1
|
Li Z, Yao A, Yang X, Luo S, Wu Z, Yu Y. NRP1 promotes osteo/odontogenic differentiation via shroom3 in dental pulp stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119795. [PMID: 39033931 DOI: 10.1016/j.bbamcr.2024.119795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Neuropilin-1 (NRP1) is a single transmembrane glycoprotein involved in a variety of physiological events. However, the exact mechanisms by which NRP1 regulates dental pulp stem cells (DPSCs) to differentiate toward an osteo/odontogenic phenotype are poorly understood. Here, we determined the significantly increased expression of full-length NRP1 and glycosaminoglycan (GAG)-modified NRP1 during osteo/odontogenesis in DPSCs. NRP1 was confirmed to promote alkaline phosphatase (ALP) activity, mineralized nodule deposition, protein and mRNA expression of Runx2, DSPP and DMP1 in DPSCs via the loss-of-function and gain-of-function approaches. Further, a non-GAG-modified NRP1 mutant (NRP1 S612A) was generated and the suppression of osteo/odontogenic differentiation was observed in the NRP1 S612A overexpression cells. Knockdown of the adaptor protein shroom3 resulted in the inhibition of osteo/odontogenesis. The protein-protein interaction network, the protein-protein docking and confocal analyses indicated the interactions between NRP1 and shroom3. Furthermore, immunoprecipitation followed by western analysis confirmed the binding of NRP1 to shroom3, but overexpression of NRP1 S612A greatly influenced the recruitment of shroom3 by NRP1. These results provide strong evidence that NRP1 is a critical regulator for osteo/odontogenesis through interacting with shroom3. Moreover, our results indicate that NRP1 S612A attenuates osteo/odontogenesis, suggesting that GAG modification is essential for NRP1 in DPSCs.
Collapse
Affiliation(s)
- Zongyu Li
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Aokang Yao
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Xinyue Yang
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Sheng Luo
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Zhuoyang Wu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China
| | - Yaqiong Yu
- Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, 110002 Shenyang, China.
| |
Collapse
|
2
|
Bai Y, Wu P, Zhang Q, Lin F, Hu L, Zhang Z, Huang W, Xiao Y, Zuo Q. Decorin in the spatial control of collagen mineralization. MATERIALS HORIZONS 2024; 11:3396-3407. [PMID: 38690683 DOI: 10.1039/d3mh02216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Understanding the molecular mechanism by which the periodontal ligament (PDL) is maintained uncalcified between two mineralized tissues (cementum and bone) may facilitate the functional repair and regeneration of the periodontium complex, disrupted in the context of periodontal diseases. However, research that explores the control of type I collagen (COL I) mineralization fails to clarify the detailed mechanism of regulating spatial collagen mineralization, especially in the periodontium complex. In the present study, decorin (DCN), which is characterized as abundant in the PDL region and rare in mineralized tissues, was hypothesized to be a key regulator in the spatial control of collagen mineralization. The circular dichroism results confirmed that DCN regulated the secondary structure of COL I, and the surface plasmon resonance results indicated that COL I possessed a higher affinity for DCN than for other mineralization promoters, such as DMP-1, OPN, BSP and DSPP. These features of DCN may contribute to blocking intrafibrillar mineralization in COL I fibrils during the polymer-induced liquid-precursor mineralization process when the fibrils are cross-linked with DCN. This effect was more remarkable when the fibrils were phosphorylated by sodium trimetaphosphate, as shown by the observation of a tube-like morphology via TEM and mineral sheath via SEM. This study enhances the understanding of the role of DCN in mineralization regulation among periodontal tissues. This provides insights for the development of biomaterials for the regeneration of interfaces between soft and hard tissues.
Collapse
Affiliation(s)
- Yuming Bai
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Peng Wu
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Qiufang Zhang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Feng Lin
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Ling Hu
- Department of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen, PR China
| | - Zhisheng Zhang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Wenxia Huang
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Brisbane, Australia
| | - Qiliang Zuo
- Stomatological Hospital of Xiamen Medical College, Xiamen Medical College, Xiamen, PR China.
- Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, PR China
- Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen, PR China
| |
Collapse
|
3
|
Su T, Zhu Y, Wang X, Zhu Q, Duan X. Hereditary dentin defects with systemic diseases. Oral Dis 2023; 29:2376-2393. [PMID: 37094075 DOI: 10.1111/odi.14589] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE This review aimed to summarize recent progress on syndromic dentin defects, promoting a better understanding of systemic diseases with dentin malformations, the molecules involved, and related mechanisms. SUBJECTS AND METHODS References on genetic diseases with dentin malformations were obtained from various sources, including PubMed, OMIM, NCBI, and other websites. The clinical phenotypes and genetic backgrounds of these diseases were then summarized, analyzed, and compared. RESULTS Over 10 systemic diseases, including osteogenesis imperfecta, hypophosphatemic rickets, vitamin D-dependent rickets, familial tumoral calcinosis, Ehlers-Danlos syndrome, Schimke immuno-osseous dysplasia, hypophosphatasia, Elsahy-Waters syndrome, Singleton-Merten syndrome, odontochondrodysplasia, and microcephalic osteodysplastic primordial dwarfism type II were examined. Most of these are bone disorders, and their pathogenic genes may regulate both dentin and bone development, involving extracellular matrix, cell differentiation, and metabolism of calcium, phosphorus, and vitamin D. The phenotypes of these syndromic dentin defects various with the involved genes, part of them are similar to dentinogenesis imperfecta or dentin dysplasia, while others only present one or two types of dentin abnormalities such as discoloration, irregular enlarged or obliterated pulp and canal, or root malformation. CONCLUSION Some specific dentin defects associated with systemic diseases may serve as important phenotypes for dentists to diagnose. Furthermore, mechanistic studies on syndromic dentin defects may provide valuable insights into isolated dentin defects and general dentin development or mineralization.
