1
|
Rojasawasthien T, Srithanyarat SS, Bulanawichit W, Osathanon T. Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells. Int Dent J 2025; 75:117-126. [PMID: 39730290 PMCID: PMC11806315 DOI: 10.1016/j.identj.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed. The review highlights the role of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in mediating inflammatory responses, as well as the counteracting effects of anti-inflammatory cytokines like IL-4 and IL-10. Additionally, we underscore the involvement of toll-like receptors (TLRs), particularly TLR4, in transducing mechanical stress signals and modulating cytokine production. This review demonstrates that hPDLSCs respond to different mechanical forces with specific gene expression changes that direct inflammatory and bone remodelling signals, leading to increased osteoblast and osteoclast activity. Moreover, hPDLSCs, together with contiguous hPDL cells, respond to various mechanical forces by regulating the immune function of several immune cells. This complex relationship between the mechanical force stress, inflammation, and the cellular response in hPDLSCs warrants further research to develop therapeutic strategies for periodontal and related diseases.
Collapse
Affiliation(s)
- Thira Rojasawasthien
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand
| | - Supreda Suphanantachat Srithanyarat
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Periodontology and Dental Implants, Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wajathip Bulanawichit
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Lösch L, Stemmler A, Fischer A, Steinmetz J, Schuldt L, Hennig CL, Symmank J, Jacobs C. GDF15 Promotes the Osteogenic Cell Fate of Periodontal Ligament Fibroblasts, thus Affecting Their Mechanobiological Response. Int J Mol Sci 2023; 24:10011. [PMID: 37373159 DOI: 10.3390/ijms241210011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontal ligament fibroblasts (PdLFs) exert important functions in oral tissue and bone remodeling following mechanical forces, which are specifically applied during orthodontic tooth movement (OTM). Located between the teeth and the alveolar bone, mechanical stress activates the mechanomodulatory functions of PdLFs including regulating local inflammation and activating further bone-remodeling cells. Previous studies suggested growth differentiation factor 15 (GDF15) as an important pro-inflammatory regulator during the PdLF mechanoresponse. GDF15 exerts its effects through both intracrine signaling and receptor binding, possibly even in an autocrine manner. The extent to which PdLFs are susceptible to extracellular GDF15 has not yet been investigated. Thus, our study aims to examine the influence of GDF15 exposure on the cellular properties of PdLFs and their mechanoresponse, which seems particularly relevant regarding disease- and aging-associated elevated GDF15 serum levels. Therefore, in addition to investigating potential GDF15 receptors, we analyzed its impact on the proliferation, survival, senescence, and differentiation of human PdLFs, demonstrating a pro-osteogenic effect upon long-term stimulation. Furthermore, we observed altered force-related inflammation and impaired osteoclast differentiation. Overall, our data suggest a major impact of extracellular GDF15 on PdLF differentiation and their mechanoresponse.
Collapse
Affiliation(s)
- Lukas Lösch
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Albert Stemmler
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Adrian Fischer
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Julia Steinmetz
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Lisa Schuldt
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | | | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany
| |
Collapse
|
3
|
Zhu XR, Wang CX, Chen C, Wang RY, Zhang Y. Cytokine expression in gingival crevicular fluid around teeth opposing dental implants and 3-unit fixed partial dentures in a cross-sectional study. Head Face Med 2023; 19:14. [PMID: 37038160 PMCID: PMC10088209 DOI: 10.1186/s13005-023-00359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
OBJECTIVE This study aimed to study the cytokines in gingival crevicular fluid (GCF) of the teeth opposing to dental implants and 3-unit fixed partial dentures (FPDs). MATERIALS AND METHODS A total of 74 participants were recruited for this cross-sectional study. Based on the status of lower first molars, the participants were divided into dental implants group and 3-unit FPDs group. Social index and oral hygiene were recorded. Occlusal loading was evaluated with a T-scan. GCF was sampled from the upper first molar and assessed with a commercial cytokine assay kit. RESULTS Forty three dental implants patients and 31 3-unit FPDs patients received all of the clinical and laboratory evaluation. The dental implants group had a higher occlusion force distribution on first molars region. IL-10, IL-17, RANK had a higher mean in dental implants group and was associated with occlusion force of first molar. There was a weakly association between IL-10 and dental implants in the binary logistic regression analyses. CONCLUSIONS In this study, the teeth opposing implants have a higher level of cytokines in the GCF than teeth opposing to 3-unit FPDs in periodontal healthy participants because of the poor osseoperception of dental implants. IL-10 might reflect a higher occlusion force in dental implants region. CLINICAL RELEVANCE This study provided that different tooth restoration methods could influence the periodontal status of the contact teeth.
Collapse
Affiliation(s)
- Xin-Rui Zhu
- Department of Stomatology, Beijing Haidian Hospital, Beijing, 100080, China
| | - Chen-Xi Wang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Chang Chen
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine & National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Rui-Yong Wang
- Department of Stomatology, Beijing Haidian Hospital, Beijing, 100080, China.
| | - Yu Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
4
|
Zhao Z, Behm C, Tian Z, Rausch MA, Rausch-Fan X, Andrukhov O. Cyclic tensile strain-induced yes-associated protein activity modulates the response of human periodontal ligament mesenchymal stromal cells to tumor necrosis factor-α. Arch Oral Biol 2022; 143:105527. [PMID: 36055128 DOI: 10.1016/j.archoralbio.2022.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This study aimed to evaluate the role of yes-associated protein (YAP) in the inflammatory processes induced in human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) by cyclic tensile strain (CTS). DESIGN hPDL-MSCs from five periodontally healthy individuals were stimulated with 12% CTS and/or TNF-α for 24 h. YAP activity was determined by analyzing the YAP nuclear localization and the target genes expression, using immunofluorescence and qPCR, respectively. Verteporfin was used to inhibit the activation of YAP. The gene expression of interleukin (IL)-6, IL-8, vascular cell adhesion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-1 was analyzed by qPCR. RESULTS In the absence of TNF-α, application of CTS resulted in the nuclear YAP translocation and upregulation of YAP target genes. Verteporfin inhibited the activation of YAP pathway and upregulated the basal expression of IL-6 and IL-8. TNF-α induced the activation of YAP pathway, which was inhibited by verteporfin. However, application of CTS under these conditions diminished TNF-α-induced YAP activation. TNF-α-induced expression of IL-6, VCAM-1, and ICAM-1 was inhibited after the application of CTS. Inhibition of YAP activation by verteporfin diminished TNF-α-induced gene expression of IL-6, VCAM-1, and ICAM-1, and under these conditions no inhibitory effect of CTS on these parameters was observed. CONCLUSIONS YAP is at least partially involved in the CTS-activated mechanotransduction pathway. The effects of CTS and YAP on the inflammatory responses depend on the inflammatory environment. A better understanding of the inflammatory modulation by mechanical stress may help improve the orthodontic strategies, especially in the patient with periodontitis.
Collapse
Affiliation(s)
- Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Xu X, Zhang T, Xia X, Yin Y, Yang S, Ai D, Qin H, Zhou M, Song J. Pyroptosisin periodontitis: From the intricate interaction with apoptosis, NETosis, and necroptosis to the therapeutic prospects. Front Cell Infect Microbiol 2022; 12:953277. [PMID: 36093182 PMCID: PMC9450806 DOI: 10.3389/fcimb.2022.953277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is highly prevalent worldwide. It is characterized by periodontal attachment and alveolar bone destruction, which not only leads to tooth loss but also results in the exacerbation of systematic diseases. As such, periodontitis has a significant negative impact on the daily lives of patients. Detailed exploration of the molecular mechanisms underlying the physiopathology of periodontitis may contribute to the development of new therapeutic strategies for periodontitis and the associated systematic diseases. Pyroptosis, as one of the inflammatory programmed cell death pathways, is implicated in the pathogenesis of periodontitis. Progress in the field of pyroptosis has greatly enhanced our understanding of its role in inflammatory diseases. This review first summarizes the mechanisms underlying the activation of pyroptosis in periodontitis and the pathological role of pyroptosis in the progression of periodontitis. Then, the crosstalk between pyroptosis with apoptosis, necroptosis, and NETosis in periodontitis is discussed. Moreover, pyroptosis, as a novel link that connects periodontitis with systemic disease, is also reviewed. Finally, the current challenges associated with pyroptosis as a potential therapeutic target for periodontitis are highlighted.
Collapse
Affiliation(s)
- Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengjiao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jinlin Song,
| |
Collapse
|
6
|
Behm C, Zhao Z, Andrukhov O. Immunomodulatory Activities of Periodontal Ligament Stem Cells in Orthodontic Forces-Induced Inflammatory Processes: Current Views and Future Perspectives. FRONTIERS IN ORAL HEALTH 2022; 3:877348. [PMID: 35601817 PMCID: PMC9114308 DOI: 10.3389/froh.2022.877348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/13/2022] [Indexed: 12/25/2022] Open
Abstract
Orthodontic tooth movement (OTM) is induced by applying active mechanical forces, causing a local non-infectious inflammatory response in the periodontal ligament (PDL). As a prerequisite for OTM, the inflammation status is associated with increased levels of various cytokines and involves the interaction between immune cells and periodontal ligament stem cells (hPDLSCs). It is well established that hPDLSCs respond to orthodontic forces in several ways, such as by secreting multiple inflammatory factors. Another essential feature of hPDLSCs is their immunomodulatory activities, which are executed through cytokine (e.g., TNF-α and IL-1β)-induced production of various soluble immunomediators (e.g., indoleamine-2,3-dioxygenase-1, tumor necrosis factor-inducible gene 6 protein, prostaglandin E2) and direct cell-to-cell contact (e.g., programmed cell death ligand 1, programmed cell death ligand 2). It is well known that these immunomodulatory abilities are essential for local periodontal tissue homeostasis and regeneration. So far, only a handful of studies provides first hints that hPDLSCs change immunological processes during OTM via their immunomodulatory activities. These studies demonstrate the pro-inflammatory aspect of immunomodulation by hPDLSCs. However, no studies exist which investigate cytokine and cell-to-cell contact mediated immunomodulatory activities of hPDLSCs. In this perspective article, we will discuss the potential role of the immunomodulatory potential of hPDLSCs in establishing and resolving the OTM-associated non-infectious inflammation and hence its potential impact on periodontal tissue homeostasis during OTM.
