1
|
Shankar S, Chen Y, Averbeck S, Hendricks Q, Murphy B, Ferleger B, Driscoll N, Shekhirev M, Takano H, Richardson A, Gogotsi Y, Vitale F. Transparent MXene Microelectrode Arrays for Multimodal Mapping of Neural Dynamics. Adv Healthc Mater 2025; 14:e2402576. [PMID: 39328088 PMCID: PMC11804840 DOI: 10.1002/adhm.202402576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Transparent microelectrode arrays have proven useful in neural sensing, offering a clear interface for monitoring brain activity without compromising high spatial and temporal resolution. The current landscape of transparent electrode technology faces challenges in developing durable, highly transparent electrodes while maintaining low interface impedance and prioritizing scalable processing and fabrication methods. To address these limitations, we introduce artifact-resistant transparent MXene microelectrode arrays optimized for high spatiotemporal resolution recording of neural activity. With 60% transmittance at 550 nm, these arrays enable simultaneous imaging and electrophysiology for multimodal neural mapping. Electrochemical characterization shows low impedance of 563 ± 99 kΩ at 1 kHz and a charge storage capacity of 58 mC cm⁻² without chemical doping. In vivo experiments in rodent models demonstrate the transparent arrays' functionality and performance. In a rodent model of chemically-induced epileptiform activity, we tracked ictal wavefronts via calcium imaging while simultaneously recording seizure onset. In the rat barrel cortex, we recorded multi-unit activity across cortical depths, showing the feasibility of recording high-frequency electrophysiological activity. The transparency and optical absorption properties of Ti₃C₂Tx MXene microelectrodes enable high-quality recordings and simultaneous light-based stimulation and imaging without contamination from light-induced artifacts.
Collapse
Affiliation(s)
- Sneha Shankar
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegenerationand RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
| | - Yuzhang Chen
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegenerationand RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
| | - Spencer Averbeck
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegenerationand RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
| | - Quincy Hendricks
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Brendan Murphy
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegenerationand RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Benjamin Ferleger
- Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Nicolette Driscoll
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegenerationand RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Mikhail Shekhirev
- A. J. Drexel Nanomaterials Instituteand Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaPA19104USA
| | - Hajime Takano
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Division of NeurologyChildren's Hospital of PhiladelphiaPhiladelphiaPA19104USA
| | - Andrew Richardson
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Instituteand Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaPA19104USA
| | - Flavia Vitale
- Center for Neuroengineering & TherapeuticsUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegenerationand RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Physical Medicine & RehabilitationUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
2
|
Kaluskar P, Bharadwaj D, Iyer KS, Dy C, Zheng M, Brogan DM. A Systematic Review to Compare Electrical, Magnetic, and Optogenetic Stimulation for Peripheral Nerve Repair. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:722-739. [PMID: 39381397 PMCID: PMC11456630 DOI: 10.1016/j.jhsg.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 10/10/2024] Open
Abstract
The purpose of this systematic review was to assess the currently available evidence for the use of external stimulation to modulate neural activity and promote peripheral nerve regeneration. The most common external stimulations are electrical stimulation (ES), optogenetic stimulation (OS), and magnetic stimulation (MS). Understanding the comparative effectiveness of these stimulation methods is pivotal in advancing therapeutic interventions for peripheral nerve injuries. This systematic review focused on these three external stimulation modalities as potential strategies to enhance peripheral nerve repair (PNR). We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework to systematically evaluate and compare the efficiency of ES, OS, and MS in PNR. The review included studies published between 2018 and 2023 using ES, OS, or MS for PNR focused on enhancing recovery of peripheral nerve injuries in rodent models identified through PubMed and Google Scholar. The search strategies and inclusion criteria identified 19 studies (13 ES, 4 OS, and 2 MS) for detailed analysis, focusing on critical parameters such as functional recovery, histological outcomes, and electrophysiological data. Although ES demonstrated a consistent improvement in all the analyses, high-frequency repetitive MS (HFr-MS) emerged as a promising modality. HFr-MS demonstrated accelerated PNR, as histological and electrophysiological evidence indicated. In contrast, OS exhibited superior functional recovery outcomes. Notable limitations include constrained MS and OS data sets and the challenge of comparing relative improvements because of methodological diversity in evaluation techniques. Our findings underscore the potential of HFr-MS and OS in PNR while emphasizing the critical need for standardized testing protocols to facilitate meaningful cross-study comparisons. External stimulations have the potential to improve functional recovery in patients with nerve injury.
