavioral observations. Our review will provide a better understanding of Nrg1 in schizophrenia and a potential strategy for using BACE1 cleavage of Nrg1 as a unique biomarker for diagnosis, as well as a new therapeutic target, of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of ChinaHefei, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States
| | - Rena Li
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical UniversityBeijing, China.,Center for Therapeutic Strategies for Brain Disorders, Roskamp Institute, SarasotaFL, United States.,Center for Hormone Advanced Science and Education, Roskamp Institute, SarasotaFL, United States.,Beijing Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| |
Collapse
|
20
|
Morgan CJ, Coleman MJ, Ulgen A, Boling L, Cole JO, Johnson FV, Lerbinger J, Bodkin JA, Holzman PS, Levy DL. Thought Disorder in Schizophrenia and Bipolar Disorder Probands, Their Relatives, and Nonpsychiatric Controls. Schizophr Bull 2017; 43:523-535. [PMID: 28338967 PMCID: PMC5463905 DOI: 10.1093/schbul/sbx016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Thought disorder (TD) has long been associated with schizophrenia (SZ) and is now widely recognized as a symptom of mania and other psychotic disorders as well. Previous studies have suggested that the TD found in the clinically unaffected relatives of SZ, schizoaffective and bipolar probands is qualitatively similar to that found in the probands themselves. Here, we examine which quantitative measures of TD optimize the distinction between patients with diagnoses of SZ and bipolar disorder with psychotic features (BP) from nonpsychiatric controls (NC) and from each other. In addition, we investigate whether these same TD measures also distinguish their respective clinically unaffected relatives (RelSZ, RelBP) from controls as well as from each other. We find that deviant verbalizations are significantly associated with SZ and are co-familial in clinically unaffected RelSZ, but are dissociated from, and are not co-familial for, BP disorder. In contrast, combinatory thinking was nonspecifically associated with psychosis, but did not aggregate in either group of relatives. These results provide further support for the usefulness of TD for identifying potential non-penetrant carriers of SZ-risk genes, in turn enhancing the power of genetic analyses. These findings also suggest that further refinement of the TD phenotype may be needed in order to be suitable for use in genetic studies of bipolar disorder.
Collapse
Affiliation(s)
- Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Ayse Ulgen
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | - Lenore Boling
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
| | - Jonathan O Cole
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | - Jan Lerbinger
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
| | - J Alexander Bodkin
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Philip S Holzman
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Deborah L Levy
- Psychology Research Laboratory, McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Iacono WG, Malone SM, Vrieze SI. Endophenotype best practices. Int J Psychophysiol 2017; 111:115-144. [PMID: 27473600 PMCID: PMC5219856 DOI: 10.1016/j.ijpsycho.2016.07.516] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
Abstract
This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
Collapse
|
22
|
Abnormal N400 Semantic Priming Effect May Reflect Psychopathological Processes in Schizophrenia: A Twin Study. SCHIZOPHRENIA RESEARCH AND TREATMENT 2017; 2017:7163198. [PMID: 28932600 PMCID: PMC5592423 DOI: 10.1155/2017/7163198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/22/2017] [Accepted: 06/13/2017] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Activation of semantic networks is indexed by the N400 effect. We used a twin study design to investigate whether N400 effect abnormalities reflect genetic/trait liability or are related to psychopathological processes in schizophrenia. METHODS We employed robust linear regression to compare N400 and behavioral priming effects across 36 monozygotic twin pairs (6 pairs concordant for schizophrenia/schizoaffective disorder, 11 discordant pairs, and 19 healthy control pairs) performing a lexical decision task. Moreover, we examined the correlation between Brief Psychiatric Rating Scale (BPRS) score and the N400 effect and the influence of medication status on this effect. RESULTS Regression yielded a significant main effect of group on the N400 effect only in the direct priming condition (p = 0.003). Indirect condition and behavioral priming effect showed no significant effect of group. Planned contrasts with the control group as a reference group revealed that affected concordant twins had significantly reduced N400 effect compared to controls, and discordant affected twins had a statistical trend for reduced N400 effect compared to controls. The unaffected twins did not differ significantly from the controls. There was a trend for correlation between reduced N400 effect and higher BPRS scores, and the N400 effect did not differ significantly between medicated and unmedicated patients. CONCLUSIONS Reduced N400 effect may reflect disease-specific processes in schizophrenia implicating frontotemporal brain network in schizophrenia pathology.
Collapse
|
23
|
Earls HA, Curran T, Mittal V. A Meta-analytic Review of Auditory Event-Related Potential Components as Endophenotypes for Schizophrenia: Perspectives From First-Degree Relatives. Schizophr Bull 2016; 42:1504-1516. [PMID: 27217271 PMCID: PMC5049529 DOI: 10.1093/schbul/sbw047] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
INTRODUCTION As endophenotypes bridge the gap between genetics and phenotypic disease expression, identifying reliable markers is important for fostering understanding of pathophysiology. The present aim was to conduct current meta-analyses of 3 key auditory event-related potential (ERP) components that have been held as potential endophenotypes for schizophrenia: P50, P300 amplitude and latency, and mismatch negativity (MMN), reflective of sensory gating, attention and classification speed, and perceptual discrimination ability, respectively. In order to assess endophenotype viability, these components were examined in unaffected relatives of patients with schizophrenia and healthy controls. METHODS Effect sizes (ES) were examined between relatives and controls for P50 suppression (10 studies, n = 360 relatives, 473 controls), P300 amplitude (20 studies, n = 868 relatives, 961 controls), P300 latency (17 studies, n = 674 relatives, 792 controls), and MMN (11 studies, n = 377 relatives, 552 controls). RESULTS Reliable differences in P50 suppression (ES = 0.86, P < .001), P300 amplitude (ES = -0.52, P < .001), and P300 latency (ES = 0.44, P < .05) were found between unaffected relatives and controls. A trend was found between relatives and controls for MMN (ES = 0.21, P = 0.06), and the use of extraneous channels was found to be a significant moderator (P = 0.01). When MMN was analyzed using frontocentral channel Fz, a significant difference was found (ES = 0.26, P < 0.01). DISCUSSION The results indicate that P50 suppression, P300 amplitude and P300 latency, and MMN may serve as viable endophenotypes for schizophrenia.
Collapse
Affiliation(s)
- Holly A. Earls
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Tim Curran
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO
| | - Vijay Mittal
- Department of Psychology, Northwestern University, Evanston, IL
- Department of Psychiatry, Northwestern University, Chicago, IL
| |
Collapse
|
24
|
Ryu K, Kim Y, Kwon M, Kim H, Kim J. The frontal executive function in exercise addicts, moderate exercisers, and exercise avoiders. Am J Addict 2016; 25:466-71. [PMID: 27548514 DOI: 10.1111/ajad.12422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The purpose of this study was to compare the frontal executive functions of exercise addicts, moderate exercisers, and exercise avoiders. We hypothesized that exercise addicts and avoiders would have poorer executive functions compared to moderate exercisers. METHODS The Korean Exercise Addiction Scale was administrated to recruit participants. Electroencephalogram was recorded at the frontal scalp sites. RESULTS The results showed that P3 and N2 latencies were shorter in the exercise addiction group than in the avoidance and moderate groups. Exercise addicts and moderate exercisers showed faster response time than exercise avoiders. DISCUSSION P3 and N2 latencies and P3 and N2 amplitudes were discussed in terms of executive functions. SCIENTIFIC SIGNIFICANCE This study showed that exercise addiction did not impair executive functions, but increased cognitive functioning. (Am J Addict 2016;25:466-471).
