1
|
Liu XH, Zhong NN, Yi JR, Lin H, Liu B, Man QW. Trends in Research of Odontogenic Keratocyst and Ameloblastoma. J Dent Res 2025; 104:347-368. [PMID: 39876078 DOI: 10.1177/00220345241282256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM. Fibroblast subsets in OKC and tumor cell subsets in AM have been analyzed, revealing mechanisms behind their biological behaviors, including OKC's osteolytic features and AM's recurrence tendencies. Spatial transcriptomics studies of AM have identified engineered fibroblasts and osteoblasts contributing to matrix remodeling gene and oncogene expression at the invasion frontier, driving AM progression. Three-dimensional culture technologies such as organoid models have refined analysis of AM subtypes; uncovered the role of AM fibroblasts in promoting tumor cell proliferation and invasion; and identified signaling pathways such as FOSL1, BRD4, EZH2, and Wnt as potential therapeutic targets. Organoid models also served as preclinical platforms for testing potential therapies. Although preclinical models for AM exist, reliable in vitro and in vivo models for OKC remain scarce. Promising mimic models, including human embryonic stem cells-derived epithelial cells, human oral keratinocytes, human immortalized oral epithelial cells, and HaCaT keratinocytes, show promise, but the advancements in 3-dimensional culture technology are expected to lead to further breakthroughs in this area. Artificial intelligence, including machine learning and deep learning, has enhanced radiomics-based diagnostic accuracy, distinguishing OKC and AM beyond clinician capability. Pathomics-based models further predict OKC prognosis and differentiate AM from ameloblastic carcinoma. Clinical studies have shown positive outcomes with targeted therapies. In a study investigating SMO-targeted treatments for nevoid basal cell carcinoma syndrome, nearly all OKC lesions resolved in 3 patients. A recent clinical trial with neoadjuvant BRAF-targeted therapy for AM demonstrated promising radiologic responses, potentially enabling organ preservation. This review highlights recent advancements and trends in OKC and AM research, aiming to inspire further exploration and progress in these fields.
Collapse
Affiliation(s)
- X-H Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - N-N Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J-R Yi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - B Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q-W Man
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Marín-Márquez C, Adisa AO, Niklander SE, Kirby J, Hunter KD. Genomic and Transcriptomic Analysis of Ameloblastoma Reveals Distinct Molecularly Aggressive Phenotypes. Mod Pathol 2025; 38:100682. [PMID: 39675431 DOI: 10.1016/j.modpat.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Ameloblastoma (AM) is a benign but locally infiltrative epithelial odontogenic neoplasm of the jawbones that may reach grotesque proportions and be highly recurrent if inadequately removed. The BRAFV600E mutation has been demonstrated as a key molecular event in its development; nevertheless, there are many queries about its etiopathogenesis, which are yet to be answered. In this study, we aimed to integrate the results from whole-exome sequencing (WES) and RNA sequencing in AM samples to identify novel candidate genes that may be relevant to its pathogenesis. Thirteen-matched tumors were subjected to WES and RNA-seq, respectively, to detect gene mutations and gene expression profiles, along with the presence of gene fusions. Mutations were validated using Sanger sequencing, whereas transcriptome results were validated using qPCR. The results from both molecular techniques were merged in order to identify novel candidate genes that were biologically validated with immunohistochemistry. BRAFV600E mutation was present in 62% of the analyzed cases, and each AM presented at least 2 or 3 mutations affecting cancer-driver genes. RNA-seq showed different molecular subgroups associated with an aggressive and cancer-related phenotype (epithelial-mesenchymal transition and KRAS gene sets). No gene fusions were detected among the cases. CDH11 and TGM2, novel genes associated with epithelial-mesenchymal transition in AM, were selected and validated in tissues. Both WES and RNA-seq results showed gene alterations related to proliferation, cell differentiation, and metabolic processes. These results show that AM shares many of the hallmarks of cancer secondary to the presence of oncogenic mutations or activation of oncogenic signaling pathways.