Collapse
Affiliation(s)
- Christian Behm
- Competence Center Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
7
|
Sun C, Janjic Rankovic M, Folwaczny M, Stocker T, Otto S, Wichelhaus A, Baumert U. Effect of Different Parameters of In Vitro Static Tensile Strain on Human Periodontal Ligament Cells Simulating the Tension Side of Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms23031525. [PMID: 35163446 PMCID: PMC8835937 DOI: 10.3390/ijms23031525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the effects of different magnitudes and durations of static tensile strain on human periodontal ligament cells (hPDLCs), focusing on osteogenesis, mechanosensing and inflammation. Static tensile strain magnitudes of 0%, 3%, 6%, 10%, 15% and 20% were applied to hPDLCs for 1, 2 and 3 days. Cell viability was confirmed via live/dead cell staining. Reference genes were tested by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and assessed. The expressions of TNFRSF11B, ALPL, RUNX2, BGLAP, SP7, FOS, IL6, PTGS2, TNF, IL1B, IL8, IL10 and PGE2 were analyzed by RT-qPCR and/or enzyme-linked immunosorbent assay (ELISA). ALPL and RUNX2 both peaked after 1 day, reaching their maximum at 3%, whereas BGLAP peaked after 3 days with its maximum at 10%. SP7 peaked after 1 day at 6%, 10% and 15%. FOS peaked after 3 days with its maximum at 3%, 6% and 15%. The expressions of IL6 and PTGS2 both peaked after 1 day, with their minimum at 10%. PGE2 peaked after 1 day (maximum at 20%). The ELISA of IL6 peaked after 3 days, with the minimum at 10%. In summary, the lower magnitudes promoted osteogenesis and caused less inflammation, while the higher magnitudes inhibited osteogenesis and enhanced inflammation. Among all magnitudes, 10% generally caused a lower level of inflammation with a higher level of osteogenesis.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Thomas Stocker
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
- Correspondence:
| |
Collapse
|
8
|
Zhao Z, Behm C, Rausch MA, Tian Z, Rausch-Fan X, Andrukhov O. Cyclic tensile strain affects the response of human periodontal ligament stromal cells to tumor necrosis factor-α. Clin Oral Investig 2022; 26:609-622. [PMID: 34185172 PMCID: PMC8791913 DOI: 10.1007/s00784-021-04039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of periodontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) was investigated. MATERIALS AND METHODS hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain (CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhesion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow cytometry analysis. RESULTS TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS downregulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface expression analyzed by flow cytometry was observed chiefly for VCAM-1. CONCLUSIONS Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force magnitude. CLINICAL RELEVANCE Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may have significant implications for future strategies of combined periodontal and orthodontic treatment.
Collapse
Affiliation(s)
- Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria.
| |
Collapse
|
9
|
Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis. Front Bioeng Biotechnol 2021; 9:695053. [PMID: 34513810 PMCID: PMC8429507 DOI: 10.3389/fbioe.2021.695053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
Orthodontic tooth movement is based on the remodeling of tooth-surrounding tissues in response to mechanical stimuli. During this process, human periodontal ligament cells (hPDLCs) play a central role in mechanosensing and mechanotransduction. Various in vitro models have been introduced to investigate the effect of tension on hPDLCs. They provide a valuable body of knowledge on how tension influences relevant genes, proteins, and metabolites. However, no systematic review summarizing these findings has been conducted so far. Aim of this systematic review was to identify all related in vitro studies reporting tension application on hPDLCs and summarize their findings regarding force parameters, including magnitude, frequency and duration. Expression data of genes, proteins, and metabolites was extracted and summarized. Studies' risk of bias was assessed using tailored risk of bias tools. Signaling pathways were identified by protein-protein interaction (PPI) networks using STRING and GeneAnalytics. According to our results, Flexcell Strain Unit® and other silicone-plate or elastic membrane-based apparatuses were mainly adopted. Frequencies of 0.1 and 0.5 Hz were predominantly applied for dynamic equibiaxial and uniaxial tension, respectively. Magnitudes of 10 and 12% were mostly employed for dynamic tension and 2.5% for static tension. The 10 most commonly investigated genes, proteins and metabolites identified, were mainly involved in osteogenesis, osteoclastogenesis or inflammation. Gene-set enrichment analysis and PPI networks gave deeper insight into the involved signaling pathways. This review represents a brief summary of the massive body of knowledge in this field, and will also provide suggestions for future researches on this topic.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Behm C, Nemec M, Blufstein A, Schubert M, Rausch-Fan X, Andrukhov O, Jonke E. Interleukin-1β Induced Matrix Metalloproteinase Expression in Human Periodontal Ligament-Derived Mesenchymal Stromal Cells under In Vitro Simulated Static Orthodontic Forces. Int J Mol Sci 2021; 22:1027. [PMID: 33498591 PMCID: PMC7864333 DOI: 10.3390/ijms22031027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
The periodontal ligament (PDL) responds to applied orthodontic forces by extracellular matrix (ECM) remodeling, in which human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) are largely involved by producing matrix metalloproteinases (MMPs) and their local inhibitors (TIMPs). Apart from orthodontic forces, the synthesis of MMPs and TIMPs is influenced by the aseptic inflammation occurring during orthodontic treatment. Interleukin (IL)-1β is one of the most abundant inflammatory mediators in this process and crucially affects the expression of MMPs and TIMPs in the presence of cyclic low-magnitude orthodontic tensile forces. In this study we aimed to investigate, for the first time, how IL-1β induced expression of MMPs, TIMPs and how IL-1β in hPDL-MSCs was changed after applying in vitro low-magnitude orthodontic tensile strains in a static application mode. Hence, primary hPDL-MSCs were stimulated with IL-1β in combination with static tensile strains (STS) with 6% elongation. After 6- and 24 h, MMP-1, MMP-2, TIMP-1 and IL-1β expression levels were measured. STS alone had no influence on the basal expression of investigated target genes, whereas IL-1β caused increased expression of these genes. In combination, they increased the gene and protein expression of MMP-1 and the gene expression of MMP-2 after 24 h. After 6 h, STS reduced IL-1β-induced MMP-1 synthesis and MMP-2 gene expression. IL-1β-induced TIMP-1 gene expression was decreased by STS after 6- and 24-h. At both time points, the IL-1β-induced gene expression of IL-1β was increased. Additionally, this study showed that fetal bovine serum (FBS) caused an overall suppression of IL-1β-induced expression of MMP-1, MMP-2 and TIMP-1. Further, it caused lower or opposite effects of STS on IL-1β-induced expression. These observations suggest that low-magnitude orthodontic tensile strains may favor a more inflammatory and destructive response of hPDL-MSCs when using a static application form and that this response is highly influenced by the presence of FBS in vitro.
Collapse
Affiliation(s)
- Christian Behm
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Michael Nemec
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Schubert
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Erwin Jonke
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
| |
Collapse
|
11
|
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7:25. [PMID: 31646015 PMCID: PMC6804735 DOI: 10.1038/s41413-019-0066-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Marciniak J, Lossdörfer S, Kirschneck C, Deschner J, Jäger A, Wolf M. Heat shock protein 70 dampens the inflammatory response of human PDL cells to mechanical loading in vitro. J Periodontal Res 2019; 54:481-488. [PMID: 30865286 DOI: 10.1111/jre.12648] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Previously, we demonstrated an inflammatory response of human PDL (hPDL) cells to mechanical loading. The cellular reaction was dampened by heat pre-treatment suggesting a protective role for heat shock proteins (HSP) during stress-induced ischemia. Here we explored if HSP70, which has already been documented in the pressure zone of tooth movement, might be regulatorily involved in the attenuation of the inflammatory response. MATERIALS AND METHODS Fifth passage hPDL cells were mechanically loaded in the presence of the HSP70 inhibitor VER155008. Cell morphology, HSP70 expression, viability, IL-6 and IL-8 expression were determined by means of microscopy, realtime-PCR and ELISA. The conditioned medium of mechanically loaded and pre-treated hPDL cells was used to culture monocytes to identify a potential impact on adhesion and osteoclastic differentiation capacity. RESULTS Mechanical cell stress resulted in a significant increase of pro-inflammatory parameters. HSP70 inhibition led to a further enhancement of cytokine expression. The conditioned medium of mechanically loaded hPDL cells significantly increased monocyte adhesion and differentiation along the osteoclastic pathway. VER155008 pronounced this effect significantly. CONCLUSION The results indicate a regulatory role for HSP70 in the control of the inflammatory hPDL cell response to mechanical loading and identify HSP70 as a target in the attempt to attenuate tissue damage during orthodontic tooth movement. Furthermore, the present findings point to the risk of increased periodontal destruction when medication targeting HSP70 is applied for severe medical conditions during orthodontic tooth movement.
