1
|
Stoian I, Iosif L, Gilca M, Vlad A, Tivig I, Bradescu OM, Savu O. L-Arginine-Dependent Nitric Oxide Production in the Blood of Patients with Type 2 Diabetes: A Pilot, Five-Year Prospective Study. Life (Basel) 2024; 14:556. [PMID: 38792578 PMCID: PMC11122261 DOI: 10.3390/life14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Backgound: Type 2 diabetes mellitus (T2DM) is a major cardiovascular risk factor. Nitric oxide (NO) is one of the many molecules that regulate vascular tone, and red blood cells (RBCs) are known to play an important role in adjusting cardiac function through NO export from RBCs. Our study prospectively investigated the L-arginine (L-arg)-nitric oxide (NO) metabolic pathway in the erythrocytes and plasma of subjects with T2DM. Methods: RBCs and plasma were collected from patients with T2DM (n = 10), at first clinical onset (baseline) and after five years of disease evolution (follow-up). L-arg content was assayed by competitive enzyme-linked immunoassay. Arginase activity and nitrate/nitrite levels were measured using spectrophotometry. Results: When compared to baseline, L-arg content decreased in RBCs and remained similar in the plasma; NO production decreased in RBCs and the plasma; and arginase activity was lower in RBCs and increased in plasma. Conclusions: The L-arg/NO metabolic pathway decreases in the RBCs of patients with T2DM five years after the first clinical onset. The persistent decrease in RBCs' arginase activity fails to compensate for the sustained decrease in RBCs' NO production in the diabetic environment. This pilot study indicates that the NO-RBC pool is depleted during the progression of the disease in the same cohort of T2DM patients.
Collapse
Affiliation(s)
- Irina Stoian
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.S.); (L.I.); (M.G.)
- IristLabmed SRL, 031235 Bucharest, Romania;
| | - Liviu Iosif
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.S.); (L.I.); (M.G.)
- IristLabmed SRL, 031235 Bucharest, Romania;
| | - Marilena Gilca
- Department of Functional Sciences I/Biochemistry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.S.); (L.I.); (M.G.)
| | - Adelina Vlad
- Department of Functional Sciences I/Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioan Tivig
- IristLabmed SRL, 031235 Bucharest, Romania;
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ovidiu Marius Bradescu
- N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania; (O.M.B.); (O.S.)
| | - Octavian Savu
- N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania; (O.M.B.); (O.S.)
- Department of Doctoral School, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Suman M, Rajnikant M. Impact of suitable control on a uniform interpretation of units for arginase assay. Biochem Biophys Rep 2021; 25:100910. [PMID: 33506116 PMCID: PMC7815646 DOI: 10.1016/j.bbrep.2021.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
The arginase catalyzes the conversion of arginine into ornithine and urea. The activity of arginase serves as a critical diagnostic marker for several pathophysiological conditions. However, a specific, sensitive, and universal assay system for arginase with suitable control is elusive. Mostly amount of either urea or ornithine is estimated but an interpretation of the activity of arginase needs to be re-evaluated considering the endogenous level and influence of the substrate. This report; has been intended to evaluate methods of arginase assay and suitable controls. A conversion factor has been suggested for uniform interpretation of units for arginase assay.
Collapse
Affiliation(s)
- Mishra Suman
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Mishra Rajnikant
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
3
|
Pernow J, Mahdi A, Yang J, Zhou Z. Red blood cell dysfunction: a new player in cardiovascular disease. Cardiovasc Res 2020; 115:1596-1605. [PMID: 31198931 DOI: 10.1093/cvr/cvz156] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/07/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The primary role of red blood cells (RBCs) is to transport oxygen to the tissues and carbon dioxide to the lungs. However, emerging evidence suggests an important role of the RBC beyond being just a passive carrier of the respiratory gases. The RBCs are of importance for redox balance and are actively involved in the regulation of vascular tone, especially during hypoxic and ischaemic conditions by the release of nitric oxide (NO) bioactivity and adenosine triphosphate. The role of the RBC has gained further interest after recent discoveries demonstrating a markedly altered function of the cell in several pathological conditions. Such alterations include increased adhesion capability, increased formation of reactive oxygen species as well as altered protein content and enzymatic activities. Beyond signalling increased oxidative stress, the altered function of RBCs is characterized by reduced export of NO bioactivity regulated by increased arginase activity. Of further importance, the altered function of RBCs has important implications for several cardiovascular disease conditions. RBCs have been shown to induce endothelial dysfunction and to increase cardiac injury during ischaemia-reperfusion in diabetes mellitus. Finally, this new knowledge has led to novel therapeutic possibilities to intervene against cardiovascular disease by targeting signalling in the RBC. These novel data open up an entirely new view on the underlying pathophysiological mechanisms behind the cardiovascular disease processes in diabetes mellitus mediated by the RBC. This review highlights the current knowledge regarding the role of RBCs in cardiovascular regulation with focus on their importance for cardiovascular dysfunction in pathological conditions and therapeutic possibilities for targeting RBCs in cardiovascular disease.