Collapse
Affiliation(s)
- Constanza Marín-Márquez
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, UK; Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile.
| | - Akinyele O Adisa
- Department of Oral Pathology, Faculty of Dentistry, University of Ibadan and University College Hospital Ibadan, Ibadan, Nigeria
| | - Sven E Niklander
- Unit of Oral Pathology and Oral Medicine, Faculty of Dentistry, Universidad Andres Bello, Viña del Mar, Chile
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, Division of Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| |
Collapse
|
3
|
Marín-Márquez C, Kirby J, Hunter KD. Molecular pathogenesis of ameloblastoma. J Oral Pathol Med 2024; 53:277-293. [PMID: 38664938 DOI: 10.1111/jop.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Ameloblastoma (AM) is a benign, although aggressive, epithelial odontogenic tumour originating from tooth-forming tissues or remnants. Its aetiopathogenesis remains unclear; however, molecular analysis techniques have allowed researchers to progress in understanding its genetic basis. The high frequency of BRAF p.V600E as a main driver mutation in AM is well established; nevertheless, it is insufficient to explain its tumourigenesis. In this review, we aimed to integrate the current knowledge about the biology of AM and to describe the main genetic alterations reported, focusing on the findings of large-scale sequencing and gene expression profiling techniques. Current evidence shows that besides BRAF mutation and activation of the MAPK pathway, alterations in Hedgehog and Wnt/β-catenin pathway-related genes are also involved in AM pathogenesis. Recently, a tumour suppressor gene, KMT2D, has been reported as mutated by different research groups. The biological impact of these mutations in the pathogenesis of AM has yet to be elucidated. Further studies are needed to clarify the impact of these findings in the identification of novel biomarkers that could be useful for diagnosing, classifying, and molecular targeting this neoplasm.
Collapse
Affiliation(s)
- Constanza Marín-Márquez
- Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, UK
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Puerto Montt, Chile
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Keith D Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
4
|
Mamat @ Yusof MN, Ch’ng ES, Radhiah Abdul Rahman N. BRAF V600E Mutation in Ameloblastoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:5593. [PMID: 36428683 PMCID: PMC9688909 DOI: 10.3390/cancers14225593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery that ameloblastoma has a high mutation incidence of BRAF V600E may enable a better investigation of pathophysiology. However, there is inconsistent evidence regarding this mutation occurrence and its association with clinical information. This systematic review and meta-analysis aim to pool the overall mutation prevalence of BRAF V600E in reported ameloblastoma cases and to determine its association with patient demographic and clinicopathological features. Following the PRISMA guidelines, a comprehensive article search was conducted through four databases (Scopus, Google Scholar, PubMed, and Web of Science). Seventeen articles between 2014 and 2022 met the inclusion criteria with 833 ameloblastoma cases. For each included study, the significance of BRAF V600E on the outcome parameters was determined using odd ratios and 95% confidence intervals. Meta-analysis prevalence of BRAF V600E in ameloblastoma was 70.49%, and a significant meta-analysis association was reported for those younger than 54 years old and in the mandible. On the contrary, other factors, such as sex, histological variants, and recurrence, were insignificant. As a result of the significant outcome of BRAF V600E mutation in ameloblastoma pathogenesis, targeted therapy formulation can be developed with this handful of evidence.
Collapse
Affiliation(s)
- Mohd Nazzary Mamat @ Yusof
- Department of Clinical Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas 13200, Malaysia
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Ewe Seng Ch’ng
- Department of Clinical Medicine, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas 13200, Malaysia
| | - Nawal Radhiah Abdul Rahman
- Department of Dental Science, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas 13200, Malaysia
| |
Collapse
|
5
|
Identification of BRAF V600E mutation in odontogenic tumors by high-performance MALDI-TOF analysis. Int J Oral Sci 2022; 14:22. [PMID: 35468886 PMCID: PMC9038922 DOI: 10.1038/s41368-022-00170-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 11/14/2022] Open
Abstract
Odontogenic tumors are rare lesions with unknown etiopathogenesis. Most of them are benign, but local aggressiveness, infiltrative potential, and high recurrence rate characterize some entities. The MAP-kinase pathway activation can represent a primary critical event in odontogenic tumorigenesis. Especially, the BRAF V600E mutation has been involved in 80–90% of ameloblastic lesions, offering a biological rationale for developing new targeted therapies. The study aims to evaluate the BRAF V600E mutation in odontogenic lesions, comparing three different detection methods and focusing on the Sequenom MassARRAY System. 81 surgical samples of odontogenic lesions were subjected to immunohistochemical analysis, Sanger Sequencing, and Matrix-Assisted Laser Desorption/Ionization-Time of Flight mass spectrometry (Sequenom). The BRAF V600E mutation was revealed only in ameloblastoma samples. Moreover, the presence of BRAF V600E was significantly associated with the mandibular site (ρ = 0.627; P value <0.001) and the unicystic histotype (ρ = 0.299, P value <0.001). However, any significant difference of 10-years disease-free survival time was not revealed. Finally, Sequenom showed to be a 100% sensitive and 98.1% specific, suggesting its high-performance diagnostic accuracy. These results suggest the MAP-kinase pathway could contribute to ameloblastic tumorigenesis. Moreover, they could indicate the anatomical specificity of the driving mutations of mandibular ameloblastomas, providing a biological rational for developing new targeted therapies. Finally, the high diagnostic accuracy of Sequenom was confirmed.