Collapse
Affiliation(s)
- Kwangmin Ryu
- Department of Physical Education, Kyungpook National University, Daegu, South Korea
| | - Yujin Kim
- Department of Physical Education, Kyungpook National University, Daegu, South Korea
| | - Minji Kwon
- Department of Physical Education, Kyungpook National University, Daegu, South Korea
| | - Hyunji Kim
- Department of Psychology, Kyungpook National University, Daegu, South Korea
| | - Jingu Kim
- Department of Physical Education, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
25
|
Georgiades A, Rijsdijk F, Kane F, Rebollo-Mesa I, Kalidindi S, Schulze KK, Stahl D, Walshe M, Sahakian BJ, McDonald C, Hall MH, Murray RM, Kravariti E. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings. Br J Psychiatry 2016; 208:539-47. [PMID: 26989096 DOI: 10.1192/bjp.bp.115.167239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/20/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. AIMS To quantify the shared genetic variability between bipolar disorder and cognitive measures. METHOD Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. RESULTS Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. CONCLUSIONS Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder.
Collapse
Affiliation(s)
- Anna Georgiades
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Fruhling Rijsdijk
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Fergus Kane
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Irene Rebollo-Mesa
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Sridevi Kalidindi
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Katja K Schulze
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Daniel Stahl
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Muriel Walshe
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Barbara J Sahakian
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Colm McDonald
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Mei-Hua Hall
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Robin M Murray
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| | - Eugenia Kravariti
- Anna Georgiades, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fruhling Rijsdijk, PhD, MRC Social, Genetic and Developmental Psychiatry Centre, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Fergus Kane, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Irene Rebollo-Mesa, PhD, Departments of Psychosis Studies and Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Sridevi Kalidindi, MBBS, MRCPsych, Katja K. Schulze, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Daniel Stahl, PhD, Department of Biostatistics, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Muriel Walshe, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Barbara J. Sahakian, PhD, Department of Psychiatry, University of Cambridge, Cambridge, UK; Colm McDonald, MRCPsych, PhD, Department of Psychosis Studies, NIHR Biomedical Research Centre for Mental Health, S
| |
Collapse
|
26
|
Electrical mapping in bipolar disorder patients during the oddball paradigm. J Psychiatr Res 2016; 72:64-71. [PMID: 26551764 DOI: 10.1016/j.jpsychires.2015.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022]
Abstract
Bipolar disorder (BD) is characterized by an alternated occurrence between acute mania episodes and depression or remission moments. The objective of this study is to analyze the information processing changes in BP (Bipolar Patients) (euthymia, depression and mania) during the oddball paradigm, focusing on the P300 component, an electric potential of the cerebral cortex generated in response to external sensorial stimuli, which involves more complex neurophysiological processes related to stimulus interpretation. Twenty-eight bipolar disorder patients (BP) (17 women and 11 men with average age of 32.5, SD: 9.5) and eleven healthy controls (HC) (7 women and 4 men with average age of 29.78, SD: 6.89) were enrolled in this study. The bipolar patients were divided into 3 major groups (i.e., euthymic, depressive and maniac) according to the score on the Clinical Global Impression--Bipolar Version (CGI-BP). The subjects performed the oddball paradigm simultaneously to the EEG record. EEG data were also recorded before and after the execution of the task. A one-way ANOVA was applied to compare the P300 component among the groups. After observing P300 and the subcomponents P3a and P3b, a similarity of amplitude and latency between euthymic and depressive patients was observed, as well as small amplitude in the pre-frontal cortex and reduced P3a response. This can be evidence of impaired information processing, cognitive flexibility, working memory, executive functions and ability to shift the attention and processing to the target and away from distracting stimuli in BD. Such neuropsychological impairments are related to different BD symptoms, which should be known and considered, in order to develop effective clinical treatment strategies.
Collapse
|
27
|
Li Z, Deng W, Liu X, Zheng Z, Li M, Li Y, Han Y, Ma X, Wang Q, Liu X, Li T. Contingent negative variation in patients with deficit schizophrenia or bipolar I disorder with psychotic features: measurement and correlation with clinical characteristics. Nord J Psychiatry 2015; 69:196-203. [PMID: 25263850 DOI: 10.3109/08039488.2014.959562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Schizophrenia is a highly heterogeneous disease. Event-related potentials have been regarded to establish intermediate phenotypes of schizophrenia. Our previous study found that patients with deficit schizophrenia (DS) are relatively homogeneous and show a significantly longer onset latency of contingent negative variation (CNV) expectancy wave. AIMS To further examine CNV in patients with first-episode and drug-naïve DS or bipolar I disorder (BP I) with psychotic features, and also investigate correlations between CNV and clinical characteristics in DS and BP I. METHOD We elicited a CNV using an alarm (S1)-imperative (S2) paradigm in 30 DS patients or 33 BP I with psychotic features as well as 40 healthy controls. RESULTS CNV amplitude was significantly smaller and reaction time significantly longer in the DS and BP I groups than in healthy controls. Post-imperative negative variation (PINV) interval was significantly shorter in the DS group than in healthy controls. The onset latency of CNV expectancy wave was significantly longer and PINV area significantly smaller in the DS group than in the other groups. In the DS group, CNV amplitude and PINV interval correlated negatively with the subscale of negative symptoms on the Positive and Negative Syndrome Scale (PANSS); CNV amplitude also correlated negatively with disease duration. In the BP I group, CNV amplitude and reaction time showed no correlation with clinical features. CONCLUSIONS CNV amplitude is a common trait marker for psychosis. The onset latency of CNV expectancy wave appears to be a specific trait marker and may be used to identify candidate genes for DS.
Collapse
Affiliation(s)
- Zhe Li
- Zhe Li, M.D., The Mental Health Center and the Psychiatric Laboratory, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan 610041 , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hall MH, Chen CY, Cohen BM, Spencer KM, Levy DL, Öngür D, Smoller JW. Genomewide association analyses of electrophysiological endophenotypes for schizophrenia and psychotic bipolar disorders: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:151-61. [PMID: 25740047 PMCID: PMC4458348 DOI: 10.1002/ajmg.b.32298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023]
Abstract
Several event-related potentials (ERP), including P3, sensory gating (P50), and gamma oscillation, are robustly impaired in patients with schizophrenia (SCZ) and bipolar disorder (BIP). Although these ERPs are known to be heritable, little is known about the specific genetic loci involved and the degree to which they overlap with loci influencing mood and psychotic disorders. In the present study, we conducted GWAS to a) identify common variants associated with ERP endophenotypes, and b) construct polygenic risk scores (PRS) to examine overlap between genetic components of ERPs and mood and psychotic disorders. The sample consisted of 271 patients with SCZ or psychotic BIP diagnosis and 128 controls for whom ERP and genomewide data were available. GWAS were conducted using the full sample. PRS, derived from the Psychiatric Genomics Consortium (PGC) analyses of SCZ, BIP, and major depressive disorder were applied to each ERP phenotype. We identified a region on chromosome 14 that was significantly associated with sensory gating (peak SNP rs10132223, P = 1.27 × 10(-9) ). This locus has not been previously associated with psychotic illness in PGC-GWAS. In the PRS analyses, patients with a higher load of SCZ risk alleles had reduced gamma response whereas patients with a higher load of BIP risk alleles had smaller P3 amplitude. We observed a genomewide significant locus on chromosome 14 for P50. This locus may influence P50 but not psychotic illness. Among patients with psychotic illness, PRS results indicated genetic overlap between SCZ loci and gamma oscillation and between BIP loci and P3 amplitude.