Collapse
Affiliation(s)
- John Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Heart and Vascular Division, Karolinska University Hospital, Stockholm, Sweden
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Afsaneh Abadi P, Koopaie M, Montazeri R. Comparison of salivary nitric oxide and oral health in diabetic patients with and without xerostomia. Diabetes Metab Syndr 2020; 14:11-15. [PMID: 31809967 DOI: 10.1016/j.dsx.2019.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetes mellitus (DM) is a chronic multi-systemic metabolic disorder; diabetic patients are more prone to xerostomia and oral health problems than others. There are evidences that nitric oxide (NO) plays an important role in healthy salivary gland function, prevention of insulin resistance and progression of diabetes mellitus. The aim of this study was to compare the salivary NO level between type 2 diabetic (T2DM) patients with and without xerostomia. METHODS In this case control study, 70 patients with T2DM, which were matched according to age, sex, type of disease control, were enrolled conveniently. The subjects based on abeslang test were allocated to the two groups; 35 patients with xerostomia and 35 patients without xerostomia. Unstimulated whole saliva was collected by spitting method. NO levels was measured by ELISA method using Griess reaction. Data was analyzed using t-test, ANOVA and logistic regression analysis to examine the association of salivary NO and xerostomia. RESULTS The mean and standard deviation of salivary NO in the diabetic subjects with xerostomia was significantly lower than diabetic subjects without xerostomia (138 ± 94.58 μmol/L vs. 356.61 ± 302.81 μmol/L (P-value = 0.001). In logistic regression analysis, salivary NO level was associated with 0.994 fold decreased risk of xerostomia in diabetic subjects after adjustment for age, gender, FBS and HbA1c. CONCLUSIONS The present study indicates salivary nitric oxide level was a predictor of xerostomia in diabetic patients. More longitudinal studies are necessary to understand the association of salivary NO level with diabetes-induced xerostomia.
Collapse
Affiliation(s)
| | - Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roshanak Montazeri
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhou Z, Mahdi A, Tratsiakovich Y, Zahorán S, Kövamees O, Nordin F, Uribe Gonzalez AE, Alvarsson M, Östenson CG, Andersson DC, Hedin U, Hermesz E, Lundberg JO, Yang J, Pernow J. Erythrocytes From Patients With Type 2 Diabetes Induce Endothelial Dysfunction Via Arginase I. J Am Coll Cardiol 2019; 72:769-780. [PMID: 30092954 DOI: 10.1016/j.jacc.2018.05.052] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/05/2018] [Accepted: 05/20/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cardiovascular complications are major clinical problems in type 2 diabetes mellitus (T2DM). The authors previously demonstrated a crucial role of red blood cells (RBCs) in control of cardiac function through arginase-dependent regulation of nitric oxide export from RBCs. There is alteration of RBC function, as well as an increase in arginase activity, in T2DM. OBJECTIVES The authors hypothesized that RBCs from patients with T2DM induce endothelial dysfunction by up-regulation of arginase. METHODS RBCs were isolated from patients with T2DM and age-matched healthy subjects and were incubated with rat aortas or human internal mammary arteries from nondiabetic patients for vascular reactivity and biochemical studies. RESULTS Arginase activity and arginase I protein expression were elevated in RBCs from patients with T2DM (T2DM RBCs) through an effect induced by reactive oxygen species (ROS). Co-incubation of arterial segments with T2DM RBCs, but not RBCs from age-matched healthy subjects, significantly impaired endothelial function but not smooth muscle cell function in both healthy rat aortas and human internal mammary arteries. Endothelial dysfunction induced by T2DM RBCs was prevented by inhibition of arginase and ROS both at the RBC and vascular levels. T2DM RBCs induced increased vascular arginase I expression and activity through an ROS-dependent mechanism. CONCLUSIONS This study demonstrates a novel mechanism behind endothelial dysfunction in T2DM that is induced by RBC arginase I and ROS. Targeting arginase I in RBCs may serve as a novel therapeutic tool for the treatment of endothelial dysfunction in T2DM.
