1
|
Chen P, Chen W, Xu L, Luan L, Peng R, Zhang X, Yang H. Decreased serum VEGF and NRG1β1 levels in male patients with chronic schizophrenia: VEGF correlation with clinical symptoms and cognitive deficits. J Psychiatr Res 2024; 176:85-92. [PMID: 38850582 DOI: 10.1016/j.jpsychires.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) and neuregulin1 (NRG1) are multifunctional trophic factors reported to be dysregulated in schizophrenia. However, the relationships between serum concentrations and schizophrenia symptoms have differed markedly across studies, possibly because schizophrenia is a highly heterogenous disorder. The aim of this study was to investigate the associations of serum VEGF and NRG1 with clinical symptoms and cognitive deficits specifically in male patients with chronic schizophrenia. METHODS The study included 79 male patients with chronic schizophrenia and 79 matched healthy individuals. Serum VEGF, NRG1β1, S100B, S100A8, and neuropilin1 were measured using the Luminex liquid suspension chip detection method, psychopathological symptom severity using the Positive and Negative Symptom Scale (PANSS), and cognitive dysfunction using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). RESULTS Serum VEGF and NRG1β1 concentrations were significantly lower in male chronic schizophrenic patients than healthy controls (P < 0.05), while serum S100B, S100A8, and neuropilin1 concentrations did not differ between groups (P > 0.05). Serum VEGF concentration was negatively correlated with PANSS negative subscore (beta = -0.220, t = -2.07, P = 0.042), general psychopathology subscore (beta = -0.269, t = -2.55, P = 0.013), and total score (beta = -0.234, t = -2.12, P = 0.038), and positively correlated with RBANS language score (beta = 0.218, t = 2.03, P = 0.045). Alternatively, serum NRG1β1 concentration was not correlated with clinical symptoms or cognitive deficits (all P > 0.05). CONCLUSION Dysregulation of VEGF and NRG1β1 signaling may contribute to the pathogenesis of chronic schizophrenia in males. Moreover, abnormal VEGF signaling may contribute directly or through intermediary processes to neuropsychiatric and cognitive symptom expression.
Collapse
Affiliation(s)
- Peng Chen
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Wanming Chen
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Li Xu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China; Yangzhou University, Yangzhou, 225003, PR China.
| | - Lingshu Luan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| | - Ruijie Peng
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, PR China.
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China.
| |
Collapse
|
2
|
Moradkhani A, Turki Jalil A, Mahmood Saleh M, Vanaki E, Daghagh H, Daghighazar B, Akbarpour Z, Ghahramani Almanghadim H. Correlation of rs35753505 polymorphism in Neuregulin 1 gene with psychopathology and intelligence of people with schizophrenia. Gene 2023; 867:147285. [PMID: 36905948 DOI: 10.1016/j.gene.2023.147285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND AND AIM Schizophrenia is one of the most severe psychiatric disorders. About 0.5 to 1% of the world's population suffers from this non-Mendelian disorder. Environmental and genetic factors seem to be involved in this disorder. In this article, we investigate the alleles and genotypic correlation of mononucleotide rs35753505 polymorphism of Neuregulin 1 (NRG1), one of the selected genes of schizophrenia, with psychopathology and intelligence. MATERIALS AND METHODS 102 independent and 98 healthy patients participated in this study. DNA was extracted by the salting out method and the polymorphism (rs35753505) were amplified by polymerase chain reaction (PCR). Sanger sequencing was performed on PCR products. Allele frequency analysis was performed using COCAPHASE software, and genotype analysis was performed using Clump22 software. RESULTS According to our study's statistical findings, all case samples from the three categories of men, women, and overall participants significantly differed from the control group in terms of the prevalence of allele C and the CC risk genotype. The rs35753505 polymorphism significantly raised Positive and Negative Syndrome Scale (PANSS) test results, according to a correlation analysis between the two variables. However, this polymorphism led to a significant decrease in overall intelligence in case samples compared to control samples. CONCLUSION In this study, it seems that the rs35753505 polymorphism of NRG1 gene has a significant role in the sample of patients with schizophrenia in Iran and also in psychopathology and intelligence disorders.