Collapse
Affiliation(s)
- Mei-Hua Hall
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Psychosis Neurobiology Laboratory, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
- Analytic and Translational Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
| | - Bruce M. Cohen
- Program for Neuropsychiatric Research, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin M. Spencer
- VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts
| | - Deborah L. Levy
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Psychiatry, Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dost Öngür
- Department of Psychiatry, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts
- Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts
| |
Collapse
|
29
|
del Re EC, Spencer KM, Oribe N, Mesholam-Gately RI, Goldstein J, Shenton ME, Petryshen T, Seidman LJ, McCarley RW, Niznikiewicz MA. Clinical high risk and first episode schizophrenia: auditory event-related potentials. Psychiatry Res 2015; 231:126-33. [PMID: 25557063 PMCID: PMC4314407 DOI: 10.1016/j.pscychresns.2014.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023]
Abstract
The clinical high risk (CHR) period is a phase denoting a risk for overt psychosis during which subacute symptoms often appear, and cognitive functions may deteriorate. To compare biological indices during this phase with those during first episode schizophrenia, we cross-sectionally examined sex- and age-matched clinical high risk (CHR, n=21), first episode schizophrenia patients (FESZ, n=20) and matched healthy controls (HC, n=25) on oddball and novelty paradigms and assessed the N100, P200, P3a and P3b as indices of perceptual, attentional and working memory processes. To our knowledge, this is the only such comparison using all of these event-related potentials (ERPs) in two paradigms. We hypothesized that the ERPs would differentiate between the three groups and allow prediction of a diagnostic group. The majority of ERPs were significantly affected in CHR and FESZ compared with controls, with similar effect sizes. Nonetheless, in logistic regression, only the P3a and N100 distinguished CHR and FESZ from healthy controls, suggesting that ERPs not associated with an overt task might be more sensitive to prediction of group membership.
Collapse
Affiliation(s)
- Elisabetta C del Re
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kevin M Spencer
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Naoya Oribe
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Raquelle I Mesholam-Gately
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jill Goldstein
- Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Brigham and Women׳s Hospital, Connors Center for Women׳s Health and Gender Biology, Boston, MA, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Larry J Seidman
- Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert W McCarley
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Margaret A Niznikiewicz
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Hedges D, Bennett DP. Cigarette smoking and p300 amplitude in adults: a systematic review. Nicotine Tob Res 2014; 16:1157-66. [PMID: 24847100 DOI: 10.1093/ntr/ntu083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the association between chronic tobacco cigarette smoking and P300 amplitude. DESIGN Systematic review with meta-analysis and meta-regression. DATA SOURCES Medline, Cochrane Database of Systematic Reviews, PsychInfo, and Web of Science. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Eligible studies contained P300 amplitudes obtained from either visual or auditory stimuli and standard deviations or errors in female and male subjects older than 18 years in a group of nonabstaining chronic cigarette smokers and a nonsmoking control group. RESULTS The 9 eligible studies comprised 13 relevant datasets containing 1,956 current cigarette smokers and 2,194 nonsmoking controls (N = 4,150). The P300 amplitude was smaller in cigarette smokers than in nonsmoking controls (Hedges' g effect size = .365; 95% confidence interval [CI] = 0.196-0.534, p < .001). Meta-regression showed significant positive associations between the number of cigarettes smoked per day at the time of the study (slope estimate = .036, 95% CI = 0.016-0.056, p ≤ .001, length of smoking in years (slope estimate = .056, 95% CI = 0.005-0.102, p = .018), pack years (slope estimate = .018, 95% CI = 0.009-0.031 p = .009), and age (slope estimate = .068, 95% CI = 0.025-0.113, p = .002). CONCLUSIONS P300 amplitude was smaller in cigarette smokers than in nonsmoking controls, and a possible dose-response relationship was apparent. Findings indicate a possible association between cigarette smoking and decreased P300 amplitude.
Collapse
Affiliation(s)
- Dawson Hedges
- Department of Psychology, Brigham Young University, Provo, UT; Neuroscience Center, Brigham Young University, Provo, UT
| | | |
Collapse
|
31
|
Baldeweg T, Hirsch SR. Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: a comparison with bipolar disorder and Alzheimer's disease. Int J Psychophysiol 2014; 95:145-55. [PMID: 24681247 DOI: 10.1016/j.ijpsycho.2014.03.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 01/15/2023]
Abstract
Cognitive impairment is an important predictor of functional outcome in patients with schizophrenia, yet its neurobiology is still incompletely understood. Neuropathological evidence of impaired synaptic connectivity and NMDA receptor-dependent transmission in superior temporal cortex motivated us to explore the correlation of in vivo mismatch negativity (MMN) with cognitive status in patients with schizophrenia. MMN elicited in a roving stimulus paradigm displayed a response proportional to the number of stimulus repetitions (memory trace effect). Preliminary evidence in patients with chronic schizophrenia suggests that attenuation of this MMN memory trace effect was correlated with the degree of neuropsychological memory dysfunction. Here we present data from a larger confirmatory study in patients with schizophrenia, bipolar disorder, probable Alzheimer's disease and healthy controls. We observed that the diminution of the MMN memory trace effect and its correlation with memory impairment was only found in the schizophrenia group. Recent pharmacological studies using the roving paradigm suggest that attenuation of the MMN trace effect can be understood as abnormal modulation of NMDA receptor-dependent plasticity. We suggest that the convergence of the previously identified synaptic pathology in supragranular cortical layers with the intracortical locus of MMN generation accounts for the remarkable robustness of MMN impairments in schizophrenia. We further speculate that this layer-specific synaptic pathology identified in supragranular neurons plays a pivotal computational role, by weakening the encoding and propagation of prediction errors to higher cortical modules. According to predictive coding theory such breakdown will have grave implications not only for perception, but also for higher-order cognition and may thus account for the MMN-cognition correlations observed here. Finally, MMN is a sensitive and specific biomarker for detecting the early prodromal phase of schizophrenia and is well suited for the exploration of novel cognition-enhancing agents in humans.