Collapse
|
6
|
Guimarães LM, Coura BP, Gomez RS, Gomes CC. The Molecular Pathology of Odontogenic Tumors: Expanding the Spectrum of MAPK Pathway Driven Tumors. FRONTIERS IN ORAL HEALTH 2022; 2:740788. [PMID: 35048058 PMCID: PMC8757814 DOI: 10.3389/froh.2021.740788] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Odontogenic tumors comprise a heterogeneous group of lesions that arise from the odontogenic apparatus and their remnants. Although the etiopathogenesis of most odontogenic tumors remains unclear, there have been some advances, recently, in the understanding of the genetic basis of specific odontogenic tumors. The mitogen-activated protein kinases/extracellular signal-regulated kinases (MAPK/ERK) pathway is intimately involved in the regulation of important cellular functions, and it is commonly deregulated in several human neoplasms. Molecular analysis performed by different techniques, including direct sequencing, next-generation sequencing, and allele-specific qPCR, have uncovered mutations in genes related to the oncogenic MAPK/ERK signaling pathway in odontogenic tumors. Genetic mutations in this pathway genes have been reported in epithelial and mixed odontogenic tumors, in addition to odontogenic carcinomas and sarcomas. Notably, B-Raf proto-oncogene serine/threonine kinase (BRAF) and KRAS proto-oncogene GTPase (KRAS) pathogenic mutations have been reported in a high proportion of ameloblastomas and adenomatoid odontogenic tumors, respectively. In line with the reports about other neoplasms that harbor a malignant counterpart, the frequency of BRAF p.V600E mutation is higher in ameloblastoma (64% in conventional, 81% in unicystic, and 63% in peripheral) than in ameloblastic carcinoma (35%). The objective of this study was to review MAPK/ERK genetic mutations in benign and malignant odontogenic tumors. Additionally, such genetic alterations were discussed in the context of tumorigenesis, clinical behavior, classification, and future perspectives regarding therapeutic approaches.
Collapse
Affiliation(s)
- Letícia Martins Guimarães
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna Pizziolo Coura
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Marín C, Niklander SE, Martínez-Flores R. Genetic Profile of Adenomatoid Odontogenic Tumor and Ameloblastoma. A Systematic Review. FRONTIERS IN ORAL HEALTH 2022; 2:767474. [PMID: 35048068 PMCID: PMC8757772 DOI: 10.3389/froh.2021.767474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To perform a comprehensive and systematic critical appraisal of the genetic alterations reported to be present in adenomatoid odontogenic tumor (AOT) compared to ameloblastoma (AM), to aid in the understanding in their development and different behavior. Methods: An electronic search was conducted in PubMed, Scopus, and Web of Science during March 2021. Eligibility criteria included publications on humans which included genetic analysis of AOT or AM. Results: A total of 43 articles reporting 59 AOTs and 680 AMs were included. Different genomic techniques were used, including whole-exome sequencing, direct sequencing, targeted next-generation sequencing panels and TaqMan allele-specific qPCR. Somatic mutations affecting KRAS were identified in 75.9% of all AOTs, mainly G12V; whereas a 71% of the AMs harbored BRAF mutations, mainly V600E. Conclusions: The available genetic data reports that AOTs and AM harbor somatic mutations in well-known oncogenes, being KRAS G12V/R and BRAFV600E mutations the most common, respectively. The relatively high frequency of ameloblastoma compared to other odontogenic tumors, such as AOT, has facilitated the performance of different sequencing techniques, allowing the discovery of different mutational signatures. On the contrary, the low frequency of AOTs is an important limitation for this. The number of studies that have a assessed the genetic landscape of AOT is still very limited, not providing enough evidence to draw a conclusion regarding the relationship between the genomic alterations and its clinical behavior. Thus, the presence of other mutational signatures with clinical impact, co-occurring with background KRAS mutations or in wild-type KRAS cases, cannot be ruled out. Since BRAF and RAS are in the same MAPK pathway, it is interesting that ameloblastomas, frequently associated with BRAFV600E mutation have aggressive clinical behavior, but in contrast, AOTs, frequently associated with RAS mutations have indolent behavior. Functional studies might be required to solve this question.