Collapse
Affiliation(s)
- Atefeh Moradkhani
- Department of Biology, Faculty of Science, Zanjan Branch, Islamic Azad University, Zanjan, Islamic Republic of Iran
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Elmira Vanaki
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Daghagh
- Biochemistry Department of Biological Science, Kharazmi University Tehran, Iran
| | - Behrouz Daghighazar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Akbarpour
- Department of Basic Science, Biotechnology Research Center, Tabriz Branch, Azad Islamic University, Tabriz, Iran
| | | |
Collapse
|
3
|
Rajasekaran A, Shivakumar V, Kalmady SV, Parlikar R, Chhabra H, Prabhu A, Subbanna M, Venugopal D, Amaresha AC, Agarwal SM, Bose A, Narayanaswamy JC, Debnath M, Venkatasubramanian G. Impact of NRG1 HapICE gene variants on digit ratio and dermatoglyphic measures in schizophrenia. Asian J Psychiatr 2020; 54:102363. [PMID: 33271685 DOI: 10.1016/j.ajp.2020.102363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Multiple lines of evidence have suggested a potential role of Neuregulin-1 (NRG1) in the neurodevelopmental pathogenesis of schizophrenia. Interaction between genetic risk variants present within NRG1 locus and non-specific gestational putative insults can significantly impair crucial processes of brain development. Such genetic effects can be analyzed through the assessment of digit ratio and dermatoglyphic patterns. We examined the role of two well-replicated polymorphisms of NRG1 (SNP8NRG221533 and SNP8NRG243177) on schizophrenia risk and its probable impact on the digit ratio and dermatoglyphic measures in patients (N = 221) and healthy controls (N = 200). In schizophrenia patients, but not in healthy controls, a significant association between NRG1 SNP8NRG221533 C/C genotype with lower left 2D:4D ratio, as well as with higher FA_TbcRC and DA_TbcRC. The substantial effect of SNP8NRG221533 on both digit ratio and dermatoglyphic measures suggest a potential role for NRG1 gene variants on neurodevelopmental pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Ashwini Rajasekaran
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- Canadian VIGOUR Centre, University of Alberta, Edmonton, AB, Canada
| | - Rujuta Parlikar
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harleen Chhabra
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ananya Prabhu
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Manjula Subbanna
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Deepthi Venugopal
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anekal C Amaresha
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sri Mahavir Agarwal
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anushree Bose
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Monojit Debnath
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India; InSTAR Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
4
|
Zhang Z, Li Y, He F, Cui Y, Zheng Y, Li R. Sex differences in circulating neuregulin1-β1 and β-secretase 1 expression in childhood-onset schizophrenia. Compr Psychiatry 2020; 100:152176. [PMID: 32430144 DOI: 10.1016/j.comppsych.2020.152176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Early-onset schizophrenia is a severe and rare form of schizophrenia that is clinically and neurobiologically continuous with the adult form of schizophrenia. Neuregulin1 (NRG1)-mediated signaling is crucial for early neurodevelopment, which exerts its function by limited β-secretase 1 (BACE1) proteolysis processing. However, circulating neuregulin1-β1 (NRG1-β1), an isoform of NRG1, and its cleavage enzyme BACE1 have not been studied in early-onset patients with schizophrenia. METHODS In this study, we collected plasma and clinical information from 71 young patients (7 ≤ age years ≤20) with schizophrenia and 53 age- and sex-matched healthy controls. Immunoassay was used to test levels of circulating NRG1-β1 and BACE1 expression. We further analyzed the relationship of disease-onset age and gender with NRG1-β1 and BACE1 levels. RESULTS We found that circulating plasma levels of NRG1-β1 were significantly decreased in young patients with early-onset schizophrenia. In males with childhood onset schizophrenia (COS), NRG1-β1 was reduced and was inversely correlated with positive symptom of PANSS; moreover, these male patients with higher plasma BACE1 levels showed more severe general symptoms of PANSS and defective social functioning; whereas, no aforementioned results were found in adolescent-onset schizophrenia (AOS). Notably, young female patients with COS and AOS had no significant change in NRG1-β1 and BACE1, which demonstrated a sex-dependent effect in early-onset schizophrenia. CONCLUSION Our results suggest that decreased levels of NRG1-β1 and its cleavage enzyme BACE1 contribute to increased risk of etiology of schizophrenia. Synthetic biomarkers may have clinical applications for the early diagnosis of male COS.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Fan He
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yonghua Cui
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yi Zheng
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Rena Li
- National Clinical Research Center for Mental Disorders, Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Paterson C, Cumming B, Law AJ. Temporal Dynamics of the Neuregulin-ErbB Network in the Murine Prefrontal Cortex across the Lifespan. Cereb Cortex 2020; 30:3325-3339. [PMID: 31897479 DOI: 10.1093/cercor/bhz312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuregulin-ErbB signaling is essential for numerous functions in the developing, adult, and aging brain, particularly in the prefrontal cortex (PFC). Mouse models with disrupted Nrg and/or ErbB genes are relevant to psychiatric, developmental, and age-related disorders, displaying a range of abnormalities stemming from cortical circuitry impairment. Many of these models display nonoverlapping phenotypes dependent upon the gene target and timing of perturbation, suggesting that cortical expression of the Nrg-ErbB network undergoes temporal regulation across the lifespan. Here, we report a comprehensive temporal expression mapping study of the Nrg-ErbB signaling network in the mouse PFC across postnatal development through aging. We find that Nrg and ErbB genes display distinct expression profiles; moreover, splice isoforms of these genes are differentially expressed across the murine lifespan. We additionally find a developmental switch in ErbB4 splice isoform expression potentially mediated through coregulation of the lncRNA Miat expression. Our results are the first to comprehensively and quantitatively map the expression patterns of the Nrg-ErbB network in the mouse PFC across the postnatal lifespan and may help disentangle the pathway's involvement in normal cortical sequences of events across the lifespan, as well as shedding light on the pathophysiological mechanisms of abnormal Nrg-ErbB signaling in neurological disease.