Collapse
Affiliation(s)
- Tongyu Su
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yulong Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiangpu Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qinglin Zhu
- Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University & State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
5
|
Liang T, Xu Q, Zhang H, Wang S, Diekwisch TGH, Qin C, Lu Y. Enamel Defects Associated With Dentin Sialophosphoprotein Mutation in Mice. Front Physiol 2021; 12:724098. [PMID: 34630144 PMCID: PMC8497714 DOI: 10.3389/fphys.2021.724098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein that is highly expressed in odontoblasts, but only transiently expressed in presecretory ameloblasts during tooth development. We previously generated a knockin mouse model expressing a mouse equivalent (DSPP, p.P19L) of human mutant DSPP (p.P17L; referred to as “DsppP19L/+”), and reported that DsppP19L/+ and DsppP19L/P19L mice manifested a dentin phenotype resembling human dentinogenesis imperfecta (DGI). In this study, we analyzed pathogenic effects of mutant P19L-DSPP on enamel development in DsppP19L/+ and DsppP19L/P19L mice. Micro-Computed Tomography (μCT) analyses of 7-week-old mouse mandibular incisors showed that DsppP19L/P19L mice had significantly decreased enamel volume and/or enamel density at different stages of amelogenesis examined. Acid-etched scanning electron microscopy (SEM) analyses of mouse incisors demonstrated that, at the mid-late maturation stage of amelogenesis, the enamel of wild-type mice already had apparent decussating pattern of enamel rods, whereas only minute particulates were found in DsppP19L/+ mice, and no discernible structures in DsppP19L/P19L mouse enamel. However, by the time that incisor enamel was about to erupt into oral cavity, distinct decussating enamel rods were evident in DsppP19L/+ mice, but only poorly-defined enamel rods were revealed in DsppP19L/P19L mice. Moreover, μCT analyses of the mandibular first molars showed that DsppP19L/+ and DsppP19L/P19L mice had a significant reduction in enamel volume and enamel density at the ages of 2, 3, and 24weeks after birth. Backscattered and acid-etched SEM analyses revealed that while 3-week-old DsppP19L/+ mice had similar pattern of enamel rods in the mandibular first molars as age-matched wild-type mice, no distinct enamel rods were observed in DsppP19L/P19L mice. Yet neither DsppP19L/+ nor DsppP19L/P19L mice showed well-defined enamel rods in the mandibular first molars by the age of 24weeks, as judged by backscattered and acid-etched SEM. In situ hybridization showed that DSPP mRNA level was markedly reduced in the presecretory ameloblasts, but immunohistochemistry revealed that DSP/DSPP immunostaining signals were much stronger within the presecretory ameloblasts in Dspp mutant mice than in wild-type mice. These results suggest that mutant P19L-DSPP protein caused developmental enamel defects in mice, which may be associated with intracellular retention of mutant DSPP in the presecretory ameloblasts.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| |
Collapse
|
6
|
Jing Z, Chen Z, Jiang Y. Effects of DSPP Gene Mutations on Periodontal Tissues. Glob Med Genet 2021; 8:90-94. [PMID: 34430959 PMCID: PMC8378919 DOI: 10.1055/s-0041-1726416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dentin sialophosphoprotein ( DSPP ) gene mutations cause autosomal dominantly inherited diseases. DSPP gene mutations lead to abnormal expression of DSPP, resulting in a series of histological, morphological, and clinical abnormalities. A large number of previous studies demonstrated that DSPP is a dentinal-specific protein, and DSPP gene mutations lead to dentin dysplasia and dentinogenesis imperfecta. Recent studies have found that DSPP is also expressed in bone, periodontal tissues, and salivary glands. DSPP is involved in the formation of the periodontium as well as tooth structures. DSPP deficient mice present furcation involvement, cementum, and alveolar bone defect. We speculate that similar periodontal damage may occur in patients with DSPP mutations. This article reviewed the effects of DSPP gene mutations on periodontal status. However, almost all of the research is about animal study, there is no evidence that DSPP mutations cause periodontium defects in patients yet. We need to conduct systematic clinical studies on DSPP mutation families in the future to elucidate the effect of DSPP gene on human periodontium.
Collapse
Affiliation(s)
- Zhaojun Jing
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Zhibin Chen
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, People's Republic of China
| | - Yong Jiang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
7
|
Ye J, Wang Y, Zhu Q, Shi H, Xiang D, Wu C, Song L, Ma N, Liu Q, Zhang W. Primary observation of the role of posttranslational modification of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. Arch Oral Biol 2021; 125:105086. [PMID: 33639479 DOI: 10.1016/j.archoralbio.2021.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We aimed to observe the posttranslational role of dentin sialophosphoprotein (DSPP) on postnatal development of mandibular condyle in mice. METHODS To explore the function of full-length DSPP, four groups of mice were employed: (1) wild type (WT) mice; (2)Dspp knockout (Dspp KO) mice; (3) mice expressing the normal DSPP transgene in the Dspp KO background (Dspp KO/normal Tg); (4) mice expressing the uncleavable full-length DSPP in the Dspp KO background (Dspp KO/D452A Tg). Firstly, Plain X-ray Radiography and Micro-computed Tomography were used to observe the condylar morphology changes of Dspp KO/D452A Tg mice in comparison with the other three groups. Then, Hematoxylin & eosin and toluidine blue staining were applied to uncover the histological changes of mandibular condylar cartilage (MCC) of Dspp KO/D452A Tg mice. To explore the function of the NH2-terminal fragments (i.e. DSP/DSP-PG), three groups of mice were employed: (1) WT mice; (2) Dspp KO mice; (3) mice expressing the NH2-terminal fragments of DSPP in the Dspp-null background (Dspp KO/DSP Tg). The former strategies were utilized to examine the differences of condylar morphology and histological structures changes within three groups of mice. RESULTS Transgenic full-length DSPP partially maintained mandibular condylar morphology and MCC thickness of Dspp KO mice. Transgenic DSP failed to do so, but led to smaller mandibular condyle and disordered cartilage structure. CONCLUSIONS Our observations provide insight into the role of posttranslational modification of DSPP in the postnatal development of healthy MCC and maintenance of condylar morphology.