Collapse
Affiliation(s)
- Jana Marciniak
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany.,Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Stefan Lossdörfer
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Christian Kirschneck
- Department of Orthodontics, Dental Clinic, University of Regensburg, Regensburg, Germany
| | - James Deschner
- Department of Periodontology and Restorative Dentistry, University of Mainz, Mainz, Germany
| | - Andreas Jäger
- Department of Orthodontics, Dental Clinic, University of Bonn, Bonn, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Aachen, Germany
| |
Collapse
|
13
|
Li M, Zhang C, Yang Y. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: A systematic review of in vitro studies. Bone Joint Res 2019; 8:19-31. [PMID: 30800296 PMCID: PMC6359886 DOI: 10.1302/2046-3758.81.bjr-2018-0060.r1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Many in vitro studies have investigated the mechanism by which mechanical signals are transduced into biological signals that regulate bone homeostasis via periodontal ligament fibroblasts during orthodontic treatment, but the results have not been systematically reviewed. This review aims to do this, considering the parameters of various in vitro mechanical loading approaches and their effects on osteogenic and osteoclastogenic properties of periodontal ligament fibroblasts. METHODS Specific keywords were used to search electronic databases (EMBASE, PubMed, and Web of Science) for English-language literature published between 1995 and 2017. RESULTS A total of 26 studies from the 555 articles obtained via the database search were ultimately included, and four main types of biomechanical approach were identified. Compressive force is characterized by static and continuous application, whereas tensile force is mainly cyclic. Only nine studies investigated the mechanisms by which periodontal ligament fibroblasts transduce mechanical stimulus. The studies provided evidence from in vitro mechanical loading regimens that periodontal ligament fibroblasts play a unique and dominant role in the regulation of bone remodelling during orthodontic tooth movement. CONCLUSION Evidence from the reviewed studies described the characteristics of periodontal ligament fibroblasts exposed to mechanical force. This is expected to benefit subsequent research into periodontal ligament fibroblasts and to provide indirectly evidence-based insights regarding orthodontic treatment. Further studies should be performed to explore the effects of static tension on cytomechanical properties, better techniques for static compressive force loading, and deeper analysis of underlying regulatory systems.Cite this article: M. Li, C. Zhang, Y. Yang. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: A systematic review of in vitro studies. Bone Joint Res 2019;8:19-31. DOI: 10.1302/2046-3758.81.BJR-2018-0060.R1.
Collapse
Affiliation(s)
- M. Li
- University of Hong Kong, Hong Kong, China; Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - C. Zhang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Y. Yang
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW To examine the evidence in support of light continuous forces for enhancing bone adaptation (modeling and remodeling) in orthodontics and dentofacial orthopedics. RECENT FINDINGS Clinical evidence suggests that light continuous orthodontic force can achieve physiologic expansion of the maxillary arch, but the long-term stability and the biological effects of the procedure are unclear. Compared to conventional orthodontic appliances that deliver heavy interrupted forces for tooth movement, the application of low-magnitude forces in animal models leads to anabolic modeling and remodeling of the alveolar bone in the path of orthodontic tooth movement. This results in dental translation and expansion of the alveolar process. Light continuous forces are preferable to heavy forces for more physiologic dentofacial orthopedics. The interaction of low-magnitude loads with soft tissue posture achieves therapeutic adaptation of the craniofacial skeleton. The increasing emphasis on genomic medicine and personalized treatment planning should focus on low-magnitude loads in orthodontics and dentofacial orthopedics.
Collapse
Affiliation(s)
- Achint Utreja
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, 1121 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
15
|
Sun C, Liu F, Cen S, Chen L, Wang Y, Sun H, Deng H, Hu R. Tensile strength suppresses the osteogenesis of periodontal ligament cells in inflammatory microenvironments. Mol Med Rep 2017; 16:666-672. [PMID: 28560407 PMCID: PMC5482070 DOI: 10.3892/mmr.2017.6644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/15/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate the role of orthodontic force in osteogenesis differentiation, matrix deposition and mineralization in periodontal ligament cells (PDLCs) cells in inflammatory microenvironments. The mesenchymal origin of PDLCs was confirmed by vimentin and cytokeratin staining. PDLCs were exposed to inflammatory cytokines (5 ng/ml IL‑1β and 10 ng/ml TNF‑α) and/or tensile strength (0.5 Hz, 12% elongation) for 12, 24 or 48 h. Cell proliferation and tensile strength‑induced cytokine expression were assessed by MTT assay and ELISA, respectively. Runt‑related transcription factor 2 (RUNX2) and type I collagen (COL‑I) expression were analysed by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Additionally, alkaline phosphatase activity was measured, and the mineralization profile was evaluated by alizarin red S staining. PDLCs exposed to tensile strength in inflammatory microenvironments exhibited reduced proliferation and mineralization potential. Treatment with the inflammatory cytokines IL‑1β and TNF‑α increased RUNX2 expression levels; however, decreased COL‑I expression levels, indicating that bone formation and matrix deposition involve different mechanisms in PDL tissues. Notably, RUNX2 and COL‑I expression levels were decreased in PDLCs exposed to a combination of an inflammatory environment and loading strength. The decreased osteogenic potential in an inflammatory microenvironment under tensile strength suggests that orthodontic force may amplify periodontal destruction in orthodontic patients with periodontitis.
Collapse
Affiliation(s)
- Chaofan Sun
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Fen Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shendan Cen
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Lijiao Chen
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yi Wang
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Hao Sun
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
16
|
Shikonin Inhibits Inflammatory Cytokine Production in Human Periodontal Ligament Cells. Inflammation 2017; 39:1124-9. [PMID: 27072015 DOI: 10.1007/s10753-016-0344-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Shikonin, which is derived from Lithospermum erythrorhizon, a herb used in traditional medicine, has long been considered to be a useful treatment for various diseases in traditional oriental medicine. Shikonin has recently been reported to have several pharmacological properties, e.g., it has anti-microbial, anti-tumor, and anti-inflammatory effects. The aim of this study was to examine whether shikonin is able to influence the production of interleukin (IL)-6, IL-8, and/or chemokine C-C motif ligand (CCL)20, which contribute to the pathogenesis of periodontal disease, in human periodontal ligament cells (HPDLC). The production levels of IL-6, IL-8, and CCL20 in HPDLC were determined using an ELISA. Western blot analysis was used to detect nuclear factor kappa B (NF-κB) pathway activation in HPDLC. Shikonin prevented IL-1β- or tumor necrosis factor (TNF)-α-mediated IL-6, IL-8, and CCL20 production in HPDLC. Moreover, we found that shikonin suppressed the phosphorylation and degradation of inhibitor of kappa B-alpha (IκB-α) in IL-1β- or TNF-α-stimulated HPDLC. These findings suggest that shikonin could have direct beneficial effects against periodontal disease by reducing IL-6, IL-8, and CCL20 production in periodontal lesions.
Collapse
|
17
|
Periodontal Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to Static Mechanical Strain. Stem Cells Int 2017; 2017:1380851. [PMID: 28316629 PMCID: PMC5339497 DOI: 10.1155/2017/1380851] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023] Open
Abstract
During orthodontic treatment, periodontium remodeling of periodontitis patients under mechanical force was abnormal. We have previously confirmed the function impairment of periodontal ligament stem cells (PDLSCs) in the periodontitis microenvironment which might be involved in this pathological process. However, the response of PDLSCs in periodontitis microenvironment to mechanical force remains unclear. Therefore, in the present study, we introduced a Flexcell tension apparatus and investigated the response of PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and of those obtained from healthy periodontal tissues (HPDLSCs) to different magnitudes of static mechanical strain (SMS). PPDLSCs showed increased proliferation, decreased osteogenic activity, activated osteoclastogenesis, and greater secretion of inflammatory cytokines. Different magnitudes of SMS exerted distinct effects on HPDLSCs and PPDLSCs. An SMS of 12% induced optimal effects in HPDLSCs, including the highest proliferation, the best osteogenic ability, the lowest osteoclastogenesis, and the lowest secretion of inflammatory cytokines, while the optimal SMS for PPDLSCs was 8%. Excessive SMS damaged PPDLSCs function, including decreased proliferation, an imbalance between osteogenesis and osteoclastogenesis, and an activated inflammatory response. Our data suggest that PPDLSCs are more sensitive and less tolerant to SMS, and this may explain why mechanical force results in undesirable effects in periodontitis patients.
Collapse
|
18
|
Nogueira AVB, de Molon RS, Nokhbehsaim M, Deschner J, Cirelli JA. Contribution of biomechanical forces to inflammation-induced bone resorption. J Clin Periodontol 2016; 44:31-41. [PMID: 27716969 DOI: 10.1111/jcpe.12636] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2016] [Indexed: 12/17/2022]
Abstract
AIM This study aimed to evaluate the contribution of biomechanical loading to inflammation-induced tissue destruction. MATERIALS AND METHODS A total of 144 adult Holtzman rats were randomly assigned into four experimental groups: control (C), ligature-induced periodontal disease (P), orthodontic movement (OM), and combination group (OMP). On days 1, 3, 7, and 15, following baseline, nine animals from each experimental group were killed. Bone volume fraction (BVF) and bone mineral density (BMD) were measured using micro-computed tomography. Expression and synthesis profile of cytokines and receptors of inflammation in gingival tissues were evaluated by PCR array assay and multiplex immunoassay. RESULTS At 15 days, the OMP group presented a significantly (p < 0.05) lower BVF and BMD levels when compared to all the other groups. The OMP group presented the highest number of upregulated protein targets in comparison to the other groups. Furthermore, the gene expression and protein levels of CCL2, CCL3, IL-1β, IL1-α, IL-18, TNF-α, and VEGF were significantly (p < 0.05) higher in the OMP group when compared to the P group. CONCLUSIONS In summary, mechanical loading modulates the inflammatory response of periodontal tissues to periodontal disease by increasing the expression of several pro-inflammatory mediators and receptors, which leads to increased bone resorption.