Collapse
Affiliation(s)
- Clare Paterson
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Cumming
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amanda J Law
- Department of Psychiatry, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Cell and Developmental Biology, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Medicine, University of Colorado, School of Medicine Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Hood VL, Paterson C, Law AJ. PI3Kinase-p110δ Overexpression Impairs Dendritic Morphogenesis and Increases Dendritic Spine Density. Front Mol Neurosci 2020; 13:29. [PMID: 32180704 PMCID: PMC7059765 DOI: 10.3389/fnmol.2020.00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
Activity and expression of the phosphoinositide 3-kinase (PI3K) catalytic isoform, PIK3CD/p110δ, is increased in schizophrenia, autism, and intellectual delay and pro-cognitive preclinical efficacy of p110δ-inhibition has been demonstrated in pharmacological, genetic, and developmental rodent models of psychiatric disorders. Although PI3K signaling has been implicated in the development and function of neurons and glia; isoform-specific roles of the individual PI3Ks are less clear and the biological effects of increased p110δ on neuronal development are unknown. Since the pathobiological direction of p110δ changes in neurodevelopmental disorders are increased expression and activity, we hypothesized that overexpression of p110δ would impact measures of neuronal development and maturation relevant to connectivity and synaptic transmission. p110δ overexpression in primary rat hippocampal cultures significantly reduced dendritic morphogenesis and arborization and increased immature and mature dendritic spine densities, without impacting cell viability, soma size, or axon length. Together, our novel findings demonstrate the importance of homeostatic regulation of the p110δ isoform for normative neuronal development and highlight a potential pathophysiological mechanism of association to disorders of neurodevelopment.
Collapse
Affiliation(s)
- Veronica L Hood
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Clare Paterson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Amanda J Law
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
7
|
Uddin M, Ratanatharathorn A, Armstrong D, Kuan PF, Aiello AE, Bromet EJ, Galea S, Koenen KC, Luft B, Ressler KJ, Wildman DE, Nievergelt CM, Smith A. Epigenetic meta-analysis across three civilian cohorts identifies NRG1 and HGS as blood-based biomarkers for post-traumatic stress disorder. Epigenomics 2018; 10:1585-1601. [PMID: 30456986 DOI: 10.2217/epi-2018-0049] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM Trauma exposure is a necessary, but not deterministic, contributor to post-traumatic stress disorder (PTSD). Epigenetic factors may distinguish between trauma-exposed individuals with versus without PTSD. MATERIALS & METHODS We conducted a meta-analysis of PTSD epigenome-wide association studies in trauma-exposed cohorts drawn from civilian contexts. Whole blood-derived DNA methylation levels were analyzed in 545 study participants, drawn from the three civilian cohorts participating in the PTSD working group of the Psychiatric Genomics Consortium. RESULTS Two CpG sites significantly associated with current PTSD in NRG1 (cg23637605) and in HGS (cg19577098). CONCLUSION PTSD is associated with differential methylation, measured in blood, within HGS and NRG1 across three civilian cohorts.