Collapse
Affiliation(s)
- Jiapeng Ye
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yue Wang
- Department of Oral and Maxillofacial Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Qinglin Zhu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Haibo Shi
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Danwei Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Chunyue Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lina Song
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, The First Hospital, Jilin University, Changchun, China
| | - Qilin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China.
| | - Wei Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Liu Q, Ma N, Zhu Q, Duan X, Shi H, Xiang D, Kong H, Sun H. Dentin Sialophosphoprotein Deletion Leads to Femoral Head Cartilage Attenuation and Subchondral Bone Ill-mineralization. J Histochem Cytochem 2020; 68:703-718. [PMID: 32921220 DOI: 10.1369/0022155420960403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP), which expresses and synthesizes in odontoblasts of dental pulp, is a critical protein for normal teeth mineralization. Originally, DSPP was identified as a dentin-specific protein. In 2010, DSPP was also found in femoral head cartilage, and it is still unclear what roles DSPP play in femoral head cartilage formation, growth, and maintenance. To reveal biological functions of DSPP in the femoral head cartilage, we examined Dspp null mice compared with wild-type (WT) mice to observe DSPP expression as well as localization in WT mice and to uncover differences of femoral head cartilage, bone morphology, and structure between these two kinds of mice. Expression data demonstrated that DSPP had heterogeneous fragments, expressed in each layer of femoral head cartilage and subchondral bone of WT mice. Dspp null mice exhibited a significant reduction in the thickness of femoral head cartilage, with decreases in the amount of proliferating cartilage cells and increases in apoptotic cells. In addition, the subchondral bone mineralization decreased, and the expressions of vessel markers (vascular endothelial growth factor [VEGF] and CD31), osteoblast markers (Osterix and dentin matrix protein 1 [DMP1]), osteocyte marker (sclerostin [SOST]), and osteoclast marker (tartrate-resistant acid phosphatase [TRAP]) were remarkably altered. These indicate that DSPP deletion can affect the proliferation of cartilage cells in the femoral head cartilage and endochondral ossification in subchondral bone. Our data clearly demonstrate that DSPP plays essential roles in the femoral head cartilage growth and maintenance and subchondral biomineralization.
Collapse
Affiliation(s)
- Qilin Liu
- Department of Oral and Maxillofacial Surgery, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Ning Ma
- Department of Rheumatology, The First Hospital (NM), Jilin University, Changchun, China
| | - Qinglin Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaoqin Duan
- Department of Rehabilitation, The Second Hospital, Jilin University, Changchun, China
| | - Haibo Shi
- Department of Oral and Maxillofacial Surgery, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Danwei Xiang
- Department of Oral and Maxillofacial Surgery, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Hui Kong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hongchen Sun
- Department of Oral Pathology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Delaunois Y, Huby A, Malherbe C, Eppe G, Parmentier É, Compère P. Microstructural and compositional variation in pacu and piranha teeth related to diet specialization (Teleostei: Serrasalmidae). J Struct Biol 2020; 210:107509. [DOI: 10.1016/j.jsb.2020.107509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
|
10
|
Liang T, Zhang H, Xu Q, Wang S, Qin C, Lu Y. Mutant Dentin Sialophosphoprotein Causes Dentinogenesis Imperfecta. J Dent Res 2019; 98:912-919. [PMID: 31173534 PMCID: PMC6616118 DOI: 10.1177/0022034519854029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein highly expressed by odontoblasts in teeth. DSPP mutations in humans may cause dentinogenesis imperfecta (DGI), an autosomal dominant dentin disorder. We recently generated a mouse model (named "DsppP19L/+ mice") that expressed a mutant DSPP in which the proline residue at position 19 was replaced by a leucine residue. We found that the DsppP19L/+ and DsppP19L/P19L mice at a younger age displayed a tooth phenotype resembling human DGI type III characterized by enlarged dental pulp chambers, while the teeth of older DsppP19L/+ and DsppP19L/P19L mice had smaller dental pulp chambers mimicking DGI type II. The teeth of DsppP19L/+ and DsppP19L/P19L mice had a narrower pulp chamber roof predentin layer, thinner pulp chamber roof dentin, and thicker pulp chamber floor dentin. In addition, these mice also had increased enamel attrition, accompanied by excessive deposition of peritubular dentin. Immunohistochemistry, in situ hybridization, and real-time polymerase chain reaction analyses showed that the odontoblasts in both DsppP19L/+ and DsppP19L/P19L mice had reduced DSPP expression, compared to the wild-type mice. We also observed that the levels of DSPP expression were much higher in the roof-forming odontoblasts than in the floor-forming odontoblasts in the wild-type mice and mutant mice. Moreover, immunohistochemistry showed that while the immunostaining signals of dentin sialoprotein (N-terminal fragment of DSPP) were decreased in the dentin matrix, they were remarkably increased in the odontoblasts of the DsppP19L/+ and DsppP19L/P19L mice. Consistently, our in vitro studies showed that the secretion of the mutant DSPP was impaired and accumulated within endoplasmic reticulum. These findings suggest that the dental phenotypes of the mutant mice were associated with the intracellular retention of the mutant DSPP in the odontoblasts of the DSPP-mutant mice.
Collapse
Affiliation(s)
- T. Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - H. Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Q. Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - S. Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - C. Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Y. Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
11
|
Jiang C, Zurick K, Qin C, Bernards MT. Probing the influence of SIBLING proteins on collagen-I fibrillogenesis and denaturation. Connect Tissue Res 2018; 59:274-286. [PMID: 28910556 PMCID: PMC6112244 DOI: 10.1080/03008207.2017.1379514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone tissue is comprised of collagen, non-collagenous proteins, and hydroxyapatite and the SIBLING (small integrin binding, N-linked glycoprotein) family of proteins is the primary group of non-collagenous proteins. By replicating the native interactions between collagen and the SIBLING proteins at the interface of an implant, it is believed that a bone scaffold will more easily integrate with the surrounding tissue. In this work, bone sialoprotein, osteopontin (OPN), dentin sialoprotein (DSP), dentin phosphoprotein (DPP), C-terminal fragment of dentin matrix protein 1 (DMP1-C), and proteoglycan versions of DSP (DSP-PG) and DMP1 (DMP1-PG) were tested individually to determine their roles in collagen fibrillogenesis and the prevention of denaturation. It was shown that DSP and DPP slowed down fibrillogenesis, while other SIBLINGs had limited impact. In addition, the denaturation time was faster in the presence of DSP and OPN, indicating a negative impact. The role of calcium ions in these processes was also investigated. The presence of calcium ions sped up fibrillogenesis in all scenarios tested, but it had a negative impact by reducing the extent. Calcium also sped up the denaturation in most cases, with the exception of DMP1-C and DSP where the opposite was seen. Calcium had a similar effect on the proteoglycan variants in the fibrillogenesis process, but had no impact on the denaturation process in the presence of these two. It is believed that incorporating DMP1-C or DSP on the surface of a bone implant may improve the collagen interactions with the implant, thereby facilitating improved osteointegration.