Collapse
Affiliation(s)
- Constanza Marín
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile.,Unit of Oral and Maxillofacial Medicine, Pathology and Surgery, University of Sheffield, Sheffield, United Kingdom
| | - Sven E Niklander
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile
| | - René Martínez-Flores
- Unidad de Patología y Medicina Oral, Facultad de Odontología, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
8
|
Mealey NE, O’Sullivan DE, Peters CE, Heng DYC, Brenner DR. Mutational signatures among young-onset testicular cancers. BMC Med Genomics 2021; 14:280. [PMID: 34819066 PMCID: PMC8611954 DOI: 10.1186/s12920-021-01121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Incidence of testicular cancer is highest among young adults and has been increasing dramatically for men born since 1945. This study aimed to elucidate the factors driving this trend by investigating differences in mutational signatures by age of onset. METHODS We retrieved somatic variant and clinical data pertaining to 135 testicular tumors from The Cancer Genome Atlas. We compared mutational load, prevalence of specific mutated genes, mutation types, and mutational signatures between age of onset groups (< 30 years, 30-39 years, ≥ 40 years) after adjusting for subtype. A recursively partitioned mixture model was utilized to characterize combinations of signatures among the young-onset cases. RESULTS Mutational load was significantly higher among older-onset tumors (p < 0.05). There were no highly prevalent driver mutations among young-onset tumors. Mutated genes and types of nucleotide mutations were not significantly different by age group (p > 0.05). Signatures 1, 8 and 29 were more common among young-onset tumors, while signatures 11 and 16 had higher prevalence among older-onset tumors (p < 0.05). Among young-onset tumors, clustering of signatures resulted in four distinct tumor classes. CONCLUSIONS Signature contributions differ by age with signatures 1, 8 and 29 were more common among younger-onset tumors. While these signatures are connected with endogenous deamination of 5-methylcytosine, late replication errors and chewing tobacco, respectively, additional research is needed to further elucidate the etiology of young-onset testicular cancer. Large studies of mutational signatures among young-onset patients are required to understand epidemiologic trends as well as inform targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Nicole E. Mealey
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Dylan E. O’Sullivan
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| | - Cheryl E. Peters
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, CancerControl Alberta, Calgary, AB Canada
- CAREX Canada, Simon Fraser University, Vancouver, BC Canada
| | - Daniel Y. C. Heng
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Department of Internal Medicine, Medical Oncology, Alberta Health Services, Calgary, AB Canada
| | - Darren R. Brenner
- Department of Oncology, Cumming School of Medicine, University of Calgary, Room 382B, Heritage Medical Research Building, 3310 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, CancerControl Alberta, Calgary, AB Canada
| |
Collapse
|
9
|
Shi Y, Li M, Yu Y, Zhou Y, Wang S. Whole exome sequencing and system biology analysis support the "two-hit" mechanism in the onset of Ameloblastoma. Med Oral Patol Oral Cir Bucal 2021; 26:e510-e517. [PMID: 33395399 PMCID: PMC8254878 DOI: 10.4317/medoral.24385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Ameloblastoma is the most frequent odontogenic tumor. Various evidence has highlighted the role of somatic mutations, including recurrent mutation BRAF V600E, in the tumorigenesis of Ameloblastoma, but the intact genetic pathology remains unknown. MATERIAL AND METHODS We sequenced the whole exome of both tumor tissue and healthy bone tissue from four mandibular ameloblastoma patients. The identified somatic mutations were integrated into Weighted Gene Co-expression Network Analysis on publicly available expression data of odontoblast, ameloblast, and Ameloblastoma. RESULTS We identified a total of 70 rare and severe somatic mutations. We found BRAF V600E on all four patients, supporting previous discovery. HSAP4 was also hit by two missense mutations on two different patients. By applying Weighted Gene Co-expression Network Analysis on expression data of odontoblast, ameloblast, and Ameloblastoma, we found a proliferation-associated gene module that was significantly disrupted in tumor tissues. Each patient carried at least two rare, severe somatic mutations affecting genes within this module, including HSPA4, GNAS, CLTC, NES, and KMT2D. All these mutations had a ratio of variant-support reads lower than BRAF V600E, indicating that they occurred later than BRAF V600E. CONCLUSIONS We suggest that a severe somatic mutation on the gene network of cell proliferation other than BRAF V600E, namely second hit, may contribute to the tumorigenesis of Ameloblastoma.