Collapse
Affiliation(s)
- Priya Kaluskar
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
- ARC Training Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Sciences, University of Melbourne, Melbourne, Australia
| | - Dhruv Bharadwaj
- Medical School, The University of Western Australia, Nedlands, WA, Australia
| | - K. Swaminathan Iyer
- School of Molecular Sciences, the University of Western Australia, Perth, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, the University of Western Australia, Perth, Australia
| | - Christopher Dy
- Orthopaedic Surgery Division of Hand and Microsurgery, Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - David M. Brogan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
4
|
Pang B, Wu X, Chen H, Yan Y, Du Z, Yu Z, Yang X, Wang W, Lu K. Exploring the memory: existing activity-dependent tools to tag and manipulate engram cells. Front Cell Neurosci 2024; 17:1279032. [PMID: 38259503 PMCID: PMC10800721 DOI: 10.3389/fncel.2023.1279032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/17/2023] [Indexed: 01/24/2024] Open
Abstract
The theory of engrams, proposed several years ago, is highly crucial to understanding the progress of memory. Although it significantly contributes to identifying new treatments for cognitive disorders, it is limited by a lack of technology. Several scientists have attempted to validate this theory but failed. With the increasing availability of activity-dependent tools, several researchers have found traces of engram cells. Activity-dependent tools are based on the mechanisms underlying neuronal activity and use a combination of emerging molecular biological and genetic technology. Scientists have used these tools to tag and manipulate engram neurons and identified numerous internal connections between engram neurons and memory. In this review, we provide the background, principles, and selected examples of applications of existing activity-dependent tools. Using a combination of traditional definitions and concepts of engram cells, we discuss the applications and limitations of these tools and propose certain developmental directions to further explore the functions of engram cells.
Collapse
Affiliation(s)
- Bo Pang
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Hailun Chen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Yiwen Yan
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Zibo Du
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Zihan Yu
- School of Basic Medicine Science, Southern Medical University, Guangzhou, China
| | - Xiai Yang
- Department of Neurology, Ankang Central Hospital, Ankang, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou, China
- Guangzhou Southern Medical Laboratory Animal Sci. and Tech. Co., Ltd., Guangzhou, China
| | - Kangrong Lu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Jain A, Dokholyan NV, Lee AL. Allosteric inactivation of an engineered optogenetic GTPase. Proc Natl Acad Sci U S A 2023; 120:e2219254120. [PMID: 36972433 PMCID: PMC10083549 DOI: 10.1073/pnas.2219254120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Optogenetics is a technique for establishing direct spatiotemporal control over molecular function within living cells using light. Light application induces conformational changes within targeted proteins that produce changes in function. One of the applications of optogenetic tools is an allosteric control of proteins via light-sensing domain (LOV2), which allows direct and robust control of protein function. Computational studies supported by cellular imaging demonstrated that application of light allosterically inhibited signaling proteins Vav2, ITSN, and Rac1, but the structural and dynamic basis of such control has yet to be elucidated by experiment. Here, using NMR spectroscopy, we discover principles of action of allosteric control of cell division control protein 42 (CDC42), a small GTPase involved in cell signaling. Both LOV2 and Cdc42 employ flexibility in their function to switch between "dark"/"lit" or active/inactive states, respectively. By conjoining Cdc42 and phototropin1 LOV2 domains into the bi-switchable fusion Cdc42Lov, application of light-or alternatively, mutation in LOV2 to mimic light absorption-allosterically inhibits Cdc42 downstream signaling. The flow and patterning of allosteric transduction in this flexible system are well suited to observation by NMR. Close monitoring of the structural and dynamic properties of dark versus "lit" states of Cdc42Lov revealed lit-induced allosteric perturbations that extend to Cdc42's downstream effector binding site. Chemical shift perturbations for lit mimic, I539E, have distinct regions of sensitivity, and both the domains are coupled together, leading to bidirectional interdomain signaling. Insights gained from this optoallosteric design will increase our ability to control response sensitivity in future designs.
Collapse
Affiliation(s)
- Abha Jain
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA17033
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA17033
| | - Andrew L. Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|