Collapse
Affiliation(s)
- Chengyu Jiang
- Departments of Chemical Engineering and University of Missouri, Columbia, MO 65211
| | - Kevin Zurick
- Departments of Chemical Engineering and University of Missouri, Columbia, MO 65211
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246
| | - Matthew T. Bernards
- Departments of Chemical Engineering and University of Missouri, Columbia, MO 65211,Bioengineering University of Missouri, Columbia, MO 65211,Corresponding Author: Matthew T., Current Address: Chemical & Materials Engineering Department, University of Idaho, Bernards Moscow, ID 83844.
| |
Collapse
|
12
|
Transgenic expression of dentin phosphoprotein (DPP) partially rescued the dentin defects of DSPP-null mice. PLoS One 2018; 13:e0195854. [PMID: 29672573 PMCID: PMC5908185 DOI: 10.1371/journal.pone.0195854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/31/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations in the dentin sialophosphoprotein (DSPP) gene cause dentinogenesis imperfecta. After synthesis, DSPP is proteolytically processed into NH2- and COOH-terminal fragments. The NH2-terminal fragment of DSPP is highly glycosylated but not phosphorylated, whereas the COOH-terminal fragment (named "dentin phosphoprotein" or "DPP") is highly phosphorylated but not glycosylated. These two fragments are believed to perform distinct roles in dentin formation. To analyze the functions of DPP in dentinogenesis, we created "Dspp-/-;DPP Tg mice", which expressed transgenic DPP driven by a Type I collagen promoter but lacked the endogenous Dspp gene. We characterized the dentin of the Dspp-/-;DPP Tg mice using X-ray radiography, histology, scanning electron microscopy, double fluorochrome labeling, immunohistochemistry and in situ hybridization. Micro-computed tomography analyses revealed that at postnatal 6 months, the transgenic expression of DPP increased the dentin thickness of the Dspp-null mice by 97.1% and restored the dentin material density by 29.5%. Histological analyses showed that the Dspp-null mice manifested an abnormal widening of the predentin while the predentin in Dspp-/-;DPP Tg mice was narrower than in the Dspp-null mice. Scanning electron microscopy analyses showed that the dentinal tubules in the Dspp-/-;DPP Tg mice were better organized than in the Dspp-null mice. The double fluorochrome labeling analyses demonstrated that the dentin mineral deposition rate in the Dspp-/-;DPP Tg mice was significantly improved compared to that in the Dspp-null mice. These findings indicate that the transgenic expression of DPP partially rescued the dentin defects of the DSPP-null mice, suggesting that DPP may promote dentin formation and that the coordinated actions between DPP and the NH2-terminal fragment of DSPP may be necessary for dentinogenesis.
Collapse
|
13
|
Zhang H, Liu P, Wang S, Liu C, Jani P, Lu Y, Qin C. Transgenic expression of dentin phosphoprotein inhibits skeletal development. Eur J Histochem 2016; 60:2587. [PMID: 26972716 PMCID: PMC4800252 DOI: 10.4081/ejh.2016.2587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is proteolytically processed into an NH2-terminal fragment called dentin sialoprotein (DSP) and a COOH-terminal fragment known as dentin phosphoprotein (DPP). These two fragments are believed to perform distinct roles in formation of bone and dentin. To investigate the functions of DPP in skeletal development, we generated transgenic mice to overexpress hemagglutinin (HA)-tagged DPP under the control of a 3.6 kb type I collagen (Col1a1) promoter (designated as Col1a1-HA-DPP). The Col1a1-HA-DPP transgenic mice were significantly smaller by weight, had smaller skeletons and shorter long bones than their wild type littermates, as demonstrated by X-ray radiography. They displayed reduced trabecular bone formation and narrower zones of proliferative and hypertrophic chondrocytes in the growth plates of the long bones. Histological analyses showed that the transgenic mice had reduced cell proliferation in the proliferating zone, but lacked obvious defects in the chondrocyte differentiation. In addition, the transgenic mice with a high level of transgene expression developed spontaneous long bone fractures. In conclusion, overexpressing DPP inhibited skeletal development, suggesting that the balanced actions between the NH2- and COOH-terminal fragments of DSPP may be required for normal skeletal development.
Collapse
Affiliation(s)
- H Zhang
- Texas A&M University, Baylor College of Dentistry.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yang J, Kawasaki K, Lee M, Reid BM, Nunez SM, Choi M, Seymen F, Koruyucu M, Kasimoglu Y, Estrella-Yuson N, Lin BPJ, Simmer JP, Hu JCC. The dentin phosphoprotein repeat region and inherited defects of dentin. Mol Genet Genomic Med 2016; 4:28-38. [PMID: 26788535 PMCID: PMC4707025 DOI: 10.1002/mgg3.176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/12/2022] Open
Abstract
Nonsyndromic dentin defects classified as type II dentin dysplasia and types II and III dentinogenesis imperfecta are caused by mutations in DSPP (dentin sialophosphoprotein). Most reported disease‐causing DSPP mutations occur within the repetitive DPP (dentin phosphoprotein) coding sequence. We characterized the DPP sequences of five probands with inherited dentin defects using single molecule real‐time (SMRT) DNA sequencing. Eight of the 10 sequences matched previously reported DPP length haplotypes and two were novel. Alignment with known DPP sequences showed 32 indels arranged in 36 different patterns. Sixteen of the 32 indels were not represented in more than one haplotype. The 25 haplotypes with confirmed indels were aligned to generate a tree that describes how the length variations might have evolved. Some indels were independently generated in multiple lines. A previously reported disease‐causing DSPP mutation in Family 1 was confirmed and its position clarified (c.3135delC; p.Ser1045Argfs*269). A novel frameshift mutation (c.3504_3508dup; p.Asp1170Alafs*146) caused the dentin defects in Family 2. A COL1A2 (c.2027G>A or p.Gly676Asp) missense mutation, discovered by whole‐exome sequencing, caused the dentin defects in Family 3. We conclude that SMRT sequencing characterizes the DPP repeat region without cloning and can improve our understanding of normal and pathological length variations in DSPP alleles.