Collapse
Affiliation(s)
- Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Ali Mahdi
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Yahor Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Szabolcs Zahorán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Oskar Kövamees
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Filip Nordin
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Claes-Göran Östenson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jiangning Yang
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Pradeep SR, Srinivasan K. Alleviation of Cardiac Damage by Dietary Fenugreek (Trigonella foenum-graecum) Seeds is Potentiated by Onion (Allium cepa) in Experimental Diabetic Rats via Blocking Renin-Angiotensin System. Cardiovasc Toxicol 2019; 18:221-231. [PMID: 29094243 DOI: 10.1007/s12012-017-9431-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hyperglycemia is one of the metabolic and homeostatic abnormalities that increase the cardiovascular mortality in diabetic patients by increased oxidative stress. We have recently reported amelioration of oxidative stress in cardiac tissue by dietary fenugreek (Trigonella foenum-graecum) seeds and onion (Allium cepa) in streptozotocin-induced diabetic rats. The mechanistic aspects of the cardio-protective influence of dietary fenugreek seeds (10%) and onion (3% powder) both individually and in combination on hyperglycemia-mediated cardiac damage was further investigated in this study on streptozotocin-induced diabetic rats. Cardio-protective influence of these dietary spices was evidenced by their blocking potential on renin-angiotensin system. This might be the consequence of reduced activation of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor (AT1) in cardiac tissue. The combination produced an additive effect on ACE and AT1 protein and mRNA expressions. Increased expression of type IV collagen, fibronectin, Bax, 4-hydroxynonenal, iNOS and metabolites of nitric oxide (nitrate/nitrite) along with disturbed PUFA-to-SFA ratio and activities of cardiac marker enzymes in blood confirmed the myocardial damage. Dietary fenugreek seed, onion and fenugreek + onion were found to ameliorate these pathological changes in the cardiovascular system. The beneficial effect being higher with the combination sometime amounting to additive (iNOS expression) or even a synergistic (cardiac Bax and type IV collagen expression and circulatory marker enzymes) in diabetic rats. Thus, the results of present investigation suggested that the combination of fenugreek seeds and onion offers higher beneficial influence in ameliorating cardiac damage accompanying diabetes.
Collapse
MESH Headings
- Aldehydes/metabolism
- Animals
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Cardiomyopathies/blood
- Diabetic Cardiomyopathies/etiology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Drug Synergism
- Drug Therapy, Combination
- Fatty Acids/metabolism
- Fibronectins/genetics
- Fibronectins/metabolism
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Onions/chemistry
- Oxidative Stress/drug effects
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Rats, Wistar
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/genetics
- Trigonella
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Seetur R Pradeep
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India
| | - Krishnapura Srinivasan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020, India.
| |
Collapse
|
7
|
Haemato-protective influence of dietary fenugreek (Trigonella foenum-graecum L.) seeds is potentiated by onion (Allium cepa L.) in streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 98:372-381. [PMID: 29275179 DOI: 10.1016/j.biopha.2017.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/09/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
We have recently reported the beneficial modulation of metabolic abnormalities and oxidative stress in diabetic rats by dietary fenugreek seeds and onion. This investigation evaluated the protective influence of dietary fenugreek seeds (100 g kg-1) and onion (30 g kg-1) on erythrocytes of streptozotocin-induced diabetic rats, through modulation of reduced haematological indices and antisickling potency. This study also evaluated the altered erythrocyte membrane lipid profile and beneficial countering of increased lipid peroxidation, osmotic fragility, along with reduced membrane fluidity and deformability, nitric oxide production and echinocyte formation. Dietary fenugreek seeds and onion appeared to counter the deformity and fragility of erythrocytes partially in diabetic rats by their antioxidant potential and hypocholesterolemic property. The antisickling potency of these spices was accomplished by a substantial decrease in echinocyte population and AGEs in diabetic rats. Further insight into the factors that might have reduced the fluidity of erythrocytes in diabetic rats revealed changes in the cholesterol: phospholipid ratio, fatty acid profile, and activities of membrane-bound enzymes. Dietary fenugreek seeds and onion offered a beneficial protective effect to the red blood cells, the effect being higher with fenugreek + onion. This is the first report on the hemato-protective influence of a nutraceutical food component in diabetic situation.