Collapse
Affiliation(s)
- Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - James Deschner
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
19
|
Suzuki SS, Garcez AS, Suzuki H, Ervolino E, Moon W, Ribeiro MS. Low-level laser therapy stimulates bone metabolism and inhibits root resorption during tooth movement in a rodent model. JOURNAL OF BIOPHOTONICS 2016; 9:1222-1235. [PMID: 27647761 DOI: 10.1002/jbio.201600016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 05/25/2023]
Abstract
This study evaluated the biological effects of low-level laser therapy (LLLT) on bone remodeling, tooth displacement and root resorption, occurred during the orthodontic tooth movement. Upper first molars of a total of sixty-eight male rats were subjected to orthodontic tooth movement and euthanized on days 3, 6, 9, 14 and 21 days and divided as negative control, control and LLLT group. Tooth displacement and histomorphometric analysis were performed in all animals; scanning electron microscopy analysis was done on days 3, 6 and 9, as well as the immunohistochemistry analysis of RANKL/OPG and TRAP markers. Volumetric changes in alveolar bone were analyzed using MicroCT images on days 14 and 21. LLLT influenced bone resorption by increasing the number of TRAP-positive osteoclasts and the RANKL expression at the compression side. This resulted in less alveolar bone and hyalinization areas on days 6, 9 and 14. LLLT also induced less bone volume and density, facilitating significant acceleration of tooth movement and potential reduction in root resorption besides stimulating bone formation at the tension side by enhancing OPG expression, increasing trabecular thickness and bone volume on day 21. Taken together, our results indicate that LLLT can stimulate bone remodeling reducing root resorption in a rat model. LLLT improves tooth movement via bone formation and bone resorption in a rat model.
Collapse
Affiliation(s)
- Selly Sayuri Suzuki
- CLA - Center for Laser and Applications, Nuclear and Energy Research Institute, IPEN-CNEN/SP, Brazil
| | - Aguinaldo Silva Garcez
- Department of Microbiology, São Leopoldo Mandic School and Dental Institute, Campinas, SP, Brazil
| | - Hideo Suzuki
- Department of Orthodontics, São Leopoldo Mandic School and Dental Institute, Campinas, SP, Brazil
| | - Edilson Ervolino
- Department of Basic Science and Embryology and Histology, Dental School of Araçatuba - UNESP, Brazil
| | - Won Moon
- Section of Orthodontics, UCLA School of Dentistry, Los Angeles, CA, USA
| | - Martha Simões Ribeiro
- CLA - Center for Laser and Applications, Nuclear and Energy Research Institute, IPEN-CNEN/SP, Brazil
| |
Collapse
|
20
|
Maeda A, Soejima K, Bandow K, Kuroe K, Kakimoto K, Miyawaki S, Okamoto A, Matsuguchi T. Force-induced IL-8 from Periodontal Ligament Cells Requires IL-1β. J Dent Res 2016; 86:629-34. [PMID: 17586709 DOI: 10.1177/154405910708600709] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During orthodontic tooth movement, mechanical stresses induce inflammatory reactions in the periodontal ligament (PDL). We hypothesized that chemokines released from PDL cells under mechanical stress regulate osteoclastogenesis, and investigated the profiles and mechanisms of chemokine expression by human PDL cells in response to mechanical stress. In vitro, shear stress and pressure force rapidly increased the gene and protein expressions of IL-8/CXCL8 by PDL cells. Consistently, amounts of IL-8 in the gingival crevicular fluid of healthy individuals increased within 2 to 4 days of orthodontic force application. The PDL cells constitutively expressed low levels of IL-1β, which were not further increased by mechanical stress. Interestingly, neutralization of IL-1β abolished IL-8 induction by mechanical stresses, indicating that IL-1β is essential for IL-8 induction, presumably though autocrine or paracrine mechanisms. Finally, experiments with signal-specific inhibitors indicated that MAP kinase activation is essential for IL-8 induction.
Collapse
Affiliation(s)
- A Maeda
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun C, Chen L, Shi X, Cao Z, Hu B, Yu W, Ren M, Hu R, Deng H. Combined effects of proinflammatory cytokines and intermittent cyclic mechanical strain in inhibiting osteogenicity in human periodontal ligament cells. Cell Biol Int 2016; 40:999-1007. [DOI: 10.1002/cbin.10641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Chaofan Sun
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Lijiao Chen
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Xinlian Shi
- Department of Periodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Zhensheng Cao
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Bibo Hu
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Wenbin Yu
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Manman Ren
- Department of Periodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Rongdang Hu
- Department of Orthodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| | - Hui Deng
- Department of Periodontics; School of Stomatology; Wenzhou Medical University; Wenzhou 325027 Zhejiang China
| |
Collapse
|
22
|
Verdolini K, Rosen CA, Branski RC, Hebda PA. Shifts in Biochemical Markers Associated with Wound Healing in Laryngeal Secretions following Phonotrauma: A Preliminary Study. Ann Otol Rhinol Laryngol 2016; 112:1021-5. [PMID: 14703104 DOI: 10.1177/000348940311201205] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The current study sought to determine whether shifts in key components of the inflammatory process could be detected from laryngeal secretions sampled before and after vocal loading. A healthy 44-year-old woman served as the subject. The vocal folds were swabbed to collect baseline secretions. Ten and 20 minutes after nearly constant loud phonation for 1 hour, the vocal folds were swabbed again. The findings indicated strong shifts in several key inflammatory mediators: interleukin-1beta, tumor necrosis factor alpha, and matrix metalloproteinase 8. The concentrations of those mediators continued to increase from the 10- to 20-minute postloading time-points. Transforming growth factor beta and prostaglandin E2 did not demonstrate clear shifts. In summary, mediators reflecting the acute inflammatory process could be detected from laryngeal secretions in an awake human. The upward slope of the curves at the 20-minute time interval indicates the need for longer follow-up sampling to determine the full biological response of the vocal folds to acute phonotrauma.
Collapse
Affiliation(s)
- Katherine Verdolini
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
23
|
Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 2016; 7:2041731415618342. [PMID: 26977284 PMCID: PMC4765821 DOI: 10.1177/2041731415618342] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/27/2022] Open
Abstract
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.
Collapse
Affiliation(s)
- Hye-Sun Yu
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jung-Ju Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Mark P Lewis
- Musculo-Skeletal Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea
| |
Collapse
|
24
|
Zheng L, Chen L, Chen Y, Gui J, Li Q, Huang Y, Liu M, Jia X, Song W, Ji J, Gong X, Shi R, Fan Y. The effects of fluid shear stress on proliferation and osteogenesis of human periodontal ligament cells. J Biomech 2016; 49:572-9. [PMID: 26892895 DOI: 10.1016/j.jbiomech.2016.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/26/2023]
Abstract
Shear stress is one of the main stress type produced by speech, mastication or tooth movement. The mechano-response of human periodontal ligament (PDL) cells by shear stress and the mechanism are largely unknown. In our study, we investigated the effects of fluid shear stress on proliferation, migration and osteogenic potential of human PDL cells. 6dyn/cm(2) of fluid shear stress was produced in a parallel plate flow chamber. Our results demonstrated that fluid shear stress rearranged the orientation of human PDL cells. In addition, fluid shear stress inhibited human PDL cell proliferation and migration, but increased the osteogenic potential and expression of several growth factors and cytokines. Our study suggested that shear stress is involved in homeostasis regulation in human PDL cells. Inhibiting proliferation and migration potentially induce PDL cells to respond to mechanical stimuli in order to undergo osteogenic differentiation.
Collapse
Affiliation(s)
- Lisha Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Luoping Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuchao Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jinpeng Gui
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, 100081, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaolin Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Song
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jing Ji
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xianghui Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ruoshi Shi
- University Health Network, Ontario Cancer Institute/Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| |
Collapse
|
25
|
Maeda A, Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Miyawaki S, Matsuguchi T. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts. Bone 2015; 74:76-82. [PMID: 25603464 DOI: 10.1016/j.bone.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022]
Abstract
Mechanical stresses including pressure force induce chemokine expressions in osteoblasts resulting in inflammatory reactions and bone remodeling. However, it has not been well elucidated how mechanical stresses induce inflammatory chemokine expressions in osteoblasts. IL-1β has been identified as an important pathogenic factor in bone loss diseases, such as inflammatory arthritis and periodontitis. Myeloid differentiation factor 88 (MyD88) is an essential downstream adaptor molecule of IL-1 receptor signaling. This study was to examine the gene expression profiles of inflammatory chemokines and the role of MyD88 in osteoblasts stimulated by pressure force. Pressure force (10g/cm(2)) induced significant mRNA increases of CXCL2, CCL2, and CCL5, as well as prompt phosphorylation of MAP kinases (ERK, p38 and JNK), in wild-type primary osteoblasts. The CXCL2 and CCL2 mRNA increases and MAP kinase phosphorylation were severely impaired in MyD88(-/-) osteoblasts. Constitutive low-level expression of IL-1β mRNA was similarly observed in both wild-type and MyD88(-/-) osteoblasts, which was not altered by pressure force stimulation. Notably, neutralization of IL-1β with a specific antibody significantly impaired pressure force-induced mRNA increases of CXCL2 and CCL2, as well as MAP kinase phosphorylation, in wild-type osteoblasts. Furthermore, pre-treatment with recombinant IL-1β significantly enhanced MAP kinase phosphorylation and mRNA increases of CXCL2 and CCL2 by pressure force in wild-type but not MyD88(-/-) osteoblasts. These results have suggested that the activation of MyD88 pathway by constitutive low-level IL-1β expression is essential for pressure force-induced CXCL2 and CCL2 expression in osteoblasts. Thus MyD88 signal in osteoblasts may be required for bone resorption by pressure force through chemokine induction.