Collapse
Affiliation(s)
- Jie Yang
- Department of Biologic and Materials SciencesUniversity of Michigan School of Dentistry1210 Eisenhower PlaceAnn ArborMichigan; Department of Pediatric DentistrySchool and Hospital of StomatologyPeking University22 South AvenueZhongguancun Haidian DistrictBeijing100081China
| | - Kazuhiko Kawasaki
- Department of Anthropology Pennsylvania State University University Park Pennsylvania 16802
| | - Moses Lee
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong, Chongno-gu Seoul 110-768 Korea
| | - Bryan M Reid
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Stephanie M Nunez
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Murim Choi
- Department of Biomedical Sciences Seoul National University College of Medicine 275-1 Yongon-dong, Chongno-gu Seoul 110-768 Korea
| | - Figen Seymen
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Mine Koruyucu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Yelda Kasimoglu
- Department of Pedodontics Faculty of Dentistry Istanbul University Istanbul Turkey
| | - Ninna Estrella-Yuson
- Department of Paediatric Dentistry Women's and Children's Hospital 72 King William Road North Adelaide South Australia 5006 Australia
| | - Brent P J Lin
- Department of Pediatric Dentistry School of Dentistry University of California San Francisco California
| | - James P Simmer
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences University of Michigan School of Dentistry 1210 Eisenhower Place Ann Arbor Michigan
| |
Collapse
|
15
|
Accelerated enamel mineralization in Dspp mutant mice. Matrix Biol 2016; 52-54:246-259. [PMID: 26780724 DOI: 10.1016/j.matbio.2016.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Dentin sialophosphoprotein (DSPP) is one of the major non-collagenous proteins present in dentin, cementum and alveolar bone; it is also transiently expressed by ameloblasts. In humans many mutations have been found in DSPP and are associated with two autosomal-dominant genetic diseases - dentinogenesis imperfecta II (DGI-II) and dentin dysplasia (DD). Both disorders result in the development of hypomineralized and mechanically compromised teeth. The erupted mature molars of Dspp(-/-) mice have a severe hypomineralized dentin phenotype. Since dentin and enamel formations are interdependent, we decided to investigate the process of enamel onset mineralization in young Dspp(-/-) animals. We focused our analysis on the constantly erupting mouse incisor, to capture all of the stages of odontogenesis in one tooth, and the unerupted first molars. Using high-resolution microCT, we revealed that the onset of enamel matrix deposition occurs closer to the cervical loop and both secretion and maturation of enamel are accelerated in Dspp(-/-) incisors compared to the Dspp(+/-) control. Importantly, these differences did not translate into major phenotypic differences in mature enamel in terms of the structural organization, mineral density or hardness. The only observable difference was the reduction in thickness of the outer enamel layer, while the total enamel thickness remained unchanged. We also observed a compromised dentin-enamel junction, leading to delamination between the dentin and enamel layers. The odontoblast processes were widened and lacked branching near the DEJ. Finally, for the first time we demonstrate expression of Dspp mRNA in secretory ameloblasts. In summary, our data show that DSPP is important for normal mineralization of both dentin and enamel.
Collapse
|
16
|
Liang T, Meng T, Wang S, Qin C, Lu Y. The LPV Motif Is Essential for the Efficient Export of Secretory DMP1 From the Endoplasmic Reticulum. J Cell Physiol 2015; 231:1468-75. [PMID: 26595451 DOI: 10.1002/jcp.25265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/19/2015] [Indexed: 11/07/2022]
Abstract
Dentin matrix protein 1 (DMP1) is found abundantly in the extracellular matrices of bone and dentin. Secretory DMP1 begins with a tripeptide of leucine-proline-valine (LPV) after the endoplasmic reticulum (ER)-entry signal peptide is cleaved. The goal of this study was to determine the role of the LPV motif in the secretion of DMP1. A series of DNA constructs was generated to express various forms of DMP1 with or without the LPV motif. These constructs were transfected into a preosteoblast cell line, the MC3T3-E1 cells, and the subcellular localization and secretion of various forms of DMP1 were examined by immunofluorescent staining and Western-blotting analyses. Immunofluorescent staining showed that the LPV-containing DMP1 variants were primarily localized in the Golgi complex, whereas the LPV-lacking DMP1 variants were found abundantly within the ER. Western-blotting analyses demonstrated that the LPV-containing DMP1 variants were rapidly secreted from the transfected cells, as they did not accumulate within the cells, and the amounts increased in the conditioned media over time. In contrast, the LPV-lacking DMP1 variants were predominantly retained within the cells, and only small amounts were secreted out of the cells over time. These results suggest that the LPV motif is essential for the efficient export of secretory DMP1 from the ER to the Golgi complex.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Tian Meng
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas
| |
Collapse
|
17
|
Jani PH, Gibson MP, Liu C, Zhang H, Wang X, Lu Y, Qin C. Transgenic expression of Dspp partially rescued the long bone defects of Dmp1-null mice. Matrix Biol 2015; 52-54:95-112. [PMID: 26686820 DOI: 10.1016/j.matbio.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 01/09/2023]
Abstract
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1(-/-)) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1(-/-) mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as "Dmp1(-/-);Dspp-Tg mice"). We characterized the long bones of the Dmp1(-/-);Dspp-Tg mice at different ages and compared them with those from Dmp1(-/-) and Dmp1(+/-) (normal control) mice. Our analyses showed that the long bones of Dmp1(-/-);Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1(-/-) mice. The long bones of Dmp1(-/-);Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1(-/-) mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1(-/-) mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that DSPP and DMP1 may function synergistically within the complex milieus of bone matrices.