Collapse
Affiliation(s)
- Torsten Baldeweg
- University College London, Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, United Kingdom.
| | - Steven R Hirsch
- Division of Neuroscience & Psychological Medicine, Imperial College School of Science, Technology and Medicine, Charing Cross Hospital, London W6 8RP, United Kingdom
| |
Collapse
|
32
|
Perez VB, Woods SW, Roach BJ, Ford JM, McGlashan TH, Srihari VH, Mathalon DH. Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: forecasting psychosis risk with mismatch negativity. Biol Psychiatry 2014; 75:459-69. [PMID: 24050720 PMCID: PMC4028131 DOI: 10.1016/j.biopsych.2013.07.038] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 07/02/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Only about one third of patients at high risk for psychosis based on current clinical criteria convert to a psychotic disorder within a 2.5-year follow-up period. Targeting clinical high-risk (CHR) individuals for preventive interventions could expose many to unnecessary treatments, underscoring the need to enhance predictive accuracy with nonclinical measures. Candidate measures include event-related potential components with established sensitivity to schizophrenia. Here, we examined the mismatch negativity (MMN) component of the event-related potential elicited automatically by auditory deviance in CHR and early illness schizophrenia (ESZ) patients. We also examined whether MMN predicted subsequent conversion to psychosis in CHR patients. METHODS Mismatch negativity to auditory deviants (duration, frequency, and duration + frequency double deviant) was assessed in 44 healthy control subjects, 19 ESZ, and 38 CHR patients. Within CHR patients, 15 converters to psychosis were compared with 16 nonconverters with at least 12 months of clinical follow-up. Hierarchical Cox regression examined the ability of MMN to predict time to psychosis onset in CHR patients. RESULTS Irrespective of deviant type, MMN was significantly reduced in ESZ and CHR patients relative to healthy control subjects and in CHR converters relative to nonconverters. Mismatch negativity did not significantly differentiate ESZ and CHR patients. The duration + frequency double deviant MMN, but not the single deviant MMNs, significantly predicted the time to psychosis onset in CHR patients. CONCLUSIONS Neurophysiological mechanisms underlying automatic processing of auditory deviance, as reflected by the duration + frequency double deviant MMN, are compromised before psychosis onset and can enhance the prediction of psychosis risk among CHR patients.
Collapse
Affiliation(s)
- Veronica B. Perez
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | | | - Brian J. Roach
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | - Judith M. Ford
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| | | | | | - Daniel H. Mathalon
- University of California, San Francisco,San Francisco Veterans Administration Medical Center
| |
Collapse
|
33
|
Todd J, Harms L, Schall U, Michie PT. Mismatch negativity: translating the potential. Front Psychiatry 2013; 4:171. [PMID: 24391602 PMCID: PMC3866657 DOI: 10.3389/fpsyt.2013.00171] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023] Open
Abstract
The mismatch negativity (MMN) component of the auditory event-related potential has become a valuable tool in cognitive neuroscience. Its reduced size in persons with schizophrenia is of unknown origin but theories proposed include links to problems in experience-dependent plasticity reliant on N-methyl-d-aspartate glutamate receptors. In this review we address the utility of this tool in revealing the nature and time course of problems in perceptual inference in this illness together with its potential for use in translational research testing animal models of schizophrenia-related phenotypes. Specifically, we review the reasons for interest in MMN in schizophrenia, issues pertaining to the measurement of MMN, its use as a vulnerability index for the development of schizophrenia, the pharmacological sensitivity of MMN and the progress in developing animal models of MMN. Within this process we highlight the challenges posed by knowledge gaps pertaining to the tool and the pharmacology of the underlying system.
Collapse
Affiliation(s)
- Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lauren Harms
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ulrich Schall
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Patricia T. Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, NSW, Australia
- Schizophrenia Research Institute, Darlinghurst, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
34
|
Is aberrant functional connectivity a psychosis endophenotype? A resting state functional magnetic resonance imaging study. Biol Psychiatry 2013; 74:458-66. [PMID: 23746539 PMCID: PMC3752322 DOI: 10.1016/j.biopsych.2013.04.024] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Schizophrenia and bipolar disorder share overlapping symptoms and risk genes. Shared aberrant functional connectivity is hypothesized in both disorders and in relatives. METHODS We investigated resting state functional magnetic resonance imaging in 70 schizophrenia and 64 psychotic bipolar probands, their respective first-degree relatives (n = 70 and 52), and 118 healthy subjects. We used independent component analysis to identify components representing various resting state networks and assessed spatial aspects of functional connectivity within all networks. We first investigated group differences using five-level, one-way analysis of covariance (ANCOVA), followed by post hoc t tests within regions displaying ANCOVA group differences and correlation of such functional connectivity measures with symptom ratings to examine clinical relationships. RESULTS Seven networks revealed abnormalities (five-level one-way ANCOVA, family-wise error correction p < .05): A) fronto-occipital, B) midbrain/cerebellum, C) frontal/thalamic/basal ganglia, D) meso/paralimbic, E) posterior default mode network, F) fronto-temporal/paralimbic and G) sensorimotor networks. Abnormalities in networks B and F were unique to schizophrenia probands. Furthermore, abnormalities in networks D and E were common to both patient groups. Finally, networks A, C, and G showed abnormalities shared by probands and their relative groups. Negative correlation with Positive and Negative Syndrome Scale negative and positive scores were found in regions within network C and F respectively, and positive correlation with Positive and Negative Syndrome Scale negative scores was found in regions in network D among schizophrenia probands only. CONCLUSIONS Schizophrenia, psychotic bipolar probands, and their relatives share both unique and overlapping within-network brain connectivity abnormalities, revealing potential psychosis endophenotypes.
Collapse
|
35
|
Rissling AJ, Park SH, Young JW, Rissling MB, Sugar CA, Sprock J, Mathias DJ, Pela M, Sharp RF, Braff DL, Light GA. Demand and modality of directed attention modulate "pre-attentive" sensory processes in schizophrenia patients and nonpsychiatric controls. Schizophr Res 2013; 146:326-35. [PMID: 23490760 PMCID: PMC3622836 DOI: 10.1016/j.schres.2013.01.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mismatch negativity (MNN) and P3a are event related potential (ERP) measures of early sensory information processing. These components are usually conceptualized as being "pre-attentive" and therefore immune to changes with variations in attentional functioning. This study aimed to determine whether manipulations of attention influence the amplitudes and latencies of MMN and P3a and, if so, the extent to which these early sensory processes govern concurrent behavioral vigilance performance in schizophrenia patients and normal subjects. METHODS Schizophrenia patients (SZ; n = 20) and Nonpsychiatric Control Subjects (NCS; n = 20) underwent auditory ERP testing to assess MMN and P3a across 4 EEG recording sessions in which attentional demand (low vs. high) and sensory modality of directed attention (visual vs. auditory) were experimentally varied. RESULTS Across conditions, SZ patients exhibited deficits in MMN and P3a amplitudes. Significant amplitude and latency modulation were observed in both SZ and NCS but there were no group-by-condition interactions. The amount of MMN amplitude attenuation from low- to high-demand tasks was significantly associated with increased vigilance performance in both SZ and NCS groups (r = -0.67 and r = -0.60). Several other robust associations were also observed among neurophysiologic, clinical and cognitive variables. CONCLUSIONS Attentional demand and modality of directed attention significantly influence the amplitude and latencies of "pre-attentive" ERP components in both SZ and NCS. Deficits in MMN and P3a were not "normalized" when attention was directed to the auditory stimuli in schizophrenia patients. The adaptive modulation of early sensory information processing appears to govern concurrent attentional task performance. The temporal window reflecting automatic sensory discrimination as indexed as MMN and P3a may serve as a gateway to some higher order cognitive operations necessary for psychosocial functioning.