Collapse
Affiliation(s)
- Y Shi
- Department of Oral Surgery Shanghai Ninth People's Hospital #639 Zhizaoju Road, Shanghai 200011, China
| | | | | | | | | |
Collapse
|
10
|
Niu X, Huang B, Qiao X, Liu J, Chen L, Zhong M. MicroRNA-1-3p Suppresses Malignant Phenotypes of Ameloblastoma Through Down-Regulating Lysosomal Associated Membrane Protein 2-Mediated Autophagy. Front Med (Lausanne) 2021; 8:670188. [PMID: 34124097 PMCID: PMC8187618 DOI: 10.3389/fmed.2021.670188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Objective: Several clinical trials have suggested that autophagy inhibition is a promising approach for cancer therapy. However, the implications of autophagy in ameloblastoma (AB) remain undiscovered. This study investigated the dysregulated autophagy and its regulatory mechanisms in AB. Methods: The expression and distribution of autophagy-related proteins including B-cell lymphoma-2-interacting protein-1 (Beclin1), microtubule-associated protein 1 light chain 3 (LC3) II/I and lysosomal associated membrane protein 2 (LAMP2) were detected in AB and normal oral mucosa (NOM) tissues by immunohistochemistry and western blot analyses. Under transmission electron microscopy, the autophagy of AB was observed. LAMP2 was a potential target mRNA of miR-1-3p. Quantitative Real-time PCR (qRT-PCR) analysis was utilized for examining LAMP2 and miR-1-3p in AB tissues as well as AM-1 cells. The correlation between LAMP2 and miR-1-3p was analyzed in AB. After transfection with miR-1-3p mimic or inhibitor, LAMP2 expression, proliferation, migration, and invasion were separately detected in AM-1 cells. Rescue assays were finally presented. Results: Our results showed that Beclin1 was lowly expressed as well as LC3II/I and LAMP2 were highly expressed in AB. Autophagosomes were observed in AB. MiR-1-3p was lowly expressed in AB, which exhibited negative correlations to LAMP2 expression. MiR-1-3p up-regulation significantly lowered LAMP2 expression in AM-1 cells. Furthermore, miR-1-3p overexpression restrained proliferative, migrated, and invasive capacities of AM-1 cells, which were ameliorated by LAMP2 overexpression. Conclusion: Our findings demonstrated that miR-1-3p suppressed malignant phenotypes of AB through down-regulating LAMP2-mediated autophagy, which could become an underlying target for AB therapy.
Collapse
Affiliation(s)
- Xing Niu
- Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Oral Histopathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Biying Huang
- Department of Oral Histopathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xue Qiao
- Department of Central Laboratory, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Oral Histopathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lijie Chen
- Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Oral Histopathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ming Zhong
- Department of Stomatology, Xiang'an Hospital of Xiamen University, Xiamen, China.,Department of Oral Histopathology, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Zhang G, Zhao L, Wang X, Wang B, Tang W, Xue Q. Pulmonary resection for multiple lung metastasis from ameloblastoma: a rare case report and literature review. Postgrad Med 2020; 133:117-122. [PMID: 32990496 DOI: 10.1080/00325481.2020.1829841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Ameloblastoma is a benign odontogenic epithelial neoplasm. Lung metastasis of ameloblastoma is extremely rare, and its biological behavior is still largely unknown. There is no consensus regarding the best method to treat metastasizing ameloblastoma. CASE PRESENTATION This report documents a 37-year-old female patient with multiple incidental bilateral pulmonary nodules on computed tomography (CT) and a medical history of ameloblastoma of the left mandible. On admission, her physical examinations and laboratory examinations were unremarkable. The patient underwent partial lobectomy of the middle right and lower right lung nodules via video-assisted thoracoscopic surgery, and the pathological diagnosis was confirmed as 'metastasizing ameloblastoma.' No adjuvant therapy was administered, and no evidence of progression was observed at the 12-month follow-up. CONCLUSION This is a rare case with multiple lung metastasis from ameloblastoma who was successfully treated with multiple pulmonary resections. The present study indicated that surgery may be considered an appropriate choice for lung metastasis of ameloblastoma.