Collapse
Affiliation(s)
- Priyam H Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Monica P Gibson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Chao Liu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX 75246, USA.
| |
Collapse
|
18
|
Gibson MP, Jani P, Wang X, Lu Y, Qin C. Overexpressing the NH 2-terminal fragment of dentin sialophosphoprotein (DSPP) aggravates the periodontal defects in Dspp knockout mice. J Oral Biosci 2014; 56:143-148. [PMID: 25386098 DOI: 10.1016/j.job.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Previous studies have shown that dentin sialophosphoprotein (DSPP) is not only essential to the formation and mineralization of dentin but also plays an important role in forming and maintaining a healthy periodontium. Under physiological conditions, DSPP is proteolytically processed into the NH2-terminal and COOH-terminal fragments, and these fragments are believed to perform different functions in the mineralized tissues. Previous studies in our group have demonstrated that the NH2-terminal fragment of DSPP inhibits the formation and mineralization of dentin, while the role of this fragment in periodontium is unclear. METHODS We analyzed the periodontal tissues of the transgenic mice overexpressing the NH2-terminal fragment of DSPP in the Dspp knockout background (referred to as "Dspp KO/DSP Tg" mice), in comparison with wild type mice and Dspp knockout mice. The approaches used in this study included histology, micro-computed tomography, back scattered scanning electron microscopy and resin-casted scanning electron microscopy. RESULTS Dspp KO/DSP Tg mice exhibited a greater reduction of the alveolar bone, more remarkably altered canalicular systems around the osteocytes, less cementum, more radical migration of the epithelial attachment towards the apical direction, and more severe inflammation in molar furcation region, than in the Dspp knockout mice. CONCLUSION Overexpressing the NH2-terminal fragment of DSPP worsened the periodontal defects in Dspp knockout mice, indicating that the NH2-terminal fragment of DSPP may exert an inhibitory role in the formation and mineralization of hard tissues in the periodontium.
Collapse
Affiliation(s)
- Monica Prasad Gibson
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Priyam Jani
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, TX 75246, USA
| |
Collapse
|
19
|
Yamakoshi Y, Kinoshita S, Izuhara L, Karakida T, Fukae M, Oida S. DPP and DSP are Necessary for Maintaining TGF-β1 Activity in Dentin. J Dent Res 2014; 93:671-7. [PMID: 24799420 DOI: 10.1177/0022034514534690] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/15/2014] [Indexed: 11/16/2022] Open
Abstract
Porcine dentin sialophosphoprotein (DSPP) is the most abundant non-collagenous protein in dentin. It is processed by proteases into 3 independent proteins: dentin sialoprotein (DSP), dentin glycoprotein (DGP), and dentin phosphoprotein (DPP). We fractionated DPP and DSP along with TGF-β activity by ion exchange (IE) chromatography from developing pig molars and measured their alkaline phosphatase (ALP)-stimulating activity in human periodontal (HPDL) cells with or without TGF-β receptor inhibitor. We then purified TGF-β-unbound or -bound DPP and DSP by reverse-phase high-performance liquid chromatography (RP-HPLC) using the ALP-HPDL system. The TGF-β isoform bound to DPP and DSP was identified as being TGF-β1 by both ELISA and LC-MS/MS analysis. We incubated carrier-free human recombinant TGF-β1 (CF-hTGF-β1) with TGF-β-unbound DPP or DSP and characterized the binding on IE-HPLC using the ALP-HPDL system. When only CF-hTGF-β1 was incubated, approximately 3.6% of the ALP-stimulating activity remained. DPP and DSP rescued the loss of TGF-β1 activity. Approximately 19% and 10% of the ALP stimulating activities were retained by the binding of TGF-β to DPP and DSP, respectively. The type I collagen infrequently bound to CF-hTGF-β1. We conclude that both DPP and DSP help retain TGF-β1 activity in porcine dentin.
Collapse
Affiliation(s)
- Y Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - S Kinoshita
- Department of Pediatric Dentistry, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - L Izuhara
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-ku, Tokyo 105-0003, Japan
| | - T Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - M Fukae
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - S Oida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
20
|
Zhang Y, Song Y, Ravindran S, Gao Q, Huang CC, Ramachandran A, Kulkarni A, George A. DSPP contains an IRES element responsible for the translation of dentin phosphophoryn. J Dent Res 2013; 93:155-61. [PMID: 24352500 DOI: 10.1177/0022034513516631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The major phosphoprotein in dentin is the aspartic acid and serine-rich protein called dentin phosphophoryn (DPP). DPP appears to be synthesized as a part of a larger compound protein, dentin sialophosphoprotein (DSPP). DSPP has never been isolated or detected in dentin extracts. It is now evident that DSPP is a chimeric protein composed of 3 parts: dentin sialoprotein (DSP), DPP, and dentin glycoprotein (DGP). Previous reports have suggested that the BMP1 protease is responsible for processing DSPP. However, unequal amounts of these products are present in the dentin matrix. Here, we provide evidence for an internal ribosome entry site in the DSPP gene that directs the synthesis of DPP. This mechanism would account for unequal amounts of intracellular DSP and DPP. The internal ribosomal entry site (IRES) activity varied in different cell types, suggesting the presence of additional regulatory elements during the translational regulation of DPP. Further, we provide evidence that DPP is transported to the extracellular matrix (ECM) through exosomes. Using tissue recombination and lentivirus-mediated gain-of-function approaches, we also demonstrate that DPP is essential for the formation of well-defined tooth structures with mineralized dentin matrix.
