1
|
Zhang H, Deng Q, Fan W, Zheng M, Chen H, Chen S, He H, Huang F. Changes in Per1 and Per2 expression during early postnatal stage in rat masseters. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1592349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Huini Zhang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qianyi Deng
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Miaomiao Zheng
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haoling Chen
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shijing Chen
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
2
|
Nariyama M, Mori M, Shimazaki E, Ando H, Ohnuki Y, Abo T, Yamane A, Asada Y. Functions of miR-1 and miR-133a during the postnatal development of masseter and gastrocnemius muscles. Mol Cell Biochem 2015; 407:17-27. [PMID: 25981536 DOI: 10.1007/s11010-015-2450-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
The present study investigated the function of miR-1 and miR-133a during the postnatal development of mouse skeletal muscles. The amounts of miR-1 and miR-133a were measured in mouse masseter and gastrocnemius muscles between 1 and 12 weeks after birth with real-time polymerase chain reaction and those of HDACs, MEF2, MyoD family, MCK, SRF, and Cyclin D1 were measured at 2 and 12 weeks with Western blotting. In both the masseter and gastrocnemius muscles, the amount of miR-1 increased between 1 and 12 weeks, whereas the amount of HADC4 decreased between 2 and 12 weeks. In the masseter muscle, those of MEF2, MyoD, Myogenin, and MCK increased between 2 and 12 weeks, whereas, in the gastrocnemius muscle, only those of MRF4 and MCK increased. The extent of these changes in the masseter muscle was greater than that in the gastrocnemius muscle. The amounts of miR-133a, SRF, and Cyclin D1 did not change significantly in the masseter muscle between 1 and 12 weeks after birth. By contrast, in the gastrocnemius muscle, the amounts of miR-133a and Cyclin D1 increased, whereas that of SRF decreased. Our findings suggest that the regulatory pathway of miR-1 via HDAC4 and MEF2 plays a more prominent role during postnatal development in the masseter muscle than in the gastrocnemius muscle, whereas that of miR-133a via SRF plays a more prominent role in the gastrocnemius muscle than in the masseter muscle.
Collapse
Affiliation(s)
- Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Sato I, Miwa Y, Hara S, Fukuyama Y, Sunohara M. Tenomodulin regulated the compartments of embryonic and early postnatal mouse masseter muscle. Ann Anat 2014; 196:410-5. [PMID: 25107480 DOI: 10.1016/j.aanat.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 07/06/2014] [Indexed: 11/17/2022]
Abstract
The masseter muscle (MM) is a complex tendinous laminar structure during development; however, the stage of the laminar structure formation is unknown. Tenomodulin (TeM) is a useful marker of tendons and has an anti-angiogenic cysteine-rich C-terminal domain. Therefore, we analyzed mRNA of TeM and angiogenesis markers (CD31 and vascular endothelial growth factor (VEGF)) and performed in situ hybridization for the TeM genes in MM from on embryonic day 12.5 (E12.5) to postnatal day 5 (P5). The TeM expression is at first detectable in the middle region of the mesenchymal connective tissue in the MM at E 12.5. The expression domains of the TeM during development typically include the middle region of the MM, particularly surrounding the vascular regions. The level of TeM mRNA in the MM increased from E12.5 to E17.5 and decreased after birth. In contrast, the levels of CD31 and VEGF mRNAs were almost constant from E12.5 to E18.5 and then low from birth onward. Therefore, the development of the laminar tendinous structure in the middle region between superficial and deeper regions of the MM first occurs during the process of tendon formation at embryonic day 12.5. In our study of MM development, the laminar structure regulating TeM also prevents vascular invasion during the formation of compartment of the MM. The tendon may relate to the components of muscle mass of MM.
Collapse
Affiliation(s)
- Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Setsuhiro Hara
- TMD Clinic, The Nippon Dental University Hospital, The Nippon Dental University, Tokyo, Japan.