Collapse
Affiliation(s)
- Monica Uddin
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.,Department of Psychology, University of Illinois Urbana-Champaign, 603 East Daniel St, Champaign, IL 61820, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th St, NY 10032, USA
| | - Don Armstrong
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics & Statistics, Stony Brook University, John S Toll Drive, Stony Brook, NY 11794, USA
| | - Allison E Aiello
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Stony Brook University School of Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Sandro Galea
- Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard TH Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.,Psychiatic & Neurodevelopmental Genetics Unit & Department of Psychiatry, Massachusetts General Hospital, Simches Research Building, 185 Cambridge Street, Boston, MA 02114, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA 02142, USA
| | - Benjamin Luft
- Department of Medicine, Stony Brook University School of Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Derek E Wildman
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA.,Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego School of Medicine, 9500 Gilman Dr, La Jolla, CA 92093, USA.,VA Center of Excellence for Stress & Mental Health, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Alicia Smith
- Department of Psychiatry & Behavioral Sciences & Department of Obstetrics & Gynecology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Olaya JC, Heusner CL, Matsumoto M, Sinclair D, Kondo MA, Karl T, Shannon Weickert C. Overexpression of Neuregulin 1 Type III Confers Hippocampal mRNA Alterations and Schizophrenia-Like Behaviors in Mice. Schizophr Bull 2018; 44:865-875. [PMID: 28981869 PMCID: PMC6007747 DOI: 10.1093/schbul/sbx122] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuregulin 1 (NRG1) is a schizophrenia candidate gene whose protein product is involved in neuronal migration, survival, and synaptic plasticity via production of specific isoforms. Importantly, NRG1 type III (NRG1 III) mRNA is increased in humans inheriting a schizophrenia risk haplotype for the NRG1 gene (HapICE), and NRG1 protein levels can be elevated in schizophrenia. The nature by which NRG1 type III overexpression results in schizophrenia-like behavior and brain pathology remains unclear, therefore we constructed a transgenic mouse with Nrg1 III overexpression in forebrain neurons (CamKII kinase+). Here, we demonstrate construct validity for this mouse model, as juvenile and adult Nrg1 III transgenic mice exhibit an overexpression of Nrg1 III mRNA and Nrg1 protein in multiple brain regions. Furthermore, Nrg1 III transgenic mice have face validity as they exhibit schizophrenia-relevant behavioral phenotypes including deficits in social preference, impaired fear-associated memory, and reduced prepulse inhibition. Additionally, microarray assay of hippocampal mRNA uncovered transcriptional alterations downstream of Nrg1 III overexpression, including changes in serotonin receptor 2C and angiotensin-converting enzyme. Transgenic mice did not exhibit other schizophrenia-relevant behaviors including hyperactivity, social withdrawal, or an increased vulnerability to the effects of MK-801 malate. Our results indicate that this novel Nrg1 III mouse is valid for modeling potential pathological mechanisms of some schizophrenia-like behaviors, for determining what other neurobiological changes may be downstream of elevated NRG1 III levels and for preclinically testing therapeutic strategies that may be specifically efficacious in patients with the NRG1 (HapICE) risk genotype.
Collapse
Affiliation(s)
- Juan C Olaya
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | | | - Duncan Sinclair
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Mari A Kondo
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Tim Karl
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, Australia,To whom correspondence should be addressed; Neuroscience Research Australia, Barker Street, Randwick, NSW 2031, Australia; tel: +61-2-9399-1117, fax: +61-2-9399-1005, e-mail:
| |
Collapse
|
9
|
Abstract
Recently, genome-wide association studies (GWAS) have identified 11 loci associated with adipose-related traits across different populations. However, their functional roles still remain largely unknown. In this study, we aimed to explore the splicing regulation of these GWAS signals in a tissue-specific fashion. For adipose-related GWAS signals, we selected six adipose-related tissues (adipose subcutaneous, artery tibial, blood, heart left ventricle, muscle-skeletal, and thyroid) with the sample size greater than 80 for splicing quantitative trait loci (QTL) analysis using GTEx released datasets. We integrated GWAS summary statistics of nine adipose-related traits (an average of 2.6 million SNPs per GWAS), and splicing QTLs from 6 GTEx tissues with an average of 337,900 splicing QTL SNPs, and 684,859 junctions. Our filtering process generated an average of 86,549 SNPs and 162,841 exon-exon links (junctions) for each tissue. A total of seven exon-exon junctions in four genes (AKTIP, DTNBP1, FTO and UBE2E1) were found to be significantly associated with four SNPs that showed genome-wide significance with body fat distribution (rs17817288, rs7206790, rs11710420 and rs2237199). These splicing events might contribute to the causal effect on the regulation of ectopic-fat, which warrants further experimental validation.