Collapse
Affiliation(s)
- Y Zhang
- Brodie Tooth Development Genetics & Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Gibson MP, Liu Q, Zhu Q, Lu Y, Jani P, Wang X, Liu Y, Paine ML, Snead ML, Feng JQ, Qin C. Role of the NH2 -terminal fragment of dentin sialophosphoprotein in dentinogenesis. Eur J Oral Sci 2013; 121:76-85. [PMID: 23489896 DOI: 10.1111/eos.12020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 01/30/2023]
Abstract
Dentin sialophosphoprotein (DSPP) is a large precursor protein that is proteolytically processed into a NH2 -terminal fragment [composed of dentin sialoprotein (DSP) and a proteoglycan form (DSP-PG)] and a COOH-terminal fragment [dentin phosphoprotein (DPP)]. In vitro studies indicate that DPP is a strong initiator and regulator of hydroxyapatite crystal formation and growth, but the role(s) of the NH2 -terminal fragment of DSPP (i.e., DSP and DSP-PG) in dentinogenesis remain unclear. This study focuses on the function of the NH2 -terminal fragment of DSPP in dentinogenesis. Here, transgenic (Tg) mouse lines expressing the NH2 -terminal fragment of DSPP driven by a 3.6-kb type I collagen promoter (Col 1a1) were generated and cross-bred with Dspp null mice to obtain mice that express the transgene but lack the endogenous Dspp (Dspp KO/DSP Tg). We found that dentin from the Dspp KO/DSP Tg mice was much thinner, more poorly mineralized, and remarkably disorganized compared with dentin from the Dspp KO mice. The fact that Dspp KO/DSP Tg mice exhibited more severe dentin defects than did the Dspp null mice indicates that the NH2 -terminal fragment of DSPP may inhibit dentin mineralization or may serve as an antagonist against the accelerating action of DPP and serve to prevent predentin from being mineralized too rapidly during dentinogenesis.
Collapse
Affiliation(s)
- Monica P Gibson
- Texas A&M Health Science Center Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu Q, Gibson MP, Liu Q, Liu Y, Lu Y, Wang X, Feng JQ, Qin C. Proteolytic processing of dentin sialophosphoprotein (DSPP) is essential to dentinogenesis. J Biol Chem 2012; 287:30426-35. [PMID: 22798071 DOI: 10.1074/jbc.m112.388587] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DSPP, which plays a crucial role in dentin formation, is processed into the NH(2)-terminal and COOH-terminal fragments. We believe that the proteolytic processing of DSPP is an essential activation step for its biological function in biomineralization. We tested this hypothesis by analyzing transgenic mice expressing the mutant D452A-DSPP in the Dspp-knock-out (Dspp-KO) background (referred to as "Dspp-KO/D452A-Tg" mice). We employed multipronged approaches to characterize the dentin of the Dspp-KO/D452A-Tg mice, in comparison with Dspp-KO mice and mice expressing the normal DSPP transgene in the Dspp-KO background (named Dspp-KO/normal-Tg mice). Our analyses showed that 90% of the D452A-DSPP in the dentin of Dspp-KO/D452A-Tg mice was not cleaved, indicating that D452A substitution effectively blocked the proteolytic processing of DSPP in vivo. While the expression of the normal DSPP fully rescued the dentin defects of the Dspp-KO mice, expressing the D452A-DSPP failed to do so. These results indicate that the proteolytic processing of DSPP is an activation step essential to its biological function in dentinogenesis.
Collapse
Affiliation(s)
- Qinglin Zhu
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yuan G, Yang G, Song G, Chen Z, Chen S. Immunohistochemical localization of the NH(2)-terminal and COOH-terminal fragments of dentin sialoprotein in mouse teeth. Cell Tissue Res 2012; 349:605-14. [PMID: 22581382 DOI: 10.1007/s00441-012-1418-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
Abstract
Dentin sialoprotein (DSP) is a major non-collagenous protein in dentin. Mutation studies in human, along with gene knockout and transgenic experiments in mice, have confirmed the critical role of DSP for dentin formation. Our previous study reported that DSP is processed into fragments in mouse odontoblast-like cells. In order to gain insights into the function of DSP fragments, we further evaluated the expression pattern of DSP in the mouse odontoblast-like cells using immunohistochemistry and western blot assay with antibodies against the NH(2)-terminal and COOH-terminal regions of DSP. Then, the distribution profiles of the DSP NH(2)-terminal and COOH-terminal fragments and osteopontin (OPN) were investigated in mouse teeth at different ages by immunohistochemistry. In the odontoblast-like cells, multiple low molecular weight DSP fragments were detected, suggesting that part of the DSP protein was processed in the odontoblast-like cells. In mouse first lower molars, immunoreactions for anti-DSP-NH(2) antibody were intense in the predentin matrix but weak in mineralized dentin; in contrast, for anti-DSP-COOH antibody, strong immunoreactions were found in mineralized dentin, in particular dentinal tubules but weak in predentin. Therefore, DSP NH(2)-terminal and COOH-terminal fragments from odontoblasts were secreted to different parts of teeth, suggesting that they may play distinct roles in dentinogenesis. Meanwhile, both DSP antibodies showed weak staining in reactionary dentin (RD), whereas osteopontin (OPN) was clearly positive in RD. Therefore, DSP may be less crucial for RD formation than OPN.
Collapse
Affiliation(s)
- Guohua Yuan
- Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China 430079
| | | | | | | | | |
Collapse
|
24
|
Suzuki S, Haruyama N, Nishimura F, Kulkarni AB. Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 2012; 57:1165-75. [PMID: 22534175 DOI: 10.1016/j.archoralbio.2012.03.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/23/2012] [Accepted: 03/20/2012] [Indexed: 12/15/2022]
Abstract
Dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) are highly phosphorylated proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and are essential for proper development of hard tissues such as teeth and bones. In order to understand how they contribute to tissue organization, DSPP and DMP-1 have been analyzed for over a decade using both in vivo and in vitro techniques. Among the five SIBLINGs, the DSPP and DMP-1 genes are located next to each other and their gene and protein structures are most similar. In this review we examine the phenotypes of the genetically engineered mouse models of DSPP and DMP-1 and also introduce complementary in vitro studies into the molecular mechanisms underlying these phenotypes. DSPP affects the mineralization of dentin more profoundly than DMP-1. In contrast, DMP-1 significantly affects bone mineralization and importantly controls serum phosphate levels by regulating serum FGF-23 levels, whereas DSPP does not show any systemic effects. DMP-1 activates integrin signalling and is endocytosed into the cytoplasm whereupon it is translocated to the nucleus. In contrast, DSPP only activates integrin-dependent signalling. Thus it is now clear that both DSPP and DMP-1 contribute to hard tissue mineralization and the tissues affected by each are different presumably as a result of their different expression levels. In fact, in comparison with DMP-1, the functional analysis of cell signalling by DSPP remains relatively unexplored.