Collapse
Affiliation(s)
- Aya Maeda
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
26
|
Bleuel J, Zaucke F, Brüggemann GP, Niehoff A. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 2015; 10:e0119816. [PMID: 25822615 PMCID: PMC4379081 DOI: 10.1371/journal.pone.0119816] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/16/2015] [Indexed: 12/25/2022] Open
Abstract
Chondrocytes reorganize the extracellular matrix of articular cartilage in response to externally applied loads. Thereby, different loading characteristics lead to different biological responses. Despite of active research in this area, it is still unclear which parts of the extracellular matrix adapt in what ways, and how specific loading characteristics affect matrix changes. This review focuses on the influence of cyclic tensile strain on chondrocyte metabolism in vitro. It also aimed to identify anabolic or catabolic chondrocyte responses to different loading protocols. The key findings show that loading cells up to 3% strain, 0.17 Hz, and 2 h, resulted in weak or no biological responses. Loading between 3–10% strain, 0.17–0.5 Hz, and 2–12 h led to anabolic responses; and above 10% strain, 0.5 Hz, and 12 h catabolic events predominated. However, this review also discusses that various other factors are involved in the remodeling of the extracellular matrix in response to loading, and that parameters like an inflammatory environment might influence the biological response.
Collapse
Affiliation(s)
- Judith Bleuel
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- * E-mail:
| | - Frank Zaucke
- Center for Biochemistry, Medical Faculty, University of Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Köln, Germany
- Cologne Center for Musculoskeletal Biomechanics, Medical Faculty, University of Cologne, Köln, Germany
| |
Collapse
|
27
|
Saminathan A, Sriram G, Vinoth JK, Cao T, Meikle MC. Engineering the Periodontal Ligament in Hyaluronan–Gelatin–Type I Collagen Constructs: Upregulation of Apoptosis and Alterations in Gene Expression by Cyclic Compressive Strain. Tissue Eng Part A 2015; 21:518-29. [DOI: 10.1089/ten.tea.2014.0221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aarthi Saminathan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Jayasaleen Kumar Vinoth
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- National Dental Centre, Singapore, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Murray C. Meikle
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Chen YJ, Shie MY, Hung CJ, Wu BC, Liu SL, Huang TH, Kao CT. Activation of focal adhesion kinase induces extracellular signal-regulated kinase-mediated osteogenesis in tensile force-subjected periodontal ligament fibroblasts but not in osteoblasts. J Bone Miner Metab 2014; 32:671-82. [PMID: 24362490 DOI: 10.1007/s00774-013-0549-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/11/2013] [Indexed: 01/23/2023]
Abstract
The exact mechanism by which focal adhesion kinase (FAK) translates mechanical signals into osteogenesis differentiation in force-subjected cells has not been elucidated. The responses to different forces differ according to the origin of cells and the type of stress applied. Therefore, the recruitment of osteoclast and osteoblast progenitor cells, and the balanced activation of these cells around and within the periodontal ligament (PDL) are essential for alveolar bone remodeling. Cells within the PDL and MG63 cells were subjected to tensile forces of -100 kPa for different periods of time. At various times during the tensile force application, they were processed for the purpose of analyzing cell viability, cell cycle, and osteogenic protein. The effect of small interfering RNA transfection targeting FAK was also evaluated. Tensile force enhanced a rapid increase in the phosphorylation of FAK and up-regulated osteogenic protein expression in PDL cells, but not in MG63 cells. Transfecting PDL cells with FAK antisense oligonucleotide diminished alkaline phosphatase and osteocalcin secretion. These findings suggest that tensile force activates FAK pathways in PDL cells, which down-regulate immune cytokine and up-regulate osteogenic protein.
Collapse
Affiliation(s)
- Yi-Jyun Chen
- School of Dentistry, Chung Shan Medical University, Taichung, 402, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang H, Wang Y, Bai X, Lv Z, Zou J, Xu W, Wang H. Cyclic tensile strain on vocal fold fibroblasts inhibits cigarette smoke-induced inflammation: implications for Reinke edema. J Voice 2014; 29:13-21. [PMID: 25439508 DOI: 10.1016/j.jvoice.2014.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate whether patients with Reinke edema are more extrovertive than patients with carcinoma and, whether cyclic tensile strain (CTS) attenuates cigarette smoke condensate (CSC)-induced inflammation in human vocal fold fibroblasts (HVFF). STUDY DESIGN In vitro and ex vivo study. METHODS Clinical investigation and Eysenck personality questionnaire were performed to evaluate the personality and smoking status in individuals among groups. 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay was applied to test the viabilities of cultured HVFF exposed to CSC and/or CTS. The messenger RNA (mRNA) and protein expressions of cluster of differentiation 44 (CD44), cyclooxygenase-2 (COX-2), and matrix metalloproteinase-9 (MMP-9) in tissues from Reinke edema, paracancerous site, normal vocal fold, and in HVFF with different treatments were measured by reverse transcriptase polymerase chain reaction or western blot, respectively. RESULTS Patients with either Reinke edema or carcinoma were moderate/heavy smokers; the extraversion score, however, was higher in Reinke edema patients than that in carcinoma patients. CD44 mRNA and protein expressions were significantly higher, whereas, COX-2 and MMP-9 expressions were significantly lower in Reinke edema tissues than those in paracancerous tissues. Treatment of HVFF with CSC led to the decrease in cell viability, the reduction in CD44 expression, but, the increase in COX-2 and MMP-9 expressions and, moreover, administration of CTS inhibited such effects of CSC on HVFF. CONCLUSIONS Our results demonstrate that Reinke edema patients have more extrovert personality characteristics in comparison to carcinoma patients and, importantly, CTS attenuates CSC-induced inflammation in HVFF. Phonatory vibration may be a mechanism for lower expression of proinflammatory mediators in Reinke edema tissues in spite of cigarette smoke exposure.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China; Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Yawei Wang
- Department of Chemotherapy, Cancer Center, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Xiaohui Bai
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China; Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Zhenghua Lv
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China; Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Jidong Zou
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China; Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Wei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China; Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Haibo Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China; Shandong Provincial Key Laboratory of Otology, Jinan, P.R. China; Institute of Eye and ENT, Provincial Hospital affiliated to Shandong University, Jinan, P.R. China.
| |
Collapse
|
30
|
Biomechanical loading modulates proinflammatory and bone resorptive mediators in bacterial-stimulated PDL cells. Mediators Inflamm 2014; 2014:425421. [PMID: 24976684 PMCID: PMC4058179 DOI: 10.1155/2014/425421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/26/2014] [Accepted: 04/29/2014] [Indexed: 01/20/2023] Open
Abstract
The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.
Collapse
|
31
|
Knapik DM, Perera P, Nam J, Blazek AD, Rath B, Leblebicioglu B, Das H, Wu LC, Hewett TE, Agarwal SK, Robling AG, Flanigan DC, Lee BS, Agarwal S. Mechanosignaling in bone health, trauma and inflammation. Antioxid Redox Signal 2014; 20:970-85. [PMID: 23815527 PMCID: PMC3924811 DOI: 10.1089/ars.2013.5467] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Mechanosignaling is vital for maintaining the structural integrity of bone under physiologic conditions. These signals activate and suppress multiple signaling cascades regulating bone formation and resorption. Understanding these pathways is of prime importance to exploit their therapeutic potential in disorders associated with bone loss due to disuse, trauma, or disruption of homeostatic mechanisms. RECENT ADVANCES In the case of cells of the bone, an impressive amount of data has been generated that provides evidence of a complex mechanism by which mechanical signals can maintain or disrupt cellular homeostasis by driving transcriptional regulation of growth factors, matrix proteins and inflammatory mediators in health and inflammation. Mechanical signals act on cells in a magnitude dependent manner to induce bone deposition or resorption. During health, physiological levels of these signals are essential for maintaining bone strength and architecture, whereas during inflammation, similar signals can curb inflammation by suppressing the nuclear factor kappa B (NF-κB) signaling cascade, while upregulating matrix synthesis via mothers against decapentaplegic homolog and/or Wnt signaling cascades. Contrarily, excessive mechanical forces can induce inflammation via activation of the NF-κB signaling cascade. CRITICAL ISSUES Given the osteogenic potential of mechanical signals, it is imperative to exploit their therapeutic efficacy for the treatment of bone disorders. Here we review select signaling pathways and mediators stimulated by mechanical signals to modulate the strength and integrity of the bone. FUTURE DIRECTIONS Understanding the mechanisms of mechanotransduction and its effects on bone lay the groundwork for development of nonpharmacologic mechanostimulatory approaches for osteodegenerative diseases and optimal bone health.
Collapse
Affiliation(s)
- Derrick M Knapik
- 1 Department of Orthopaedic Surgery, The Ohio State University College of Medicine , Columbus, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jacobs C, Walter C, Ziebart T, Grimm S, Meila D, Krieger E, Wehrbein H. Induction of IL-6 and MMP-8 in human periodontal fibroblasts by static tensile strain. Clin Oral Investig 2013; 18:901-8. [PMID: 23851938 DOI: 10.1007/s00784-013-1032-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 07/01/2013] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Mechanical loading is a potential activator of inflammation and able to stimulate factors for periodontal and alveolar bone destruction. Aim of this study was to investigate the inflammatory response and synthesis of proteinases by human periodontal ligament fibroblast (HPdLF) dependent on different strengths of static tensile strain (STS). MATERIALS AND METHODS HPdLFs were loaded with different STS strengths (1, 5, and 10 %) in vitro. Gene expressions of cyclooxygenase (COX)-2 and interleukin (IL)-6 were analyzed by quantitative real-time polymerase chain reaction. Production of IL-6, prostaglandin E2 (PGE2), matrix metalloproteinase (MMP)-8, and tissue inhibitors of matrix metalloproteinase (TIMP)-1 were measured by enzyme-linked immunosorbent assay. Receptor activator of nuclear factor-kappa ligand (RANKL) synthesis was detected by immunocytochemical staining. RESULTS Ten percent STS led to an increased gene expression of IL-6 and COX-2 (34.4-fold) in HPdLF, and 1 and 5 % STS slightly reduced the gene expression of IL-6. Synthesis of IL-6 was significantly reduced by 1 % STS and stimulated by 10 % STS. Ten percent STS significantly induced PGE2 production. RANKL was not detectable at any strength of STS. MMP-8 synthesis showed significantly higher values only at 10 % STS, but TIMP-1 was stimulated by 5 and 10 % STS, resulting into highest TIMP-1/MMP-8 ratio at 5 % STS. CONCLUSIONS High-strength STS is a potent inducer of periodontal inflammation and MMP-8, whereas low-strength STS shows an anti-inflammatory effect. Moderate-strength STS causes the highest TIMP-1/MMP-8 ratio, leading to appropriate conditions for reformation of the extracellular matrix. CLINICAL RELEVANCE Furthermore, this study points out that the strength of force plays a pivotal role to achieve orthodontic tooth movement without inducing periodontal inflammation and to activate extracellular matrix regeneration.