Collapse
|
10
|
Muhammad N, Sharif M, Amin J, Mehboob R, Gilani SA, Bibi N, Javed H, Ahmed N. Neurochemical Alterations in Sudden Unexplained Perinatal Deaths-A Review. Front Pediatr 2018; 6:6. [PMID: 29423392 PMCID: PMC5788892 DOI: 10.3389/fped.2018.00006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/09/2018] [Indexed: 01/05/2023] Open
Abstract
Sudden unexpected perinatal collapse is a major trauma for the parents of victims. Sudden infant death syndrome (SIDS) is unexpected and mysterious death of an apparently healthy neonate from birth till 1 year of age without any known causes, even after thorough postmortem investigations. However, the incidence of sudden intrauterine unexplained death syndrome (SIUDS) is seven times higher as compared with SIDS. This observation is approximated 40-80%. Stillbirth is defined as death of a fetus after 20th week of gestation or just before delivery at full term without a known reason. Pakistan has the highest burden of stillbirth in the world. This basis of SIDS, SIUDS, and stillbirths eludes specialists. The purpose of this study is to investigate factors behind failure in control of these unexplained deaths and how research may go ahead with improved prospects. Animal models and physiological data demonstrate that sleep, arousal, and cardiorespiratory malfunctioning are abnormal mechanisms in SIUDS risk factors or in newborn children who subsequently die from SIDS. This review focuses on insights in neuropathology and mechanisms of SIDS and SIUDS in terms of different receptors involved in this major perinatal demise. Several studies conducted in the past decade have confirmed neuropathological and neurochemical anomalies related to serotonin transporter, substance P, acetylcholine α7 nicotine receptors, etc., in sudden unexplained fetal and infant deaths. There is need to focus more on research in this area to unveil the major curtain to neuroprotection by underlying mechanisms leading to such deaths.
Collapse
Affiliation(s)
- Nazeer Muhammad
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Muhammad Sharif
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Javeria Amin
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan
| | - Riffat Mehboob
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan.,University Institute of Physical Therapy, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Syed Amir Gilani
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Nargis Bibi
- COMSATS Institute of Information Technology, Wah Cantonment, Pakistan.,Department of Computer Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Hasnain Javed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Naseer Ahmed
- Research Unit, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan.,Medical School, University of Verona, Verona, Italy.,Faculty of Health Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
11
|
Reble E, Dineen A, Barr CL. The contribution of alternative splicing to genetic risk for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2017; 17:e12430. [PMID: 29052934 DOI: 10.1111/gbb.12430] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
A genetic contribution to psychiatric disorders has clearly been established and genome-wide association studies now provide the location of risk genes and genetic variants associated with risk. However, the mechanism by which these genes and variants contribute to psychiatric disorders is mostly undetermined. This is in part because non-synonymous protein coding changes cannot explain the majority of variants associated with complex genetic traits. Based on this, it is predicted that these variants are causing gene expression changes, including changes to alternative splicing. Genetic changes influencing alternative splicing have been identified as risk factors in Mendelian disorders; however, currently there is a paucity of research on the role of alternative splicing in complex traits. This stems partly from the difficulty of predicting the role of genetic variation in splicing. Alterations to canonical splice site sequences, nucleotides adjacent to splice junctions, and exonic and intronic splicing regulatory sequences can influence splice site choice. Recent studies have identified global changes in alternatively spliced transcripts in brain tissues, some of which correlate with altered levels of splicing trans factors. Disease-associated variants have also been found to affect cis-acting splicing regulatory sequences and alter the ratio of alternatively spliced transcripts. These findings are reviewed here, as well as the current datasets and resources available to study alternative splicing in psychiatric disorders. Identifying and understanding risk variants that cause alternative splicing is critical to understanding the mechanisms of risk as well as to pave the way for new therapeutic options.
Collapse
Affiliation(s)
- E Reble
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - A Dineen
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Behavioral, Neurophysiological, and Synaptic Impairment in a Transgenic Neuregulin1 (NRG1-IV) Murine Schizophrenia Model. J Neurosci 2017; 36:4859-75. [PMID: 27122041 DOI: 10.1523/jneurosci.4632-15.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Schizophrenia is a chronic, disabling neuropsychiatric disorder with complex genetic origins. The development of strategies for genome manipulation in rodents provides a platform for understanding the pathogenic role of genes and for testing novel therapeutic agents. Neuregulin 1 (NRG1), a critical developmental neurotrophin, is associated with schizophrenia. The NRG1 gene undergoes extensive alternative splicing and, to date, little is known about the neurobiology of a novel NRG1 isoform, NRG1-IV, which is increased in the brains of individuals with schizophrenia and associated with genetic risk variation. Here, we developed a transgenic mouse model (NRG1-IV/NSE-tTA) in which human NRG1-IV is selectively overexpressed in a neuronal specific manner. Using a combination of molecular, biochemical, electrophysiological, and behavioral analyses, we demonstrate that NRG1-IV/NSE-tTA mice exhibit abnormal behaviors relevant to schizophrenia, including impaired sensorimotor gating, discrimination memory, and social behaviors. These neurobehavioral phenotypes are accompanied by increases in cortical expression of the NRG1 receptor, ErbB4 and the downstream signaling target, PIK3-p110δ, along with disrupted dendritic development, synaptic pathology, and altered prefrontal cortical excitatory-inhibitory balance. Pharmacological inhibition of p110δ reversed sensorimotor gating and cognitive deficits. These data demonstrate a novel role for NRG1-IV in learning, memory, and neural circuit formation and a potential neurobiological mechanism for schizophrenia risk; show that deficits are pharmacologically reversible in adulthood; and further highlight p110δ as a target for antipsychotic drug development. SIGNIFICANCE STATEMENT Schizophrenia is a disabling psychiatric disorder with neurodevelopmental origins. Genes that increase risk for schizophrenia have been identified. Understanding how these genes affect brain development and function is necessary. This work is the first report of a newly generated humanized transgenic mouse model engineered to express human NRG1-IV, an isoform of the NRG1 (Neuregulin 1) gene that is increased in the brains of patients with schizophrenia in association with genetic risk. Using behavioral neuroscience, molecular biology, electrophysiology, and pharmacology, we identify a role for NRG1-IV in learning, memory, and cognition and determine that this relates to brain excitatory-inhibitory balance and changes in ErbB4/PI3K/AKT signaling. Moreover, the study further highlights the potential of targeting the PI3K pathway for the treatment of schizophrenia.