Collapse
Affiliation(s)
| | - Sung-Hyouk Park
- Department of Psychiatry, University of California San Diego, La Jolla, CA,Department of Psychiatry, Chookryoung Evangelical Hospital, Namyangju, Gyeonggi, South Korea
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | | | - Catherine A. Sugar
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), Greater Los Angeles VA Healthcare System
| | - Joyce Sprock
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | - Daniel J. Mathias
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Marlena Pela
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Richard F. Sharp
- Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - David L. Braff
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| | - Gregory A. Light
- Department of Psychiatry, University of California San Diego, La Jolla, CA, VISN-22 Mental Illness, Research, Education and Clinical Center (MIRECC), VA San Diego Healthcare System
| |
Collapse
|
36
|
Taylor GW, McCarley RW, Salisbury DF. Early auditory gamma band response abnormalities in first hospitalized schizophrenia. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2013; 62:131-45. [PMID: 24053037 PMCID: PMC5768311 DOI: 10.1016/b978-0-7020-5307-8.00009-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Abnormalities in coherent cortical circuit functioning, reflected in gamma band activity (to approximately 40 Hz), may be a core deficit in schizophrenia. The early auditory gamma band response (EAGBR) is a neurophysiologically simple probe of circuit functioning in primary auditory cortex. We examined the EAGBR in first hospitalized schizophrenia to assess whether it was reduced at first hospitalization. METHOD Wavelet evoked power and intertrial phase locking of the EAGBR at Fz to standard tones during an oddball target detection task were examined in 28 first hospitalized schizophrenia patients (10 female) and 44 control subjects (17 female). RESULTS At first hospitalization EAGBR trial-to-trial phase locking and evoked power were significantly reduced in patients. Although reduced overall in patients, greater total symptoms were significantly associated with greater gamma phase locking and power. Additionally, greater EAGBR power was marginally associated with greater positive factor scores, hallucinations, and thinking disturbance. CONCLUSIONS Abnormalities of gamma band functioning in local auditory sensory circuits are present in schizophrenia at first hospitalization further evidence that basic sensory processes are impaired in schizophrenia. It remains to be determined whether the EAGBR becomes permanently impaired with disease progression, and if its reduction is specific to schizophrenia.
Collapse
Affiliation(s)
- Grantley W. Taylor
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Cognitive Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| | - Robert W. McCarley
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Boston Veterans Affairs Healthcare System, Brockton Division, Brockton, MA 02301, USA
| | - Dean F. Salisbury
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Cognitive Neuroscience Laboratory, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
37
|
Hall MH, Smoller JW, Cook NR, Schulze K, Lee PH, Taylor G, Bramon E, Coleman MJ, Murray RM, Salisbury DF, Levy DL. Patterns of deficits in brain function in bipolar disorder and schizophrenia: a cluster analytic study. Psychiatry Res 2012; 200:272-80. [PMID: 22925372 PMCID: PMC3535009 DOI: 10.1016/j.psychres.2012.07.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/29/2012] [Accepted: 07/30/2012] [Indexed: 11/27/2022]
Abstract
Historically, bipolar disorder and schizophrenia have been considered distinct disorders with different etiologies. Growing evidence suggests that overlapping genetic influences contribute to risk for these disorders and that each disease is genetically heterogeneous. Using cluster analytic methods, we empirically identified homogeneous subgroups of patients, their relatives, and controls based on distinct neurophysiologic profiles. Seven phenotypes were collected from two independent cohorts at two institutions. K-means clustering was used to identify neurophysiologic profiles. In the analysis of all participants, three distinct profiles emerged: "globally impaired", "sensory processing", and "high cognitive". In a secondary analysis, restricted to patients only, we observed a similar clustering into three profiles. The neurophysiological profiles of the Schizophrenia (SZ) and Bipolar Disorder (BPD) patients did not support the Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnostic distinction between these two disorders. Smokers in the globally impaired group smoked significantly more cigarettes than those in the sensory processing or high cognitive groups. Our results suggest that empirical analyses of neurophysiological phenotypes can identify potentially biologically relevant homogenous subgroups independent of diagnostic boundaries. We hypothesize that each neurophysiology subgroup may share similar genotypic profiles, which may increase statistical power to detect genetic risk factors.
Collapse
Affiliation(s)
- Mei-Hua Hall
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| | - Jordan W Smoller
- Psychiatric Genetics Program in Mood and Anxiety Disorders, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nancy R. Cook
- Division of Preventive Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Katja Schulze
- Division of Psychological Medicine, Institute of Psychiatry, King’s College London, London, UK
| | - Phil Hyoun Lee
- Psychiatric Genetics Program in Mood and Anxiety Disorders, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Grantley Taylor
- Cognitive Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Elvira Bramon
- Division of Psychological Medicine, Institute of Psychiatry, King’s College London, London, UK
| | - Michael J. Coleman
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Robin M. Murray
- Division of Psychological Medicine, Institute of Psychiatry, King’s College London, London, UK
| | - Dean F Salisbury
- Cognitive Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Deborah L. Levy
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
38
|
Atagün Mİ, Güntekin B, Ozerdem A, Tülay E, Başar E. Decrease of theta response in euthymic bipolar patients during an oddball paradigm. Cogn Neurodyn 2012; 7:213-23. [PMID: 24427202 DOI: 10.1007/s11571-012-9228-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 11/01/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Theta oscillations are related to cognitive functions and reflect functional integration of frontal and medial temporal structures into coherent neurocognitive networks. This study assessed event-related theta oscillations in medication-free, euthymic patients with bipolar disorder upon auditory oddball paradigm. Twenty-two DSM-IV euthymic bipolar I (n = 19) and II (n = 3) patients and twenty-two healthy subjects were included. Patients were euthymic for at least 6 months, and psychotropic-free for at least 2 weeks. EEG was recorded at 30 electrode sites. Auditory oddball paradigm and sensory stimuli were used. Event-related Oscillations were analyzed using adaptive filtering in two different theta frequency bands (4-6 Hz, 6-8 Hz). In healthy subjects, slow theta (4-6 Hz) responses were significantly higher than those of euthymic patients upon target, non-target and sensory stimuli (p < 0.05). Fast theta (6-8 Hz) responses of healthy subjects were significantly higher than those of euthymic patients upon target-only stimuli (p < 0.05). Reduced theta oscillations during auditory processing provide strong quantitative evidence of activation deficits in related networks in bipolar disorder. Fast theta responses are related to cognitive functions, whereas slow theta responses are related to sensory processes more than cognitive processes.
Collapse
Affiliation(s)
- M İ Atagün
- Department of Psychiatry, Namik Kemal University Medical School, Tekirdag, Turkey ; Bakirkoy Research and Training Hospital for Psychiatry Neurology, Neurosurgery, Istanbul, Turkey
| | - B Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - A Ozerdem
- Department of Psychiatry, Dokuz Eylul University Medical School, Izmir, Turkey ; Department of Neuroscience, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey ; Multidisciplinary Brain Dynamics Research Center, Dokuz Eylul University, Izmir, Turkey
| | - E Tülay
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - E Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| |
Collapse
|
39
|
Association between the 2-bp deletion polymorphism in the duplicated version of the alpha7 nicotinic receptor gene and P50 sensory gating. Eur J Hum Genet 2012; 21:76-81. [PMID: 22588665 DOI: 10.1038/ejhg.2012.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There is considerable evidence implicating the 15q13.3 region in neuropsychiatric disorders, with the α7 nicotinic receptor gene CHRNA7 the most plausible candidate. This region has multiple duplications and many copy number variants (CNVs). A common CNV involves a partial duplication of CHRNA7 (CHRFAM7A), which occurs in either orientation. We examined the distribution of these alternative genomic arrangements in a large cohort of psychiatric patients, their relatives and controls using the 2-bp deletion polymorphism as a marker for the orientation of CHRFAM7A. We investigated three common alleles for association with psychosis and with the P50 sensory gating deficit, which is strongly associated with psychosis and strongly linked to 15q13.3. We found significant within-family association with P50 (empirical P=0.004), which is robust to population stratification. Most of the effect came from the 2-bp deletion allele, which tags the variant of CHRFAM7A in the same orientation as CHRNA7. This allele is associated with the presence of the P50 sensory gating deficit (empirical P=0.0006). Tests comparing within-family and between-family components of association suggest considerable population stratification in the sample. We found no evidence for association with psychosis, but this may reflect lower power using this phenotype. Four out of six previous association studies found association of different psychiatric phenotypes with the same 2-bp deletion allele.