Collapse
|
8
|
Nitric oxide synthetic pathway and cGMP levels are altered in red blood cells from end-stage renal disease patients. Mol Cell Biochem 2016; 417:155-67. [PMID: 27206740 DOI: 10.1007/s11010-016-2723-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023]
Abstract
Red blood cells (RBCs) enzymatically produce nitric oxide (NO) by a functional RBC-nitric oxide synthase (RBC-NOS). NO is a vascular key regulatory molecule. In RBCs its generation is complex and influenced by several factors, including insulin, acetylcholine, and calcium. NO availability is reduced in end-stage renal disease (ESRD) and associated with endothelial dysfunction. We previously demonstrated that, through increased phosphatidylserine membrane exposure, ESRD-RBCs augmented their adhesion to human cultured endothelium, in which NO bioavailability decreased. Since RBC-NOS-dependent NO production in ESRD is unknown, this study aimed to investigate RBC-NOS levels/activation, NO production/bioavailability in RBCs from healthy control subjects (C, N = 18) and ESRD patients (N = 27). Although RBC-NOS expression was lower in ESRD-RBCs, NO, cyclic guanosine monophosphate (cGMP), RBC-NOS Serine1177 phosphorylation level and eNOS/Calmodulin (CaM)/Heat Shock Protein-90 (HSP90) interaction levels were higher in ESRD-RBCs, indicating increased enzyme activation. Conversely, following RBCs stimulation with insulin or ionomycin, NO and cGMP levels were significantly lower in ESRD- than in C-RBCs, suggesting that uremia might reduce the RBC-NOS response to further stimuli. Additionally, the activity of multidrug-resistance-associated protein-4 (MRP4; cGMP-membrane transporter) was significantly lower in ESRD-RBCs, suggesting a possible compromised efflux of cGMP across the ESRD-RBCs membrane. This study for the first time showed highest basal RBC-NOS activation in ESRD-RBCs, possibly to reduce the negative impact of decreased NOS expression. It is further conceivable that high NO production only partially affects cell function of ESRD-RBCs maybe because in vivo they are unable to respond to physiologic stimuli, such as calcium and/or insulin.
Collapse
|
9
|
Suman M, Rajnikant M. KCl-Dependent Release of Mitochondrial Membrane-Bound Arginase Appears to Be a Novel Variant of Arginase-II. SCIENTIFICA 2016; 2016:3675283. [PMID: 27293971 PMCID: PMC4884806 DOI: 10.1155/2016/3675283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 06/06/2023]
Abstract
Arginase regulates arginine metabolism, ornithine-urea cycle, and immunological surveillance. Arginase-I is predominant in cytosol, and arginase-II is localised in the mitochondria. A mitochondrial membrane-bound arginase has also been proposed to be adsorbed with outer membrane of mitochondria which gets released by 150 mM potassium chloride (KCl). It is presumed that inclusion of 150 mM KCl in the homogenization medium would not only facilitate release of arginase bound with outer membrane of mitochondria but also affect functional anatomy of mitochondria, mitochondrial enzymes, and proteins. Therefore, it has been intended to characterize KCl-dependent release of mitochondrial membrane-bound arginase from liver of mice. Results provide advancement in the area of arginase biology and suggest that fraction of mitochondrial membrane-bound arginase contains mitochondrial arginase-II and a variant of arginase-II.
Collapse
Affiliation(s)
- Mishra Suman
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Mishra Rajnikant
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
10
|
Bizjak DA, Brinkmann C, Bloch W, Grau M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells. PLoS One 2015; 10:e0125206. [PMID: 25902315 PMCID: PMC4406474 DOI: 10.1371/journal.pone.0125206] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
AIM To investigate RBC-NOS dependent NO signaling during in vivo RBC aging in health and disease. METHOD RBC from fifteen healthy volunteers (HC) and four patients with type 2 diabetes mellitus (DM) were separated in seven subpopulations by Percoll density gradient centrifugation. RESULTS The proportion of old RBC was significantly higher in DM compared to HC. In both groups, in vivo aging was marked by changes in RBC shape and decreased cell volume. RBC nitrite, as marker for NO, was higher in DM and increased in both HC and DM during aging. RBC deformability was lower in DM and significantly decreased in old compared to young RBC in both HC and DM. RBC-NOS Serine1177 phosphorylation, indicating enzyme activation, increased during aging in both HC and DM. Arginase I activity remained unchanged during aging in HC. In DM, arginase I activity was significantly higher in young RBC compared to HC but decreased during aging. In HC, concentration of L-arginine, the substrate of RBC-NOS and arginase I, significantly dropped from young to old RBC. In DM, L-arginine concentration was significantly higher in young RBC compared to HC and significantly decreased during aging. In blood from healthy subjects, RBC-NOS activation was additionally inhibited by N5-(1-iminoethyl)-L-Ornithine dihydrochloride which decreased RBC nitrite, and impaired RBC deformability of all but the oldest RBC subpopulation. CONCLUSION This study first-time showed highest RBC-NOS activation and NO production in old RBC, possibly to counteract the negative impact of cell shrinkage on RBC deformability. This was even more pronounced in DM. It is further suggested that highly produced NO only insufficiently affects cell function of old RBC maybe because of isolated RBC-NOS in old RBC thus decreasing NO bioavailability. Thus, increasing NO availability may improve RBC function and may extend cell life span in old RBC.
Collapse
Affiliation(s)
- Daniel Alexander Bizjak
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Christian Brinkmann
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Marijke Grau
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| |
Collapse
|