Collapse
Affiliation(s)
- Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Xuefei Wang
- Department of Breast Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College and Hospital , Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| |
Collapse
|
12
|
Lapthanasupkul P, Laosuk T, Ruangvejvorachai P, Aittiwarapoj A, Kitkumthorn N. Frequency of BRAF V600E mutation in a group of Thai patients with ameloblastomas. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 132:e180-e185. [PMID: 32665205 DOI: 10.1016/j.oooo.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE BRAF V600E mutation has recently been reported in a high proportion of ameloblastomas. This study was conducted to investigate the frequency of this mutation in ameloblastoma and unicystic ameloblastoma. The correlation between clinicopathologic data and BRAF V600E mutation was also analyzed. STUDY DESIGN A total of 51 archival samples of ameloblastomas and 22 cases of unicystic ameloblastomas were examined for BRAF V600E mutation by using anti-BRAF V600E (clone VE1) immunohistochemistry. RESULTS Positivity for anti-BRAF V600E antibody was detected in 72.5% (37 of 51) of ameloblastomas, but the mutation showed no significant correlation with the clinicopathologic parameters. With regard to unicystic ameloblastoma, 95.5% (21) of the 22 cases exhibited positive immunostaining for BRAF V600E, whereas only 1 case showed the mural subtype of wild-type BRAF. CONCLUSIONS A high frequency of BRAF V600E mutation was detected in a group of Thai patients with ameloblastomas, suggesting the future use of BRAF-targeted therapy in patients with BRAF-mutated ameloblastoma. However, no significant association between BRAF V600E mutation and the clinicopathologic characteristics of ameloblastomas was found in our study.
Collapse
Affiliation(s)
- Puangwan Lapthanasupkul
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Tuntikorn Laosuk
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Anchisa Aittiwarapoj
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
13
|
Xia RH, Zhang CY, Sun JJ, Tian Z, Hu YH, Gu T, Wang LZ, Li J. Ameloblastoma with mucous cells: A clinicopathological, BRAF mutation, and MAML2 rearrangement study. Oral Dis 2020; 26:805-814. [PMID: 31954088 DOI: 10.1111/odi.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To investigate the clinicopathological features, BRAF V600E mutation, and MAML2 rearrangement of ameloblastoma with mucous cell differentiation. MATERIALS AND METHODS Five cases of ameloblastoma with mucous cell differentiation were retrospectively studied. Clinicopathological features, BRAF V600E mutation, and MAML2 rearrangement were analyzed. Follow-up information was available for all cases. RESULTS Of five cases, two cases were male and three were female, aged 18-55 years. Four cases were located in the mandible and one case in the maxilla. Histologically, four of the five cases (80%) presented with cystic features and three of the five cases (60%) with varying degrees of squamous metaplasia. The mucous cells were located in the epithelial islands or the luminal aspect of the cystic cavities. The BRAF V600E mutation was found in three of five cases (60%). All the cases showed no MAML2 rearrangement. Two cases were recurrent lesions, and one case had a local recurrence during the follow-up. CONCLUSIONS Ameloblastoma with mucous cell differentiation is closely related to the cystic features, squamous metaplasia, and shows a high prevalence of BRAF V600E mutation. The absence of MAML2 rearrangement reveals that ameloblastoma with mucous cell differentiation and central mucoepidermoid carcinoma (MEC) are two distinct tumor entities.