| | - Yutaka Fukuyama
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Iwasaki SI, Aoyagi H, Yoshizawa H. Localization of type II collagen in the lingual mucosa of rats during the morphogenesis of circumvallate papillae. ACTA ZOOL-STOCKHOLM 2010. [DOI: 10.1111/j.1463-6395.2010.00450.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Jahan E, Matsumoto A, Udagawa J, Rafiq AM, Hashimoto R, Rahman OIF, Habib H, Sekine J, Otani H. Effects of restriction of fetal jaw movement on prenatal development of the temporalis muscle. Arch Oral Biol 2010; 55:919-27. [PMID: 20728868 DOI: 10.1016/j.archoralbio.2010.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/14/2010] [Accepted: 07/27/2010] [Indexed: 12/29/2022]
Abstract
Jaw movement affects masticatory muscles during the postnatal period. Prenatal jaw movement has also been implicated in the development of the temporomandibular joint; however, its effect on prenatal development of the masticatory muscles has not been extensively analysed. In the present study, we examined the effects of the restriction of fetal jaw movement on the temporalis muscle, a major masticatory muscle, in mice by suturing the maxilla and mandible (sutured group) using an exo utero development system. We compared the morphology of the temporalis muscle between sutured, sham-operated and normal in utero groups. At embryonic day (E) 18.5, the volume of muscle fibres, but not that of connective tissue, in the temporalis muscle was decreased in the sutured group. The E18.5 temporalis muscle in the sutured group appeared morphologically similar to that of the E17.5 in utero group, except for frequent muscle fibre irregularities. By transmission electron microscopy, in the sutured group, the myofibrils were immature and scattered, the nuclei appeared comparatively immature, the mitochondria were expanded in volume with fewer cristae, and cytoplasmic inclusion bodies were frequently observed. Expression of Myf-6, a late myogenic transcription factor, by real-time RT-PCR was not significantly different between the sutured and sham-operated groups. These findings demonstrated approximately 1-day delay in the morphological development of the temporalis muscle in the sutured group, and some abnormalities were observed, although Myf-6 level was not affected in the sutured group. The present study revealed that the prenatal jaw movement influences the development of the temporalis muscle.
Collapse
Affiliation(s)
- Esrat Jahan
- Department of Developmental Biology, Shimane University, Enya-cho, Izumoshi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
MyoD expression profile and developmental differences of leg and breast muscle in Peking duck (Anas platyrhynchos Domestica) during embryonic to neonatal stages. Micron 2010; 41:847-52. [PMID: 20541945 DOI: 10.1016/j.micron.2010.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 12/23/2022]
Abstract
In order to investigate the developmental differences between the duck breast muscle and leg muscle tissues during the embryonic stage to neonatal stages, as well as the expression profile of MyoD between the two muscle tissues, the morphologic characteristics in the two muscle tissues during duck embryo stages at E14, E18, E22, E27 and D7 were compared through the muscle paraffin sections. The coding domain sequence of duck MyoD gene was cloned, and then the expression of MyoD in duck leg muscle and breast muscle during embryo stage on E10, E14, E18, E22, E27 and D7 was detected using qRT-PCR method. Results showed that the developmental status of the duck breast muscle in embryonic phrases lag behind that of leg muscle. The CDS of duck MyoD gene consists of 894 nucleotides, and showed relatively high similarity with the gene of other species. The MyoD mRNA expressed in both kinds of muscle tissues and the expression profile had a similar trend, although the expression level of MyoD in the breast muscle was significantly higher than that in the leg muscle at each developmental stages (p<0.05). Results suggested that MyoD might have potential functions in controlling muscle fiber phenotype during the secondary myogenesis of muscle development. These fundamental works may provide some valuable clues for knowing the roles of MyoD in the myogenesis and the muscle fiber type differentiation in birds.
Collapse
|
7
|
Immunohistochemical expression of type II collagen in the lingual mucosa of rats during organogenesis of the tongue. Arch Oral Biol 2008; 53:622-8. [DOI: 10.1016/j.archoralbio.2008.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/17/2022]
|
8
|
Korfage JAM, Van Wessel T, Langenbach GEJ, Van Eijden TMGJ. Heterogeneous postnatal transitions in myosin heavy chain isoforms within the rabbit temporalis muscle. ACTA ACUST UNITED AC 2006; 288:1095-104. [PMID: 16952169 DOI: 10.1002/ar.a.20375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postnatal changes in the fiber type composition and fiber cross-sectional area were investigated in the superficial (TEM1) and deep (TEM23) temporalis of male rabbits. It was hypothesized that, due to the transition from suckling to chewing during early postnatal development, the proportion of fast fiber types would decrease, while the proportion of fibers positive for myosin heavy chain (MyHC) cardiac alpha would increase, and that, due to the influence of testosterone during late postnatal development, the proportion of these alpha fibers would decrease again. Classification of the fibers types was performed by immunohistochemistry according to their MyHC content. The proportion of alpha fiber types significantly increased in both muscle portions from 2% and 8% for TEM1 and TEM23 at week 1 to 29% and 54% at week 8, respectively,. While in TEM1 the proportion of this fiber type did not change thereafter, it decreased again to 27% in TEM23 at week 20. The change for the fast fiber types was opposite to that of the alpha fiber types. Significantly more MyHC IIX fibers were found in TEM1 than in TEM23 in adult rabbits. In the first 8 weeks, the cross-sectional areas of all fibers increased. After this period, only MyHC cardiac alpha + I fibers continued to increase significantly. It was concluded that there are developmental differences in the myosin heavy chain transitions of the two portions of the temporalis muscle.