Collapse
|
40
|
The visual P3a in schizophrenia and bipolar disorder: effects of target and distractor stimuli on the P300. Psychiatry Res 2012; 197:140-4. [PMID: 22386129 DOI: 10.1016/j.psychres.2011.09.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 07/08/2011] [Accepted: 09/17/2011] [Indexed: 11/20/2022]
Abstract
Amplitude reduction of the P300 event-related potential has long been suggested as a marker for schizophrenia. However, recent research has shown that this reduction in the P300 amplitude is not specific to schizophrenia as it can also be observed in related illnesses such as bipolar disorder. Due to this lack of specificity the P300 elicited using traditional oddball paradigms may be a less valuable endophenotypic marker. The current study employed a cognitively demanding three-stimulus oddball paradigm to elicit the P300 to visual target and distracting stimuli. Patients with schizophrenia showed amplitude reductions of P300 components to targets, distractors and frequent stimuli. The P300 in patients with bipolar disorder was not significantly different from either group. The pattern of results may further the understanding of the nature of the impairment in schizophrenia.
Collapse
|
41
|
van Haren NEM, Rijsdijk F, Schnack HG, Picchioni MM, Toulopoulou T, Weisbrod M, Sauer H, van Erp TG, Cannon TD, Huttunen MO, Boomsma DI, Hulshoff Pol HE, Murray RM, Kahn RS. The genetic and environmental determinants of the association between brain abnormalities and schizophrenia: the schizophrenia twins and relatives consortium. Biol Psychiatry 2012; 71:915-21. [PMID: 22341827 PMCID: PMC3343260 DOI: 10.1016/j.biopsych.2012.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Structural brain abnormalities are consistently found in schizophrenia (Sz) and have been associated with the familial risk for the disorder. We aim to define the relative contributions of genetic and nongenetic factors to the association between structural brain abnormalities and Sz in a uniquely powered cohort (Schizophrenia Twins and Relatives consortium). METHODS An international multicenter magnetic resonance imaging collaboration was set up to pool magnetic resonance imaging scans from twin pairs in Utrecht (The Netherlands), Helsinki (Finland), London (United Kingdom), and Jena (Germany). A sample of 684 subjects took part, consisting of monozygotic twins (n = 410, with 51 patients from concordant and 52 from discordant pairs) and dizygotic twins (n = 274, with 39 patients from discordant pairs). The additive genetic, common, and unique environmental contributions to the association between brain volumes and risk for Sz were estimated by structural equation modeling. RESULTS The heritabilities of most brain volumes were significant and ranged between 52% (temporal cortical gray matter) and 76% (cerebrum). Heritability of cerebral gray matter did not reach significance (34%). Significant phenotypic correlations were found between Sz and reduced volumes of the cerebrum (-.22 [-.30/-.14]) and white matter (-.17 [-.25/-.09]) and increased volume of the third ventricle (.18 [.08/.28]). These were predominantly due to overlapping genetic effects (77%, 94%, and 83%, respectively). CONCLUSIONS Some of the genes that transmit the risk for Sz also influence cerebral (white matter) volume.
Collapse
Affiliation(s)
- Neeltje E M van Haren
- University Medical Center Utrecht, Department of Psychiatry, Division of Neuroscience, Rudolf Magnus Institute, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hong LE, Moran LV, Du X, O'Donnell P, Summerfelt A. Mismatch negativity and low frequency oscillations in schizophrenia families. Clin Neurophysiol 2012; 123:1980-8. [PMID: 22541739 DOI: 10.1016/j.clinph.2012.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/16/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Theta-alpha range oscillations have been associated with MMN in healthy controls. Our previous studies showed that theta-alpha activities are highly heritable in schizophrenia patients' families. We aimed to test the hypothesis that theta-alpha activities may contribute to MMN in schizophrenia patients and their family members. METHODS We compared MMN and single trial oscillations during MMN in 95 patients, 75 first-degree relatives, 87 controls, and 34 community subjects with schizophrenia spectrum personality (SSP) traits. RESULTS We found that (1) MMN was reduced in patients (p<0.001) and SSP subjects (p=0.047) but not in relatives (p=0.42); (2) there were augmented 1-20 Hz oscillations in patients (p=0.02 to <0.001) during standard and deviant stimuli; (3) theta-alpha (5-12 Hz) oscillations had the strongest correlation to MMN in controls and relatives (ΔR(2)=21.4-23.9%, all p<0.001), while delta (<5 Hz) showed the strongest correlation to MMN in schizophrenia and SSP trait subjects; and, (4) MMN (h(2)=0.56, p=0.002) and theta-alpha (h(2)=0.55, p=0.004) were heritable traits. CONCLUSIONS Low frequency oscillations have a robust relationship with MMN and the relationship appears altered by schizophrenia; and schizophrenia patients showed augmented low frequency activities during the MMN paradigm. SIGNIFICANCE The results encourage investigation of low frequency oscillations to elucidate the neurophysiological pathology underlying MMN abnormalities in schizophrenia.
Collapse
Affiliation(s)
- L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore 21228, USA.
| | | | | | | | | |
Collapse
|
43
|
Park C, Park SK. Molecular links between mitochondrial dysfunctions and schizophrenia. Mol Cells 2012; 33:105-10. [PMID: 22358509 PMCID: PMC3887718 DOI: 10.1007/s10059-012-2284-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a complex neuropsychiatric disorder with both neurochemical and neurodevelopmental components in the pathogenesis. Growing pieces of evidence indicate that schizophrenia has pathological components that can be attributable to the abnormalities of mitochondrial function, which is supported by the recent finding suggesting mitochondrial roles for Disrupted-in-Schizophrenia 1 (DISC1). In this minireview, we briefly summarize the current understanding of the molecular links between mitochondrial dysfunctions and the pathogenesis of schizophrenia, covering recent findings from human genetics, functional genomics, proteomics, and molecular and cell biological approaches.