Collapse
|
13
|
Paterson C, Wang Y, Hyde TM, Weinberger DR, Kleinman JE, Law AJ. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders. Am J Psychiatry 2017; 174:256-265. [PMID: 27771971 PMCID: PMC5892449 DOI: 10.1176/appi.ajp.2016.16060721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I-IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. METHOD NRG3 isoform classes I-IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. RESULTS NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. CONCLUSIONS Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development.
Collapse
Affiliation(s)
- Clare Paterson
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Yanhong Wang
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Thomas M. Hyde
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Daniel R. Weinberger
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Joel E. Kleinman
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| | - Amanda J. Law
- From the Department of Psychiatry and the Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora; the Lieber Institute for Brain Development, Johns Hopkins University, Baltimore; and the Department of Psychiatry and Behavioral Sciences, the Department of Neurology, the Department of Neuroscience, and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
14
|
García-Bea A, Walker MA, Hyde TM, Kleinman JE, Harrison PJ, Lane TA. Metabotropic glutamate receptor 3 (mGlu3; mGluR3; GRM3) in schizophrenia: Antibody characterisation and a semi-quantitative western blot study. Schizophr Res 2016; 177:18-27. [PMID: 27130562 PMCID: PMC5145804 DOI: 10.1016/j.schres.2016.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Metabotropic glutamate receptor 3 (mGlu3, mGluR3), encoded by GRM3, is a risk gene for schizophrenia and a therapeutic target. It is unclear whether expression of the receptor is altered in the disorder or related to GRM3 risk genotype. Antibodies used to date to assess mGlu3 in schizophrenia have not been well validated. OBJECTIVE To characterise six commercially available anti-mGlu3 antibodies for use in human brain, and then conduct a semi-quantitative study of mGlu3 immunoreactivity in schizophrenia. METHODS Antibodies tested using Grm3-/- and Grm2-/-/3-/- mice and transfected HEK293T/17 cells. Western blotting on membrane protein isolated from superior temporal cortex of 70 patients with schizophrenia and 87 healthy comparison subjects, genotyped for GRM3 SNP rs10234440. RESULTS One (out of six) anti-mGlu3 antibodies was fully validated, a C-terminal antibody which detected monomeric (~100kDa) and dimeric (~200kDa) mGlu3. A second, N-terminal, antibody detected the 200kDa band but also produced non-specific bands. Using the C-terminal antibody for western blotting in human brain, mGlu3 immunoreactivity was found to decline with age, and was affected by pH and post mortem interval. There were no differences in monomeric or dimeric mGlu3 immunoreactivity in schizophrenia or in relation to GRM3 genotype. The antibody was not suitable for immunohistochemistry. INTERPRETATION These data highlight the value of knockout mouse tissue for antibody validation, and the need for careful antibody characterisation. The schizophrenia data show that involvement of GRM3 in the disorder and its genetic risk architecture is not reflected in total membrane mGlu3 immunoreactivity in superior temporal cortex.