Collapse
Affiliation(s)
- Joannes A M Korfage
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Korfage JAM, van Wessel T, Langenbach GEJ, Ay F, van Eijden TMGJ. Postnatal transitions in myosin heavy chain isoforms of the rabbit superficial masseter and digastric muscle. J Anat 2006; 208:743-51. [PMID: 16761975 PMCID: PMC2100230 DOI: 10.1111/j.1469-7580.2006.00562.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated the early (< 8 weeks) and late (> 8 weeks) postnatal development of the fibre type composition and fibre cross-sectional area in the superficial masseter and digastric muscle of male rabbits. It was hypothesized, first, that due to the transition between suckling and chewing, during early postnatal development the increase in the proportion of slow fibre types and in fibre cross-sectional areas would be larger in the masseter than in the digastric; and second, that due to the supposed influence of testosterone during late postnatal development, the proportion of slow fibre types in both muscles would decrease. Fibre types were classified by immunostaining according to their myosin heavy chain (MyHC) content. The proportion of slow fibre types significantly increased in the masseter, from 7% at week 1 to 47% at week 8, and then decreased to 21% at week 20, while in the digastric it increased from 5% in week 1 to 19% at week 8 and remained the same thereafter. The changes in the proportion of fast fibre types were the opposite. The remarkable increase and decrease in the proportion of slow fibre types in the masseter was attributed predominantly to MyHC-cardiac alpha fibres. During early development, the cross-sectional area of all fibres in both muscles increased. However, only the fast fibre types in the masseter continued to grow further after week 8. Before weaning, the fast fibre types in the digastric were larger than those in the masseter, but after week 8, they became larger in the masseter than in the digastric. In adult animals, masseter and digastric had the same percentage of fast fibre types, but these fibres were almost twice as large in masseter as in digastric.
Collapse
Affiliation(s)
- J A M Korfage
- Department of Functional Anatomy, Academic Center for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Donner K, Nowak KJ, Aro M, Pelin K, Wallgren-Pettersson C. Developmental and muscle-type-specific expression of mouse nebulin exons 127 and 128. Genomics 2006; 88:489-95. [PMID: 16860535 DOI: 10.1016/j.ygeno.2006.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 02/09/2006] [Accepted: 06/16/2006] [Indexed: 11/27/2022]
Abstract
The human nebulin gene includes 183 exons and four regions of alternative splicing. The mouse nebulin gene, with 166 exons, has a similar organization. Here we describe the expression patterns of one of the alternatively spliced regions of nebulin: exons 127 and 128 in the mouse gene, corresponding to human nebulin exons 143 and 144. Expression was elucidated by quantifying the differentially spliced transcripts in mice of different ages. In most of the muscles studied, transcripts expressing exon 127 were more prominent in muscles from younger mice, while older mice showed higher quantities of the transcript expressing exon 128. Some muscles, e.g., diaphragm and masseter, almost exclusively expressed only one of the two transcripts, whereas others, e.g., soleus and cardiac muscle, expressed equal quantities of both transcripts. The expression patterns did not correlate with fiber-type composition. We speculate that these exons harbor a regulatory function utilized during muscle maturation.
Collapse
Affiliation(s)
- Kati Donner
- The Folkhälsan Institute of Genetics and Department of Medical Genetics, University of Helsinki, Biomedicum Helsinki, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The Fgf signalling pathway is highly conserved in evolution and plays crucial roles in development. In the craniofacial region, it is involved in almost all structure development from early patterning to growth regulation. In craniofacial skeletogenesis, the Fgf signal pathway plays important roles in suture and synchondrosis regulation. Mutations of FGF receptors relate to syndromatic and non-syndromatic craniosynostosis. The Fgf10/Fgfr2b signal loop is critical for palatogenesis and submandibular gland formation. Perturbation of the Fgf signal is a possible mechanism of palatal cleft. Fgf10 haploinsufficiency has been identified as the cause of autosomal dominant aplasia of lacrimal and salivary glands. The Fgf signal is also a key regulator of tooth formation: in the absence of Fgfr2b tooth development is arrested at the bud stage. Fgfr4 has recently been identified as the key signal mediator in myogenesis. In this review, these aspects are discussed in detail with a focus on the most recent advances.