Collapse
Affiliation(s)
- Cana Park
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784,
Korea
| | - Sang Ki Park
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784,
Korea
| |
Collapse
|
44
|
Ettinger U, Schmechtig A, Toulopoulou T, Borg C, Orrells C, Owens S, Matsumoto K, van Haren NE, Hall MH, Kumari V, McGuire PK, Murray RM, Picchioni M. Prefrontal and striatal volumes in monozygotic twins concordant and discordant for schizophrenia. Schizophr Bull 2012; 38:192-203. [PMID: 20538831 PMCID: PMC3245600 DOI: 10.1093/schbul/sbq060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Frontostriatal networks mediating important cognitive and motor functions have been shown to be abnormal structurally and functionally in schizophrenia. However, the influence of genetic risk for schizophrenia on structural abnormalities in these areas is not well established. This study therefore aimed to investigate prefrontal and striatal volume alterations in schizophrenia and to define the extent to which they are dependent on genetic vulnerability for the condition. We employed structural magnetic resonance imaging (sMRI) in monozygotic (MZ) twins with or without schizophrenia. A sample of 129 twins completed sMRI, consisting of 21 MZ twin pairs concordant for schizophrenia, 17 MZ schizophrenic twins and 18 MZ nonschizophrenic twins drawn from 19 pairs discordant for schizophrenia, and 26 MZ control twin pairs without schizophrenia. Groups did not significantly differ in age, gender, handedness, height, level of education, parental socioeconomic status, and ethnicity. Using a region-of-interest approach, we measured the gray matter volumes (in cm(3)) of superior, middle, inferior, and orbital frontal cortices (SFC, MFC, IFC, and OFC, respectively); the caudate; and putamen. Covarying for whole-brain volume, age, and gender, we found that concordant but not discordant twins with schizophrenia had significantly lower volumes of MFC and OFC than control twins. In contrast, both patient groups had significantly lower SFC volumes than both groups of nonschizophrenic twins. There were no significant group differences in IFC and the striatum. We conclude that the prefrontal cortex shows a heterogeneous pattern of genetic influences on volumetric reductions in schizophrenia.
Collapse
Affiliation(s)
- Ulrich Ettinger
- Department of Psychiatry, Ludwig-Maximilians-University, Nussbaumstr. 7, 80336, Munich, Germany.
| | - Anne Schmechtig
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - Timothea Toulopoulou
- King's College London, Department of Psychosis Studies, Biomedical Research Centre, Institute of Psychiatry, London, UK
| | - Charmaine Borg
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - Claire Orrells
- King's College London, Department of Neuroimaging, Institute of Psychiatry, London, UK
| | - Sheena Owens
- King's College London, Department of Psychosis Studies, Biomedical Research Centre, Institute of Psychiatry, London, UK
| | - Kazunori Matsumoto
- King's College London, Department of Psychosis Studies, Biomedical Research Centre, Institute of Psychiatry, London, UK
| | - Neeltje E. van Haren
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Mei-Hua Hall
- Psychology Research Laboratory, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, King’s College London, London, UK
| | - Philip K. McGuire
- King's College London, Department of Psychosis Studies, Biomedical Research Centre, Institute of Psychiatry, London, UK
| | - Robin M. Murray
- King's College London, Department of Psychosis Studies, Biomedical Research Centre, Institute of Psychiatry, London, UK
| | - Marco Picchioni
- King's College London, Department of Psychosis Studies, Biomedical Research Centre, Institute of Psychiatry, London, UK,King’s College London, St Andrew’s Academic Centre, Institute of Psychiatry Northampton, UK
| |
Collapse
|
45
|
Hall MH, Taylor G, Salisbury DF, Levy DL. Sensory gating event-related potentials and oscillations in schizophrenia patients and their unaffected relatives. Schizophr Bull 2011; 37:1187-99. [PMID: 20363872 PMCID: PMC3196947 DOI: 10.1093/schbul/sbq027] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The P50 event-related potential sensory gating deficit, a failure to inhibit responses to repeated stimuli, is a leading endophenotype for schizophrenia (SZ). Both gamma and beta event-related oscillations (EROs) are major contributors to the auditory P50 response. However, the topographic distribution of gamma and beta ERO responses to initial (S1) and repeat (S2) stimuli and the association of these oscillations with P50 sensory gating are not clear. METHODS A total of 51 schizophrenic patients, 25 unaffected first-degree relatives, and 34 healthy comparison subjects were tested using a paired-click paradigm. Evoked power of gamma- and beta-band responses using wavelet analyses to S1 and S2 stimuli and gating of EROs and P50 were the main outcome measures. RESULTS A P50 gating deficit was found in patients (P < .001) and at a trend level in relatives (P = .087). Patients showed widely distributed reductions in gamma and beta EROs to S1 stimuli and S2 stimuli, respectively, and impaired gating in both frequencies. Reduced gamma and beta ERO activity in patients was associated primarily with age of onset. Relatives did not differ significantly from control subjects in either EROs power or gating. Gating of P50, gamma, and beta were not significantly correlated (r = .18-.19, P > .05). CONCLUSIONS These results suggest that ERO deficits in gamma to S1 and beta to S2 stimuli and impaired ERO gating are associated with SZ, but are not related to genetic liability for the illness. The components of information processing assessed by gamma- and beta gating appear to be independent from those mediated by P50 suppression.
Collapse
Affiliation(s)
- Mei-Hua Hall
- Department of Psychiatry, Harvard Medical School, Belmont, MA 02478, USA.
| | - Grantley Taylor
- Cognitive Neuroscience Laboratory, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA
| | - Dean F. Salisbury
- Cognitive Neuroscience Laboratory, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA
| | - Deborah L. Levy
- Psychology Research Laboratory, McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
46
|
Foxe JJ, Yeap S, Snyder AC, Kelly SP, Thakore JH, Molholm S. The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2011; 261:331-9. [PMID: 21153832 PMCID: PMC3119740 DOI: 10.1007/s00406-010-0176-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
Abstract
The N1 component of the auditory evoked potential (AEP) is a robust and easily recorded metric of auditory sensory-perceptual processing. In patients with schizophrenia, a diminution in the amplitude of this component is a near-ubiquitous finding. A pair of recent studies has also shown this N1 deficit in first-degree relatives of schizophrenia probands, suggesting that the deficit may be linked to the underlying genetic risk of the disease rather than to the disease state itself. However, in both these studies, a significant proportion of the relatives had other psychiatric conditions. As such, although the N1 deficit represents an intriguing candidate endophenotype for schizophrenia, it remains to be shown whether it is present in a group of clinically unaffected first-degree relatives. In addition to testing first-degree relatives, we also sought to replicate the N1 deficit in a group of first-episode patients and in a group of chronic schizophrenia probands. Subject groups consisted of 35 patients with schizophrenia, 30 unaffected first-degree relatives, 13 first-episode patients, and 22 healthy controls. Subjects sat in a dimly lit room and listened to a series of simple 1,000-Hz tones, indicating with a button press whenever they heard a deviant tone (1,500 Hz; 17% probability), while the AEP was recorded from 72 scalp electrodes. Both chronic and first-episode patients showed clear N1 amplitude decrements relative to healthy control subjects. Crucially, unaffected first-degree relatives also showed a clear N1 deficit. This study provides further support for the proposal that the auditory N1 deficit in schizophrenia is linked to the underlying genetic risk of developing this disorder. In light of recent studies, these results point to the N1 deficit as an endophenotypic marker for schizophrenia. The potential future utility of this metric as one element of a multivariate endophenotype is discussed.