Collapse
Affiliation(s)
| | - Mary A Walker
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, USA; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA; Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, USA
| | | | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Tracy A Lane
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Li M, Weinberger DR. RETRACTION: Illuminating the dark road from schizophrenia genetic associations to disease mechanisms. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Recent large-scale genome-wide association studies (GWAS) have enabled the discovery of common genetic variations contributing to risk architectures of schizophrenia in human populations; however, the majority of GWAS-identified variants are located in large genomic regions spanning multiple genes, and recognizing the precise targets and mechanisms of these clinical associations is now the major challenge. Here, we review recent progress in schizophrenia genetics, functional genomics and related neuroscience research, and propose a functional pipeline to translate schizophrenia GWAS risk loci into disease biology and information for drug discovery. The pipeline includes identification of underlying molecular mechanisms using transcriptomic data in human brain, prioritization of putative functional causative variants by the integration of genetic epidemiological and bioinformatics methods as well as molecular approaches, and in vitro and in vivo experimental characterizations of the identified targeted species and causative variants to dissect the relevant disease biology. These approaches will accelerate progress from schizophrenia genetic studies to biological mechanisms and ultimately guide the development of prognostic, preventive and therapeutic measures.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 21205, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| |
Collapse
|
16
|
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, Karl T, Weickert CS, Everall IP, Bousman CA. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev 2016; 68:387-409. [DOI: 10.1016/j.neubiorev.2016.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022]
|
17
|
Yoshimi A, Suda A, Hayano F, Nakamura M, Aoyama-Uehara K, Konishi J, Asami T, Kishida I, Kawanishi C, Inoue T, McCarley RW, Shenton ME, Hirayasu Y. Effects of NRG1 genotypes on orbitofrontal sulcogyral patterns in Japanese patients diagnosed with schizophrenia. Psychiatry Clin Neurosci 2016; 70:261-8. [PMID: 26909665 DOI: 10.1111/pcn.12384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/27/2016] [Accepted: 02/16/2016] [Indexed: 12/20/2022]
Abstract
AIM Numerous reports have described differences in the distribution of orbitofrontal cortex (OFC) sulcogyral patterns between patients with schizophrenia (SZ patients) and healthy controls (HC). Alterations in OFC morphology are also observed in those at high risk for developing SZ and in first-episode SZ, suggesting that genetic associations may be extant in determining OFC sulcogyral patterns. We investigated the association between single nucleotide polymorphisms (SNP) in NRG1 and OFC sulcogyral patterns. METHODS A total of 59 Japanese patients diagnosed with SZ and 60 HC were scanned on a 1.5-T magnet. Patients were also assessed clinically. OFC sulcogyral patterns were evaluated for each participant, and genotyping was performed for four SNP in NRG1 (SNP8NRG243177, SNP8NRG221533, SNP8NRG241930, and rs1081062). RESULTS There were significant differences in the distribution of OFC sulcogyral patterns between SZ patients and HC (χ(2) = 6.52, P = 0.038). SZ patients showed an increase in the frequency of Type III expression, which was associated with an earlier age of disease onset (β = -0.302, F = 4.948, P = 0.030). Although no difference was found in genotype frequencies between SZ patients and HC, an NRG1 SNP, SNP8NRG243177, was associated with Type II expression in SZ patients (β = 0.237, F = 4.120, P = 0.047). CONCLUSION Our results suggest that OFC sulcogyral pattern formation in schizophrenia may be associated with NRG1 allele frequency, which is closely related to neurodevelopment.
Collapse
Affiliation(s)
- Asuka Yoshimi
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Akira Suda
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Fumi Hayano
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Motoaki Nakamura
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan.,Kanagawa Psychiatric Center, Yokohama, Japan
| | - Kumi Aoyama-Uehara
- Department of Psychiatry/Child Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Jun Konishi
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takeshi Asami
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Ikuko Kishida
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Chiaki Kawanishi
- Department of Psychiatry, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomio Inoue
- Department of Radiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Robert W McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience Boston VA Healthcare System-Brockton Division, Boston, USA
| | - Martha E Shenton
- Department of Psychiatry, Harvard Medical School, Boston, USA.,Department of Radiology, Harvard Medical School, Boston, USA.,VA Boston Healthcare System, Boston, USA
| | - Yoshio Hirayasu
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
18
|
Zhu WY, Jiang P, He X, Cao LJ, Zhang LH, Dang RL, Tang MM, Xue Y, Li HD. Contribution of NRG1 Gene Polymorphisms in Temporal Lobe Epilepsy. J Child Neurol 2016; 31:271-6. [PMID: 26071373 DOI: 10.1177/0883073815589757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/11/2015] [Indexed: 02/04/2023]
Abstract
The purpose of the present study was to investigate the possible association between temporal lobe epilepsy and NRG1 gene polymorphisms. A total of 73 patients and 69 controls were involved in this study. Genomic DNAs from the patients and controls were genotyped by polymerase chain reaction-ligase detection reaction method. There was an association of rs35753505 (T>C) with temporal lobe epilepsy (χ(2) = 6.730, P = .035). The frequency of risk allele C of rs35753505 was significantly higher (69.9%) in patients compared to controls (55.8%) (χ(2) = 6.023, P = .014). Interestingly, the significant difference of NRG1 genotype and allele frequency only existed among males, but not females. In addition, no statistically significant association was found between rs6994992, rs62510682 polymorphisms, and temporal lobe epilepsy. These data indicate that rs35753505 of NRG1 plays an important role in conferring susceptibility to the temporal lobe epilepsy in a Chinese Han population.