Collapse
Affiliation(s)
- X Nie
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | |
Collapse
|
12
|
Yamane A. Embryonic and postnatal development of masticatory and tongue muscles. Cell Tissue Res 2005; 322:183-9. [PMID: 16041600 DOI: 10.1007/s00441-005-0019-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Accepted: 05/17/2005] [Indexed: 11/26/2022]
Abstract
This review summarizes findings concerning the unique developmental characteristics of mouse head muscles (mainly the masticatory and tongue muscles) and compares their characteristics with those of other muscles. The developmental origin of the masticatory muscles is the somitomeres, whereas the tongue and other muscles, such as the trunk (deep muscles of the back, body wall muscles) and limb muscles, originate from the somites. The program controlling the early stages of masticatory myogenesis, such as the specification and migration of muscle progenitor cells, is distinctly different from those in trunk and limb myogenesis. Tongue myogenesis follows a similar regulatory program to that for limb myogenesis. Myogenesis and synaptogenesis in the masticatory muscles are delayed in comparison with other muscles and are not complete even at birth, whereas the development of tongue muscles proceeds faster than those of other muscles and ends at around birth. The regulatory programs for masticatory and tongue myogenesis seem to depend on the developmental origins of the muscles, i.e., the origin being either a somite or somitomere, whereas myogenesis and synaptogenesis seem to progress to serve the functional requirements of the masticatory and tongue muscles.
Collapse
Affiliation(s)
- A Yamane
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
13
|
Yamane A, Saito T, Nakagawa Y, Ohnuki Y, Saeki Y. Changes in mRNA expression of nicotinic acetylcholine receptor subunits during embryonic development of mouse masseter muscle. Zoolog Sci 2002; 19:207-13. [PMID: 12012784 DOI: 10.2108/zsj.19.207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) switch from the embryonic-type (alpha 2 beta gamma delta subunits) to the adult-type (alpha 2 beta epsilon delta subunits), and disappear besides the neuromuscular junctions with the development of trunk and limb skeletal muscles. However, little is known about this process during the embryonic development of masseter muscle. To identify the time course of the nAChR transition from embryonic day (E) 11 to the newborn stage in mouse masseter muscle, we analyzed the expression level of delta, epsilon, and gamma subunit mRNAs by competitive polymerase chain reaction in combination with reverse transcription as well as distribution of delta subunit protein by immunohistochemistry. The nAChR delta subunit mRNA was initially detected at E11, showed an approximately 25-fold increase (p < 0.0001) between E11 and E17, and plateaued thereafter until the newborn stage. Immunostaining for delta subunit was observed in the whole portions of masseter myofibers at E17 and birth, suggesting that the nAChR elimination does not begin even at the newborn stage. The epsilon subunit mRNA initially appeared at E17, and increased in quantity by 144% (p < 0.0001) up to the newborn stage. The quantity of gamma subunit mRNA increased by approximately 240% (p < 0.0001) between E11 and E17, and then decreased by 22% (p < 0.05) from E17 value at the newborn stage. The beginning of the expression of the epsilon subunit mRNA was coincident with the beginning of the decrease in the quantity of the gamma subunit mRNA, suggesting that the nAChR subunit switch begins at E17.
Collapse
Affiliation(s)
- Akira Yamane
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Japan 230-8501.
| | | | | | | | | |
Collapse
|
14
|
Temple GK, Cole NJ, Johnston IA. Embryonic temperature and the relative timing of muscle-specific genes during development in herring (Clupea harengus L.). J Exp Biol 2001; 204:3629-37. [PMID: 11719529 DOI: 10.1242/jeb.204.21.3629] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Temperature influences many aspects of muscle development in herring (Clupea harengus). In Clyde herring, myofibril synthesis occurred later with respect to somite stage in embryos reared at 5°C compared with 12°C. The aim of the present study was to test the hypothesis that the relative timing of expression of myogenic regulatory factors (MRFs) and myosin heavy chain (MyHC) transcripts changes with developmental temperature. Reverse transcriptase/polymerase chain reaction (RT-PCR) was used to clone partial coding regions of MyoD, myogenin and MyHC from juvenile Clyde herring. Embryos were reared at 5, 8 and 12°C, and the spatial and temporal expression patterns of transcripts were investigated using cRNA probes and in situ hybridisation. Antisense probes revealed a rostral–caudal progression of all three transcripts. MyoD transcription initially took place in the adaxial cells of the unsegmented, presomitic mesoderm, whereas myogenin transcription first occurred in newly formed somites. The MyHC gene transcript was not detected until approximately nine somites had formed. Since the somite stage at which the MRFs and MyHC were first expressed was independent of temperature, the hypothesis was rejected. We suggest that the effects of temperature on myofibril synthesis must occur downstream from MyHC transcription either at the level of translation or at the assembly stage.
Collapse
Affiliation(s)
- G K Temple
- Gatty Marine Laboratory, Division of Environmental and Evolutionary Biology, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, Scotland.
| | | | | |
Collapse
|