Collapse
Affiliation(s)
- Collin Jacobs
- Department of Orthodontics, University Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany,
| | | | | | | | | | | | | |
Collapse
|
33
|
Verdolini Abbott K, Li NYK, Branski RC, Rosen CA, Grillo E, Steinhauer K, Hebda PA. Vocal exercise may attenuate acute vocal fold inflammation. J Voice 2013. [PMID: 23177745 DOI: 10.1016/j.jvoice.2012.03.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES/HYPOTHESES The objective was to assess the utility of selected "resonant voice" (RV) exercises for the reduction of acute vocal fold inflammation. The hypothesis was that relatively large-amplitude, low-impact vocal fold exercises associated with RV would reduce inflammation more than spontaneous speech (SS) and possibly more than voice rest. STUDY DESIGN The study design was prospective, randomized, and double blind. METHODS Nine vocally healthy adults underwent a 1-hour vocal loading procedure, followed by randomization to a SS condition, vocal rest condition, or RV exercise condition. Treatments were monitored in clinic for 4 hours and continued extraclinically until the next morning. At baseline (BL), immediately after loading, after the 4-hour in-clinic treatment, and 24 hours post-BL, secretions were suctioned from the vocal folds bilaterally and submitted to enzyme-linked immunosorbent assay to estimate concentrations of key markers of tissue injury and inflammation: interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor α, matrix metalloproteinase (MMP)-8, and IL-10. RESULTS Complete data sets were obtained for three markers--IL-1β, IL-6, and MMP-8--for one subject in each treatment condition. For these markers, results were poorest at 24-hour follow-up in the SS condition, sharply improved in the voice rest condition, and was the best in the RV condition. Average results for all markers and responsive subjects with normal BL mediator concentrations revealed an almost identical pattern. CONCLUSIONS Some forms of tissue mobilization may be useful to attenuate acute vocal fold inflammation.
Collapse
Affiliation(s)
- Katherine Verdolini Abbott
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
El-Awady AR, Lapp CA, Gamal AY, Sharawy MM, Wenger KH, Cutler CW, Messer RLW. Human periodontal ligament fibroblast responses to compression in chronic periodontitis. J Clin Periodontol 2013; 40:661-71. [DOI: 10.1111/jcpe.12100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2013] [Indexed: 10/27/2022]
Affiliation(s)
- Ahmed R. El-Awady
- Department of Periodontology; School of Dentistry; Al-Azhar University; Cairo Egypt
- Department of Oral Biology; Georgia Health Sciences University; Augusta GA USA
| | - Carol A. Lapp
- Department of Oral Biology; Georgia Health Sciences University; Augusta GA USA
| | - Ahmed Y. Gamal
- Department of Periodontology; School of Dentistry; Al-Azhar University; Cairo Egypt
| | - Mohamed M. Sharawy
- Department of Oral Biology; Georgia Health Sciences University; Augusta GA USA
| | - Karl H. Wenger
- Department of Orthopedic Surgery; Georgia Health Sciences University; Augusta GA USA
| | | | - Regina L. W. Messer
- Department of Oral Biology; Georgia Health Sciences University; Augusta GA USA
| |
Collapse
|
35
|
Nishigaki M, Yamamoto T, Ichioka H, Honjo KI, Yamamoto K, Oseko F, Kita M, Mazda O, Kanamura N. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells. Arch Oral Biol 2013; 58:880-6. [PMID: 23452546 DOI: 10.1016/j.archoralbio.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVE β-cryptoxanthin (β-cry) is a type of carotenoid found in certain fruits and vegetables. Although it has been shown that β-cry inhibits alveolar bone resorption, the molecular mechanisms for this have not yet been clarified. In the present study, we investigated the effects of β-cry on bone resorption related-cytokine production in human periodontal ligament (hPDL) cells. DESIGN hPDL cells were stimulated with β-cry (1×10(-7)mol/l), mechanical stress (1 or 6MPa), and P. gingivalis. The production of interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor (TNF)-α, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) were analyzed by RT-PCR and ELISA. RESULTS The production of IL-1β, IL-6, IL-8, and TNF-α was not induced in hPDL cells after stimulation with β-cry, although these cytokines were produced after stimulation with P. gingivalis. On the other hand, IL-6 and IL-8 were produced after exposure to 6MPa of mechanical stress. The production of IL-6 and IL-8 was significantly decreased by the addition of β-cry. Furthermore, β-cry up-regulated the production of OPG, but not RANKL. CONCLUSION β-cry inhibited the production of IL-6 and IL-8 induced by mechanical stress and periodontopathogenic bacteria in hPDL cells. Moreover, β-cry up-regulated OPG production. These results suggest that β-cry may prevent bone resorption in periodontitis.
Collapse
Affiliation(s)
- Masaru Nishigaki
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nogueira AVB, Nokhbehsaim M, Eick S, Bourauel C, Jäger A, Jepsen S, Cirelli JA, Deschner J. Regulation of visfatin by microbial and biomechanical signals in PDL cells. Clin Oral Investig 2013; 18:171-8. [PMID: 23404558 DOI: 10.1007/s00784-013-0935-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/28/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This in vitro study was established to examine whether visfatin thought to be a link between periodontitis and obesity is produced by periodontal ligament (PDL) cells and, if so, whether its synthesis is modulated by microbial and/or biomechanical signals. MATERIALS AND METHODS PDL cells seeded on BioFlex® plates were exposed to the oral pathogen Fusobacterium nucleatum ATCC 25586 and/or subjected to biomechanical strain for up to 3 days. Gene expression of visfatin and toll-like receptors (TLR) 2 and 4 was analyzed by RT-PCR, visfatin protein synthesis by ELISA and immunocytochemistry, and NFκB nuclear translocation by immunofluorescence. RESULTS F. nucleatum upregulated the visfatin expression in a dose- and time-dependent fashion. Preincubation with neutralizing antibodies against TLR2 and TLR4 caused a significant inhibition of the F. nucleatum-upregulated visfatin expression at 1 day. F. nucleatum stimulated the NFκB nuclear translocation. Biomechanical loading reduced the stimulatory effects of F. nucleatum on visfatin expression at 1 and 3 days and also abrogated the F. nucleatum-induced NFκB nuclear translocation at 60 min. Biomechanical loading inhibited significantly the expression of TLR2 and TLR4 at 3 days. The regulatory effects of F. nucleatum and/or biomechanical loading on visfatin expression were also observed at protein level. CONCLUSIONS PDL cells produce visfatin, and this production is enhanced by F. nucleatum. Biomechanical loading seems to be protective against the effects of F. nucleatum on visfatin expression. CLINICAL RELEVANCE Visfatin produced by periodontal tissues could play a major role in the pathogenesis of periodontitis and the interactions with obesity and other systemic diseases.
Collapse
Affiliation(s)
- Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Univ Estadual Paulista -- UNESP, Araraquara, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Huang TH, Liu SL, Chen CL, Shie MY, Kao CT. Low-level laser effects on simulated orthodontic tension side periodontal ligament cells. Photomed Laser Surg 2013; 31:72-7. [PMID: 23327633 DOI: 10.1089/pho.2012.3359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this study was to analyze proliferation, inflammation, and osteogenic effects on periodontal ligament (PDL) cells after low-level laser therapy (LLLT) under simulated orthodontic tension conditions. BACKGROUND DATA Low-level lasers affect fibroblast proliferation and collagen synthesis and reduce inflammation. Few studies have focused on the LLLT changes in the PDL caused by moving teeth. MATERIALS AND METHODS A human PDL cell line was cultured in a -100 kPa tension incubator. The PDL cells were treated with a 670 nm low-level diode laser, output power of 500 mW (continuous wave modus) for 2.5 or 5 sec, spot area 0.25 cm(2), corresponding to 1.25 and 2.5 J at an energy density of 5 or 10 J/cm(2), respectively. PDL cell viability was assayed by detecting the ability of the cells to cleave tetrazolium salt to formazan dye. Inflammation and osteogenic markers were analyzed by Western blot analysis. RESULTS PDL cell viablity increased in the experimental group, based on the ability of the cells to cleave tetrazolium salt at day 7 (p<0.05). The experimental group showed no difference in PDL cellular morphology compared with the control group. The inflammation markers inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1 showed stronger expression in 5 and 10 J/cm(2) therapy at days 1 and 5, but decreased in expression at day 7. The osteogenic marker osteocalcin (OC) expression level was significantly higher at day 7 (p<0.05) than in the control cells. CONCLUSIONS LLLT significantly increased PDL cell proliferation, decreased PDL cell inflammation, and increased PDL OC activity under the tension conditions used in this study.