Collapse
Affiliation(s)
- Shigeki Suzuki
- Department of Dental Science for Health Promotion, Division of Cervico-Gnathostomatology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | |
Collapse
|
25
|
Zhu Q, Prasad M, Kong H, Lu Y, Sun Y, Wang X, Yamoah A, Feng JQ, Qin C. Partial blocking of mouse DSPP processing by substitution of Gly(451)-Asp(452) bond suggests the presence of secondary cleavage site(s). Connect Tissue Res 2012; 53:307-12. [PMID: 22175728 PMCID: PMC3676176 DOI: 10.3109/03008207.2011.650301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dentin sialophosphoprotein (DSPP) in the extracellular matrix of dentin is cleaved into dentin sialoprotein and dentin phosphoprotein, which originate from the NH(2)-terminal and COOH-terminal regions of DSPP, respectively. In the proteolytic processing of mouse DSPP, the peptide bond at Gly(451)-Asp(452) has been shown to be cleaved by bone morphogenetic protein 1 (BMP1)/Tolloid-like metalloproteinases. In this study, we generated transgenic mice expressing a mutant DSPP in which Asp(452) was substituted by Ala(452). Protein chemistry analyses of extracts from the long bone of these transgenic mice showed that the D452A substitution partially blocked DSPP processing in vivo. When the full-length form of mutant DSPP (designated "D452A-DSPP") isolated from the transgenic mice was treated with BMP1 in vitro, a portion of the D452A-DSPP was cleaved, suggesting the presence of secondary peptide bond(s) that can be broken by BMP1. To identify the potential secondary DSPP cleavage site(s), site-directed mutagenesis was performed to generate nine DNA constructs expressing DSPP-bearing substitutions at potential scission sites. These different types of mutant DSPP made in eukaryotic cell lines were treated with BMP1 and the digestion products were assessed by Western immunoblotting. All of the mutant DSPP molecular species were partially cleaved by BMP1, giving rise to a protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis similar to that of normal dentin sialoprotein. Taken together, we concluded that in addition to the peptide bond Gly(451)-Asp(452), there must be a cryptic cleavage site or sites close to Asp(452) in the mouse DSPP that can be cleaved by BMP1.
Collapse
Affiliation(s)
- Qinglin Zhu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246,Department of Operative Dentistry and Endodontics, The Fourth Military Medical University, School of Stomatology, Xi’an, Shaanxi 710032, China
| | - Monica Prasad
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Hui Kong
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Xiaofang Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Albert Yamoah
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Jian Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| |
Collapse
|
26
|
Prasad M, Zhu Q, Sun Y, Wang X, Kulkarni A, Boskey A, Feng JQ, Qin C. Expression of dentin sialophosphoprotein in non-mineralized tissues. J Histochem Cytochem 2011; 59:1009-21. [PMID: 22043023 DOI: 10.1369/0022155411423406] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dentin sialophosphoprotein (DSPP) and its cleaved products, dentin phosphoprotein (DPP) and dentin sialoprotein (DSP), play important roles in biomineralization. Believed to be tooth specific, the authors' group revealed its expression in bone, and more recently, they and other groups also showed its expression in a few types of soft tissues. In this study, the authors systematically examined the expression of DSPP in a variety of non-mineralized tissues using reverse-transcription polymerase chain reaction (RT-PCR), real-time PCR, Western immunoblotting, and immunohistochemistry analyses in wild-type mice as well as β-galactosidase assays in the Dspp lacZ knock-in mice. These approaches showed the presence of DSPP in the salivary glands, cartilage, liver, kidney, and brain and its absence in the heart and spleen. Real-time PCR showed that the expression levels of DSPP mRNA in salivary glands, cartilage, liver, and kidney were higher than in the bone. Interestingly, DSPP was observed in the pericytes of blood vessels in the dental pulp, which are believed to be able to differentiate into odontoblasts. On the basis of these observations, the authors conclude that DSPP and/or its cleaved products may fulfill important functions in certain non-mineralized tissues in addition to its role in biomineralization.
Collapse
Affiliation(s)
- Monica Prasad
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yamakoshi Y, Nagano T, Hu JC, Yamakoshi F, Simmer JP. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments. BMC BIOCHEMISTRY 2011; 12:6. [PMID: 21291557 PMCID: PMC3039539 DOI: 10.1186/1471-2091-12-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 02/03/2011] [Indexed: 01/04/2023]
Abstract
Background Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr316. Porcine Dsp GAG attachments were found at Ser238 and Ser250 and were comprised of chondroitin 6-sulfate and chondroitin 4-sulfate in a ratio of 7 to 3, respectively. Conclusions The distribution of porcine Dsp posttranslational modifications indicate that porcine Dsp has an N-terminal domain with at least six N-glycosylations and a C-terminal domain with two GAG attachments and at least two O-glycosylations.
Collapse
Affiliation(s)
- Yasuo Yamakoshi
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | | | | | | | | |
Collapse
|
28
|
Sun Y, Ma S, Zhou J, Yamoah AK, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the articular cartilage of the rat femoral head. J Histochem Cytochem 2010; 58:1033-43. [PMID: 20679519 DOI: 10.1369/jhc.2010.956771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The small integrin-binding ligand, N-linked glycoprotein (SIBLING) family is closely related to osteogenesis. Until recently, little was known about their existence in articular cartilage. In this study, we systematically evaluated the presence and distribution of four SIBLING family members in rat femoral head cartilage: dentin matrix protein 1 (DMP1), bone sialoprotein (BSP), osteopontin (OPN), and dentin sialophosphoprotein (DSPP). First, non-collagenous proteins were extracted and then separated by ion-exchange chromatography. Next, the protein extracts eluted by chromatography were analyzed by Stains-all staining and Western immunoblotting. IHC was used to assess the distribution of these four SIBLING family members in the femoral head cartilage. Both approaches showed that all the four SIBLING family members are expressed in the femoral head cartilage. IHC showed that SIBLING members are distributed in various locations throughout the articular cartilage. The NH₂-terminal fragments of DMP1, BSP, and OPN are present in the cells and in the extracellular matrix, whereas the COOH-terminal fragment of DMP1 and the NH₂-terminal fragment of DSPP are primarily intracellularly localized in the chondrocytes. The presence of the SIBLING family members in the rat femoral head cartilage suggests that they may play important roles in chondrogenesis.
Collapse
Affiliation(s)
- Yao Sun
- Dept. of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|