Collapse
Affiliation(s)
- Wen-Ye Zhu
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Xin He
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Ling-Juan Cao
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Li-Hong Zhang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Rui-Li Dang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Mi-Mi Tang
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Ying Xue
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China School of Pharmaceutical Science, Central South University, Changsha, Hunan Province, China
| | - Huan-De Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Niu W, Huang X, Yu T, Chen S, Li X, Wu X, Cao Y, Zhang R, Bi Y, Yang F, Wang L, Li W, Xu Y, He L, He G. Association study of GRM7 polymorphisms and schizophrenia in the Chinese Han population. Neurosci Lett 2015; 604:109-112. [PMID: 26254163 DOI: 10.1016/j.neulet.2015.07.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a severe and complex mental disorder with high heritability. There is an evidence that metabotropic glutamate receptors (GRM) are associated with schizophrenia. GRM7 has been identified as a candidate gene for many psychiatric disorders especially schizophrenia. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in GRM7 were associated with schizophrenia. Four SNPs (rs9814881, rs13353402, rs9870680 and rs1531939) were genotyped in 1034 schizophrenic patients and 1034 healthy controls of Chinese Han origin. The results showed that the two SNPs rs13353402 and rs1531939 demonstrated significant difference between schizophrenic patients and control subjects in allele frequencies (rs13353402: P value=0.0307, rs1531939: P value=0.0328, respectively). Nevertheless, there was no significant discrepancies in genotype distribution. In summary, our results indicate that the GRM7 SNPs rs13353402 and rs1531939 might be associated with schizophrenia in Chinese Han population.
Collapse
Affiliation(s)
- Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xiaoye Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Shiqing Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yanfei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Rui Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institutes of Biomedical Sciences Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China.
| |
Collapse
|
20
|
Masters KJ. A Program Module to Supplement the Clinical Psychiatry Rotation for Physician Assistant Students. J Physician Assist Educ 2015; 26:136-143. [PMID: 26309206 DOI: 10.1097/jpa.0000000000000032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recent blog article aimed at prospective physician assistants (PAs) identified psychiatry as a series of Diagnostic and Statistical Manual of Mental Disorders, 5th edition, diagnoses supplemented by empathy and medication. It suggested that there were ample opportunities for PAs to practice psychiatry, although a recent survey showed that only 1% of PA graduates were employed in psychiatric clinical practices. While this is only one perspective, it suggests that PAs' understanding of psychiatric practice is limited by the patient population they see during their clinical rotations as students. A broad systematically organized clinical psychiatry module with clinical preceptor direction could provide a more informed knowledge base and more interest in the field.
Collapse
Affiliation(s)
- Kim J Masters
- Kim J. Masters, MD, is a psychiatric consultant at Three Rivers Midlands Campus Residential Treatment Center for children and adolescents in West Columbia, South Carolina, and an adjunct assistant clinical professor in the PA program at the Medical University of South Carolina in Charleston and also in the PA program in the Department of Psychiatry at Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
21
|
Abstract
Over 100 loci are now associated with schizophrenia risk as identified by single nucleotide polymorphisms (SNPs) in genome-wide association studies. These findings mean that 'genes for schizophrenia' have unquestionably been found. However, many questions remain unanswered, including several which affect their therapeutic significance. The SNPs individually have minor effects, and even cumulatively explain only a modest fraction of the genetic predisposition. The remainder likely results from many more loci, from rare variants, and from gene-gene and gene-environment interactions. The risk SNPs are almost all non-coding, meaning that their biological significance is unclear; probably their effects are mediated via an influence on gene regulation, and emerging evidence suggests that some key molecular events occur during early brain development. The loci include novel genes of unknown function as well as genes and pathways previously implicated in the pathophysiology of schizophrenia, e.g. NMDA receptor signalling. Genes in the latter category have the clearer therapeutic potential, although even this will be a challenging process because of the many complexities concerning the genetic architecture and mediating mechanisms. This review summarises recent schizophrenia genetic findings and some key issues they raise, particularly with regard to their implications for identifying and validating novel drug targets.
Collapse
Affiliation(s)
- Paul J Harrison
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| |
Collapse
|