Collapse
Affiliation(s)
- Tsui-Hsien Huang
- Dental Department, Chung Shan Medical University Hospital. School of Dentistry, College of Oral Medicine, Chung Shan Medical University Taichung, Taiwan
| | | | | | | | | |
Collapse
|
38
|
Lee SI, Park KH, Kim SJ, Kang YG, Lee YM, Kim EC. Mechanical stress-activated immune response genes via Sirtuin 1 expression in human periodontal ligament cells. Clin Exp Immunol 2012; 168:113-24. [PMID: 22385246 DOI: 10.1111/j.1365-2249.2011.04549.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Recently, Sirtuin 1 (SIRT1) has been implicated in the molecular control of ageing and immune response. Although the remodelling of periodontal ligament (PDL) in response to mechanical stress (MS) is mediated by several host factors, including cytokines and chemokines, the transmission of mechanical stimuli into specific cellular activity is still not understood fully. This study aimed to investigate the effects of MS, particularly cyclic strain, on immune response genes, as well as SIRT1 and its signal transduction pathways, in human PDL cells. MS up-regulated the expression of SIRT1 and immune response genes encoding cytokines [tumour necrosis factor (TNF)-α, interleukin (IL)-1β], chemokines [IL-8, monocyte cheoattractant protein (CCL)-20], defensins [human β-defensin (hBD)-2, hBD-3] and Toll-like receptors (TLR-2 and TLR-4) in a force- and time-dependent manner. The SIRT1 inducers resveratrol and isonicotinamide attenuated MS-induced cytokine and chemokine expression, but enhanced the expression of defensins and TLRs. Blockade of SIRT1 activity by the SIRT1 inhibitors sirtinol and nicotinamide and down-regulation of SIRT1 expression by SIRT1 siRNA reduced the stimulatory effects of MS on defensins and TLRs, but increased its effects on cytokines and chemokines. MS induced activation of protein kinase B (Akt), protein kinase C (PKC), nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Treatment with the anti-oxidants N-acetylcysteine and glutathione inhibited MS-induced reactive oxygen species production and expression of cytokines, chemokines, defensins and TLRs. These results suggest that MS activates human PDL cells to express immune/defence genes encoding cytokines, chemokines, defensins and TLRs via a SIRT1 pathway.
Collapse
Affiliation(s)
- S-I Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Saminathan A, Vinoth KJ, Wescott DC, Pinkerton MN, Milne TJ, Cao T, Meikle MC. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J Periodontal Res 2011; 47:212-21. [PMID: 22010885 DOI: 10.1111/j.1600-0765.2011.01423.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell adhesion plays important roles in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. The objective of the present investigation was to extend our understanding of the effect of cyclic mechanical strain on the expression of adhesion-related genes by human periodontal ligament cells. MATERIAL AND METHODS Cultured periodontal ligament cells were subjected to a cyclic in-plane tensile deformation of 12% for 5 s (0.2 Hz) every 90 s for 6-24 h in a Flexercell FX-4000 Strain Unit. The following parameters were measured: (i) cell viability by the MTT assay; (ii) caspase-3 and -7 activity; and (iii) the expression of 84 genes encoding adhesion-related molecules using real-time RT-PCR microarrays. RESULTS Mechanical stress reduced the metabolic activity of deformed cells at 6 h, and caspase-3 and -7 activity at 6 and 12 h. Seventy-three genes were detected at critical threshold values < 35. Fifteen showed a significant change in relative expression: five cell adhesion molecules (ICAM1, ITGA3, ITGA6, ITGA8 and NCAM1), three collagen α-chains (COL6A1, COL8A1 and COL11A1), four MMPs (ADAMTS1, MMP8, MMP11 and MMP15), plus CTGF, SPP1 and VTN. Four genes were upregulated (ADAMTS1, CTGF, ICAM1 and SPP1) and 11 downregulated, with the range extending from a 1.76-fold induction of SPP1 at 12 h to a 2.49-fold downregulation of COL11A1 at 24 h. CONCLUSION The study has identified several mechanoresponsive adhesion-related genes, and shown that onset of mechanical stress was followed by a transient reduction in overall cellular activity, including the expression of two apoptosis 'executioner' caspases.
Collapse
Affiliation(s)
- A Saminathan
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
40
|
Wenger KH, El-Awady AR, Messer RLW, Sharawy MM, White G, Lapp CA. Pneumatic pressure bioreactor for cyclic hydrostatic stress application: mechanobiology effects on periodontal ligament cells. J Appl Physiol (1985) 2011; 111:1072-9. [PMID: 21757574 DOI: 10.1152/japplphysiol.01175.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A bioreactor system was developed to provide high-amplitude cyclic hydrostatic compressive stress (cHSC) using compressed air mixed commercially as needed to create partial pressures of oxygen and carbon dioxide appropriate for the cells under investigation. Operating pressures as high as 300 psi are achievable in this system at cyclic speeds of up to 0.2 Hz. In this study, ligamentous fibroblasts from human periodontal ligaments (n = 6) were compressed on two consecutive days at 150 psi for 3 h each day, and the mRNA for families of extracellular matrix protein and protease isoforms was evaluated by real-time PCR array. Several integrins were significantly upregulated, most notably alpha-3 (6.4-fold), as was SPG7 (12.1-fold). Among the collagens, Col8a1 was highly upregulated at 53.5-fold, with Col6a1, Col6a2, and Col7a1 also significantly upregulated 4.4- to 8.5-fold. MMP-1 was the most affected at 122.9-fold upregulation. MMP-14 likewise increased 17.8-fold with slight reductions for the gelatinases and a significant increase of TIMP-2 at 5.8-fold. The development of this bioreactor system and its utility in characterizing periodontal ligament fibroblast mechanobiology in intermediate-term testing hold promise for better simulating the conditions of the musculoskeletal system and the large cyclic compressive stresses joints may experience in gait, exertion, and mastication.
Collapse
Affiliation(s)
- Karl H Wenger
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Mechanical stress enhances production of cytokines in human periodontal ligament cells induced by Porphyromonas gingivalis. Arch Oral Biol 2011; 56:251-7. [PMID: 20970115 DOI: 10.1016/j.archoralbio.2010.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/24/2010] [Accepted: 09/19/2010] [Indexed: 02/01/2023]
Abstract
OBJECTIVE We have previously reported that human periodontal ligament (hPDL) cells produced many kinds of cytokines as a result of bacterial stimulation, including stimulation with Porphyromonas gingivalis (P. gingivalis). However, the effects of mechanical stress on cytokine production in hPDL cells stimulated by periodontopathogenic bacteria are not clearly understood. In this study, we investigated the effects of mechanical stress on the production of inflammatory cytokines in hPDL cells induced by stimulation with P. gingivalis. METHODS The hPDL cells were exposed to various levels of mechanical stress (1, 6, 10 and 50MPa) and costimulated with mechanical stress and P. gingivalis for 24h. Cytokine mRNA expressions were determined by RT-PCR. Cytokines in the culture supernatant were assessed by ELISA, and morphologic changes in hPDL cells were observed. RESULTS The expressions of interleukin (IL)-6, IL-8 and tumor necrosis factor-α mRNA were observed in hPDL cells after exposure to mechanical stress. Moreover, the production of IL-6 and IL-8 increased significantly after exposure to mechanical stress ranging from 1 to 10MPa. The amount of IL-8 in the culture supernatants of hPDL cells costimulated with P. gingivalis and mechanical stress was significantly higher than the expected additive amount. The morphology of hPDL cells did not change after exposure to 6MPa, but these cells were partly detached from the Petri dish after exposure to 50MPa. CONCLUSIONS These results suggest that local inflammation of the periodontal ligament may be induced mainly by periodontal bacteria, and mechanical stress may promote local inflammation.
Collapse
|
42
|
Murayama R, Kobayashi M, Takeshita A, Yasui T, Yamamoto M. MAPKs, activator protein-1 and nuclear factor-κB mediate production of interleukin-1β-stimulated cytokines, prostaglandin E₂ and MMP-1 in human periodontal ligament cells. J Periodontal Res 2011; 46:568-75. [PMID: 21615409 DOI: 10.1111/j.1600-0765.2011.01374.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Determination of the interleukin-1 (IL-1) signaling cascades that lead to the production of various inflammatory mediators and catabolic factors may clarify attractive targets for therapeutic intervention for periodontitis. We comprehensively assessed the involvement of MAPKs, activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) in IL-1β-induced production of interleukin-6 (IL-6), interleukin-8 (IL-8), prostaglandin E(2) (PGE(2) ) and MMP-1 in human periodontal ligament cells. MATERIAL AND METHODS Human periodontal ligament cells were pretreated with an inhibitor for each of the MAPKs or NF-κB and subsequently treated with IL-1β. Following treatment, phosphorylation of three types of MAPK (ERK, p38 MAPK and c-Jun N-terminal kinase), IκB kinase (IKK) α/β/γ and IκB-α, as well as the DNA binding activity of AP-1 and NF-κB and the production of IL-6, IL-8, PGE(2) and MMP-1, were determined by western blotting, a gel mobility shift assay and ELISA, respectively. RESULTS The three MAPKs, simultaneously activated by IL-1β, mediated the subsequent DNA binding of AP-1 at various magnitudes, while IKKα/β/γ, IκB-α and NF-κB were also involved in the IL-1 signaling cascade. Furthermore, IL-1β stimulated the production of IL-6, IL-8, PGE(2) and MMP-1 via activation of the three MAPKs and NF-κB, because inhibitors of these significantly suppressed the IL-1β-stimulated production of these factors. CONCLUSION Our results strongly suggest that MAPK, AP-1 and NF-κB mediate the IL-1β-stimulated synthesis of IL-6, IL-8, PGE(2) and MMP-1 in human periodontal ligament cells. Therefore, inhibition of activation of MAPK, AP-1 and/or NF-κB may lead to therapeutic effects on progression of periodontitis.