Collapse
Affiliation(s)
- John J Foxe
- The Cognitive Neurophysiology Laboratory, Nathan S. Kline Institute for Psychiatric Research, Program in Cognitive Neuroscience and Schizophrenia, Orangeburg, NY 10962, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Hall MH, Taylor G, Sham P, Schulze K, Rijsdijk F, Picchioni M, Toulopoulou T, Ettinger U, Bramon E, Murray RM, Salisbury DF. The early auditory gamma-band response is heritable and a putative endophenotype of schizophrenia. Schizophr Bull 2011; 37:778-87. [PMID: 19946013 PMCID: PMC3122286 DOI: 10.1093/schbul/sbp134] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Reduced power and phase locking of the early auditory gamma-band response (EAGBR) have been reported in schizophrenia, but findings are equivocal. Further, little is known about genetic (heritability) and environmental influences on the EAGBR or its potential as an endophenotype of schizophrenia. The present study used a twin design to examine whether EAGBR power and phase locking are heritable and reduced in schizophrenic patients and their unaffected co-twins and thus putative endophenotypes of schizophrenia. METHODS The study sample included a total of 194 individuals, consisting of 15 monozygotic [MZ] twin pairs concordant for schizophrenia, 9 MZ twin pairs discordant for schizophrenia, and 42 MZ and 31 dizygotic (DZ) control pairs. Evoked power and phase-locking factor of the EAGBR were computed on Morlet wavelet-transformed electroencephalogram responses to standard tones during an auditory oddball target detection task. Structural equation modeling was applied to estimate heritability and genetic and environmental correlations with schizophrenia for the EAGBR measures. RESULTS Both evoked power and phase-locking phenotypes were heritable traits (power: h(2) = 0.65; phase locking: h(2) = 0.63). Impaired EAGBR measures were significantly associated with schizophrenia. Patients with schizophrenia and their unaffected identical co-twins exhibited significantly reduced EAGBR power compared with control subjects. In each phenotype, shared genetic factors were likely the source of the observed associations with schizophrenia. CONCLUSIONS Our results support EAGBR measures as putative endophenotypes of schizophrenia, likely reflecting an ubiquitous local cortical circuit deficit.
Collapse
Affiliation(s)
- Mei-Hua Hall
- Cognitive Neuroscience Laboratory, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | - Grantley Taylor
- Cognitive Neuroscience Laboratory, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, Hong Kong
| | | | - Fruhling Rijsdijk
- Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, London, UK
| | | | | | | | | | | | - Dean F. Salisbury
- Cognitive Neuroscience Laboratory, Harvard Medical School, McLean Hospital, 115 Mill Street, Belmont, MA 02478
| |
Collapse
|
48
|
Huang MW, Chou FHC, Lo PY, Cheng KS. A comparative study on long-term evoked auditory and visual potential responses between Schizophrenic patients and normal subjects. BMC Psychiatry 2011; 11:74. [PMID: 21542917 PMCID: PMC3113739 DOI: 10.1186/1471-244x-11-74] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 05/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The electrical signals measuring method is recommended to examine the relationship between neuronal activities and measure with the event related potentials (ERPs) during an auditory and a visual oddball paradigm between schizophrenic patients and normal subjects. The aim of this study is to discriminate the activation changes of different stimulations evoked by auditory and visual ERPs between schizophrenic patients and normal subjects. METHODS Forty-three schizophrenic patients were selected as experimental group patients, and 40 healthy subjects with no medical history of any kind of psychiatric diseases, neurological diseases, or drug abuse, were recruited as a control group. Auditory and visual ERPs were studied with an oddball paradigm. All the data were analyzed by SPSS statistical software version 10.0. RESULTS In the comparative study of auditory and visual ERPs between the schizophrenic and healthy patients, P300 amplitude at Fz, Cz, and Pz and N100, N200, and P200 latencies at Fz, Cz, and Pz were shown significantly different. The cognitive processing reflected by the auditory and the visual P300 latency to rare target stimuli was probably an indicator of the cognitive function in schizophrenic patients. CONCLUSIONS This study shows the methodology of application of auditory and visual oddball paradigm identifies task-relevant sources of activity and allows separation of regions that have different response properties. Our study indicates that there may be slowness of automatic cognitive processing and controlled cognitive processing of visual ERPs compared to auditory ERPs in schizophrenic patients. The activation changes of visual evoked potentials are more regionally specific than auditory evoked potentials.
Collapse
Affiliation(s)
- Min-Wei Huang
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan,Department of Psychiatry, Chiayi Branch, Taichung Veterans General Hospital, Chia-Yi 600, Taiwan
| | | | - Pei-Yu Lo
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Kuo-Sheng Cheng
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
49
|
Owens SF, Picchioni MM, Rijsdijk FV, Stahl D, Vassos E, Rodger AK, Collier DA, Murray RM, Toulopoulou T. Genetic overlap between episodic memory deficits and schizophrenia: results from the Maudsley Twin Study. Psychol Med 2011; 41:521-532. [PMID: 20459888 DOI: 10.1017/s0033291710000942] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Visual and verbal episodic memory deficits are putative endophenotypes for schizophrenia; however, the extent of any genetic overlap of these with schizophrenia is unclear. In this study, we set out to quantify the genetic and environmental contributions to variance in visual and verbal memory performance, and to quantify their genetic relationship with schizophrenia. METHOD We applied bivariate genetic modelling to 280 twins in a classic twin study design, including monozygotic (MZ) and dizygotic (DZ) pairs concordant and discordant for schizophrenia, and healthy control twins. We assessed episodic memory using subtests of the Wechsler Memory Scale - Revised (WMS-R). RESULTS Genetic influences (i.e. heritability) contributed significantly to variance in immediate recall of both verbal memory and visual learning, and the delayed recall of verbal and visual memory. Liability to schizophrenia was associated with memory impairment, with evidence of significant phenotypic correlations between all episodic memory measures and schizophrenia. Genetic factors were the main source of the phenotypic correlations for immediate recall of visual learning material; both immediate and delayed recall of verbal memory; and delayed recall of visual memory that, for example, shared genetic variance with schizophrenia, which accounted for 88% of the phenotypic correlation (rph=0.41) between the two. CONCLUSIONS Verbal memory and visual learning and memory are moderately heritable, share a genetic overlap with schizophrenia and are valid endophenotypes for the condition. The inclusion of these endophenotypes in genetic association studies may improve the power to detect susceptibility genes for schizophrenia.
Collapse
Affiliation(s)
- S F Owens
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, King's Health Partners, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Waters-Metenier SL, Toulopoulou T. Qualifying brain functional MRI parameters as endophenotypes in schizophrenia. FUTURE NEUROLOGY 2010. [DOI: 10.2217/fnl.10.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the genetic contribution to schizophrenia pathogenesis has been well established, with an approximate heritability of 81%, the endeavor to elucidate the complex genetic architecture of schizophrenia has met limited success. ‘Endophenotypes’, or ‘intermediate phenotypes’, are more restricted constructs of genetic risk than the clinical manifestations hitherto employed by molecular geneticists. They are, putatively, intermediate in the pathophysiological pathway between genetic variation and clinical phenomenology and can possibly be used to assist in the elucidation of genetic diathesis for schizophrenia. In this article, we present the current evidence that supports functional MRI parameters as promising candidate endophenotypes in schizophrenia.
Collapse
Affiliation(s)
- Sheena Lindsey Waters-Metenier
- Department of Psychosis Studies, King’s College London, King’s Health Partners, Institute of Psychiatry, London SE5 8AF, UK
| | | |
Collapse
|