Collapse
Affiliation(s)
- Rong-Hui Xia
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun-Ye Zhang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing-Jing Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu-Hua Hu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ting Gu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Li-Zhen Wang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
14
|
Duarte-Andrade FF, Vitório JG, Pereira TDSF, Gomes CC, Gomez RS. A review of the molecular profile of benign and malignant odontogenic lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:357-368. [PMID: 32035859 DOI: 10.1016/j.oooo.2019.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022]
Abstract
Odontogenic cysts and tumors are heterogeneous lesions, originating from elements or remnants of the odontogenic apparatus. Although the majority of these lesions are benign and never undergo malignant transformation, rare malignant tumors may arise de novo or from benign precursors. The molecular basis of these lesions is still poorly understood. This article summarizes and discusses studies using small, medium, and large-scale and/or "-omic" techniques to describe the molecular characteristics of benign and malignant odontogenic lesions and briefly debates strategies to increase the use of "-omic" and multi-omic approaches or integrative analyses in the research of these lesions. A comprehensive understanding of the molecular aspects of odontogenic lesions by using large-scale approaches will enable us to refine the classification of this heterogeneous group of disorders and provide more accurate biomarkers for precise diagnosis, prognosis, and development of molecular tools in the management of patients with these conditions.
Collapse
Affiliation(s)
- Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.
| |
Collapse
|
15
|
Ali M, Bukhari MH, Hassan F, Illyas M. Clinicopathological study of ameloblastoma and detection of human papilloma virus by immunohistochemistry. Pak J Med Sci 2019; 35:1691-1696. [PMID: 31777517 PMCID: PMC6861475 DOI: 10.12669/pjms.35.6.909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective: To study the clinocopathological factors and presence of Human Pappiloma Virus in ameloblastoma by immnohistochemistry. Methods: It was a cross sectional study on 50 surgical specimens of ameloblastoma, completed in six months. These were selected and processed for initial screening by H&E and then by immunohistochemistry (IHC) for detection of Human Papilloma Virus (HPV). The questionnaire was designed to study the clinicopathological factors associated in these patients. Sections of 4µm were cut, placed on special positive charged glass slides in the Department of Pathology, King Edward Medical University. It was then examined by the histopathologists for grading and scoring of these lesions. Chi Square test was used to assess the differences found in types of ameloblastomas. The p-value was smaller than 0.05 (p < 0.05). Results: The mean age of the patients (12-80 years old) was 38.6±15.1 years, with male-female ratio 2.84: 1. HPV was positive in 9 (18%), whereas negative in of 41 (82%) patients. Among the positive, reactive HPV with score-1 was 8 and score-2 was 1. According to histological variant, follicular was present in 78%, Plexiform pattern in 8%, Conventional and Desmoplastic variants in one patient each; and Cystic and Acanthomatous were seen in two and three patients respectively. The mandible was involved in 39 patients, maxilla and right maxilla involved in 4 patients each, right retromolar, cheek and angle of mandible was seen in one patient each. About 16% patients had anterior, 66% had posterior and 18% had both anterior and posterior regions involved. Among the HPV positive reactive statistically, no significant difference was found with smoking, Paan and exposure to pesticides, factory or mine (p-value > 0.05). Among HPV positive reactive patients, eight had ameloblastoma whereas, 1 had ameloblastomic fibroma. There was no statistical significance of type, location and region of tumor in HPV positivity. Conclusion: Mandible and posterior region was more commonly involved. Follicular pattern was most common. There was no effect of exposure to pesticides, factory or mine, smoke and human papilloma virus in the etiology of ameloblastoma because only 18% of patients showed the association of HPV16
Collapse
Affiliation(s)
- Misbah Ali
- Misbah Ali, BDs, M.Phil. King Edward Medical University, Lahore, Pakistan
| | - Mulazim Hussain Bukhari
- Mulazim Hussain Bukhari, MBBS, DCP, CHPE, MPhil, FCPS, PhD. Head of Pathology Department, UCMD, University of Lahore, Lahore, Pakistan
| | - Faiza Hassan
- Faiza Hassan BDs, MPhil. Assistant Professor Oral Pathology, Fauji Foundation University, Islamabad, Pakistan
| | - Maria Illyas
- Dr. Maria Illyas BDs, MPhil. Senior Registrar Oral Pathology, Baqai Medical and Dental College, Karachi, Pakistan
| |
Collapse
|