Collapse
Affiliation(s)
- R Murayama
- Department of Periodontology, Showa University, School of Dentistry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
43
|
Early proliferation alteration and differential gene expression in human periodontal ligament cells subjected to cyclic tensile stress. Arch Oral Biol 2011; 56:177-86. [DOI: 10.1016/j.archoralbio.2010.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 08/24/2010] [Accepted: 09/10/2010] [Indexed: 12/31/2022]
|
44
|
Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Jäger A, Jepsen S, Deschner J. Anti-inflammatory effects of EMD in the presence of biomechanical loading and interleukin-1β in vitro. Clin Oral Investig 2011; 16:275-83. [PMID: 21225299 DOI: 10.1007/s00784-010-0505-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/30/2010] [Indexed: 02/01/2023]
Abstract
Enamel matrix derivative (EMD) used to promote periodontal regeneration has been shown to exert anti-inflammatory effects. This in vitro study was performed to investigate if the anti-inflammatory actions of EMD are modulated by the local cellular environment, such as inflammation or occlusal, i.e., biomechanical, loading. Human periodontal ligament cells were seeded on BioFlex plates and incubated with EMD under normal, inflammatory, and biomechanical loading conditions for 1 and 6 days. In order to mimic inflammatory and biomechanical loading conditions in vitro, cells were stimulated with interleukin (IL)-1β and exposed to dynamic tensile strain, respectively. The gene expression of IL-1β, IL-1 receptor antagonist (IL-1RN), IL-6, IL-8, IL-10, and cyclooxygenase (COX)-2 was analyzed by real-time RT-PCR and the IL-6 protein synthesis by enzyme-linked immunoassay. For statistical analysis, Student's t test, ANOVA, and post-hoc comparison tests were applied (p < 0.05). EMD downregulated significantly the expression of IL-1β and COX-2 at 1 day and of IL-6, IL-8, and COX-2 at 6 days in normal condition. In an inflammatory environment, the anti-inflammatory actions of EMD were significantly enhanced at 6 days. In the presence of low biomechanical loading, EMD caused a downregulation of IL-1β and IL-8, whereas high biomechanical loading significantly abrogated the anti-inflammatory effects of EMD at both days. Neither IL-1RN nor IL-10 was upregulated by EMD. These data suggest that high occlusal forces may abrogate anti-inflammatory effects of EMD and should, therefore, be avoided immediately after the application of EMD to achieve best healing results.
Collapse
Affiliation(s)
- Marjan Nokhbehsaim
- Clinical Research Unit 208, Center of Dento-Maxillo-Facial Medicine, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Nokhbehsaim M, Deschner B, Winter J, Reimann S, Bourauel C, Jepsen S, Jäger A, Deschner J. Contribution of Orthodontic Load to Inflammationmediated Periodontal Destruction. J Orofac Orthop 2010; 71:390-402. [DOI: 10.1007/s00056-010-1031-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/08/2010] [Indexed: 11/30/2022]
|
46
|
Swanson ER, Ohno T, Abdollahian D, Garrett CG, Rousseau B. Effects of raised-intensity phonation on inflammatory mediator gene expression in normal rabbit vocal fold. Otolaryngol Head Neck Surg 2010; 143:567-72. [PMID: 20879195 DOI: 10.1016/j.otohns.2010.04.264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To investigate the hypothesis that a transient episode of raised-intensity phonation causes a significant increase in vocal fold inflammatory messenger RNA (mRNA) expression in vivo. STUDY DESIGN Prospective animal study. SETTING Laboratory. SUBJECTS AND METHODS Ten New Zealand White breeder rabbits received 30 minutes of experimentally induced modal or raised-intensity phonation, followed by a 30-minute recovery period. A separate group of five rabbits served as sham controls. Real-time polymerase chain reaction was performed to investigate the mRNA expression of interleukin 1beta (IL-1beta), transforming growth factor beta-1 (TGFbeta1), and cyclooxygenase-2 (COX-2). Separate one-way analysis of variance (ANOVA) tests were used to investigate differences in gene expression across groups, with an appropriate alpha correction of 0.016 to control for type I error. Significant main effects were further examined using Fisher's least significant difference. RESULTS ANOVA revealed that there were differences for IL-1beta, TGFbeta1, and COX-2 between sham control, modal phonation, and raised-intensity phonation (P 0.0001). Pairwise comparisons revealed that the expression of IL-1beta, COX-2, and TGFbeta1 increased significantly during raised-intensity phonation, compared to modal phonation and sham control (P 0.0001). CONCLUSION Results provided support for the hypothesis that a transient episode of raised-intensity phonation causes a significant increase in vocal fold inflammatory mRNA expression. Future studies will investigate the signal transduction pathways and mechanisms regulating the vocal fold inflammatory response. The long-term goal of these studies is to advance understanding of the molecular and cellular events underlying phonation-related tissue alterations.
Collapse
Affiliation(s)
- Erik R Swanson
- Department of Otolaryngology, Vanderbilt University Bill Wilkerson Center for Otolaryngology and Communication Sciences, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
47
|
Cho JH, Lee SK, Lee JW, Kim EC. The role of heme oxygenase-1 in mechanical stress- and lipopolysaccharide-induced osteogenic differentiation in human periodontal ligament cells. Angle Orthod 2010; 80:552-9. [DOI: 10.2319/091509-520.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
Hardmeier R, Redl H, Marlovits S. Effects of mechanical loading on collagen propeptides processing in cartilage repair. J Tissue Eng Regen Med 2010; 4:1-11. [PMID: 19842116 DOI: 10.1002/term.211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Injured articular cartilage has poor reparative capabilities and if left untreated may develop into osteoarthritis. Unsatisfactory results with conventional treatment methods have brought as an alternative treatment the development of matrix autologous chondrocyte transplants (MACTs). Recent evidence proposes that the maintenance of the original phenotype by isolated chondrocytes grown in a scaffold transplant is linked to mechanical compression, because macromolecules, particularly collagen, of the extracellular matrix have the ability to 'self-assemble'. In load-bearing tissues, collagen is abundantly present and mechanical properties depend on the collagen fibre architecture. Study of the active changes in collagen architecture is the focus of diverse fields of research, including developmental biology, biomechanics and tissue engineering. In this review, the structural model of collagen assembly is presented in order to understand how scaffold geometry plays a critical role in collagen propeptide processing and chondrocyte development. When physical forces are applied to different cell-based scaffolds, the resulting specific twist of the scaffolds might be accompanied by changes in the fibril pattern synthesis of the new collagen. The alteration in the scaffolds due to mechanical stress is associated with cellular signalling communication and the preservation of N-terminus procollagen moieties, which would regulate both the collagen synthesis and the diameter of the fibre. The structural difference would also affect actin stabilization, cytoskeleton remodelling and proteoglycan assembly. These effects seemed to be dependent on the magnitude and duration of the physical stress. This review will contribute to the understanding of mechanisms for collagen assembly in both a natural and an artificial environment.
Collapse
|
49
|
Takano M, Yamaguchi M, Nakajima R, Fujita S, Kojima T, Kasai K. Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthod Craniofac Res 2009; 12:282-8. [PMID: 19840280 DOI: 10.1111/j.1601-6343.2009.01463.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Relapse of teeth that have moved during orthodontic treatment is a major clinical issue with respect to the goals of successful treatment. Such relapse is a physiologic response of the supporting tissues to application of force, and is mainly attributed to occlusal instability and increased mechanical tension exerted by the periodontal ligament (PDL). Relaxin, a member of the insulin/relaxin family of structurally related hormones, has an influence on many physiologic processes, such as collagen turnover, angiogenesis, and antifibrosis. Therefore, relaxin may also affect orthodontic tooth movement through alterations of the PDL, though little is known regarding the relationship between relaxin and stretched human PDL (hPDL) cells. In the present study, we investigated the effects of relaxin on the expression of collagen type I (Col-I) and matrix metalloproteinase 1 (MMP-1) in stretched hPDL cells in vitro. MATERIALS AND METHODS The release and gene expression of Col-I, as well as those of MMP-1 in stretched hPDL cells treated with relaxin were investigated using enzyme-linked immunosorbent assay and real-time PCR methods. RESULTS Relaxin decreased the release and gene expression of Col-I, and increased those of MMP-1 by stretched hPDL cells in a magnitude-dependent manner. CONCLUSION Our results indicate that relaxin modulates collagen metabolism in stretched hPDL cells via the release and expression of Col-I and MMP-1. This hormone may be useful to prevent orthodontic relapse following orthodontic treatment.
Collapse
Affiliation(s)
- M Takano
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Tan SD, Xie R, Klein-Nulend J, van Rheden RE, Bronckers ALJJ, Kuijpers-Jagtman AM, Von den Hoff JW, Maltha JC. Orthodontic force stimulates eNOS and iNOS in rat osteocytes. J Dent Res 2009; 88:255-60. [PMID: 19329460 DOI: 10.1177/0022034508330861] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mechanosensitive osteocytes are essential for bone remodeling. Nitric oxide, an important regulator of bone remodeling, is produced by osteocytes through the activity of constitutive endothelial nitric oxide synthase (eNOS) or inducible nitric oxide synthase (iNOS). We hypothesized that these enzymes regulate the tissue response to orthodontic force, and therefore we investigated eNOS and iNOS expression in osteocytes during orthodontic force application. The upper rat molars were moved mesially by NiTi coil springs (10 cN, 120 hrs) in a split-mouth design. Immunohistochemical staining revealed that, in the tension area, eNOS-positive osteocytes increased from 24 hrs on, while iNOS-positive osteocytes remained largely constant. In the compression area, iNOS-positive osteocytes increased after 6 hrs, while eNOS- positive osteocytes increased after 24 hrs. This suggests that eNOS mediates bone formation in the tension area, while iNOS mediates inflammation-induced bone resorption in the compression area. Both eNOS and iNOS seem to be important regulators of bone remodeling during orthodontic force application.
Collapse
Affiliation(s)
- S D Tan
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|