1
|
Mantovani A, Csermely A, Bilson J, Borella N, Enrico S, Pecoraro B, Shtembari E, Morandin R, Polyzos SA, Valenti L, Tilg H, Byrne CD, Targher G. Association between primary hypothyroidism and metabolic dysfunction-associated steatotic liver disease: an updated meta-analysis. Gut 2024; 73:1554-1561. [PMID: 38782564 DOI: 10.1136/gutjnl-2024-332491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Epidemiological studies have reported an association between primary hypothyroidism and metabolic dysfunction-associated steatotic liver disease (MASLD). However, the magnitude of the risk and whether this risk changes with the severity of MASLD remains uncertain. We performed a meta-analysis of observational studies to quantify the magnitude of the association between primary hypothyroidism and the risk of MASLD. DESIGN We systematically searched PubMed, Scopus and Web of Science from database inception to 31 January 2024, using predefined keywords to identify observational studies in which MASLD was diagnosed by liver biopsy, imaging or International Classification of Diseases codes. A meta-analysis was performed using random-effects modelling. RESULTS We identified 24 cross-sectional and 4 longitudinal studies with aggregate data on ~76.5 million individuals. Primary hypothyroidism (defined as levothyroxine replacement treatment, subclinical hypothyroidism or overt hypothyroidism) was associated with an increased risk of prevalent MASLD (n=24 studies; random-effects OR 1.43, 95% CI 1.23 to 1.66; I2=89%). Hypothyroidism was also associated with a substantially higher risk of metabolic dysfunction-associated steatohepatitis or advanced fibrosis (n=5 studies; random-effects OR 2.84, 95% CI 2.07 to 3.90; I2=0%). Meta-analysis of data from four longitudinal studies showed that there was a marginally non-significant association between hypothyroidism and risk of developing MASLD over a median 4.5-year follow-up (random-effects HR 1.39, 95% CI 0.98 to 1.97; I2=85%). Sensitivity analyses did not modify these findings. The funnel plot did not reveal any significant publication bias. CONCLUSION This large and updated meta-analysis provides evidence that primary hypothyroidism is significantly associated with both an increased presence of and histological severity of MASLD.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Alessandro Csermely
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Josh Bilson
- Southampton General Hospital, Southampton, UK
| | - Niccolò Borella
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Scoccia Enrico
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Barbara Pecoraro
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Emigela Shtembari
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Riccardo Morandin
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki Faculty of Health Sciences, Thessaloniki, Greece
| | - Luca Valenti
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, IRCCS Cà Granda Ospedale Maggiore Policlinico, milano, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| | | | - Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
- Department of Medicine, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| |
Collapse
|
2
|
Duseja A, Singh S, De A, Madan K, Rao PN, Shukla A, Choudhuri G, Saigal S, Shalimar, Arora A, Anand AC, Das A, Kumar A, Eapen CE, Devadas K, Shenoy KT, Panigrahi M, Wadhawan M, Rathi M, Kumar M, Choudhary NS, Saraf N, Nath P, Kar S, Alam S, Shah S, Nijhawan S, Acharya SK, Aggarwal V, Saraswat VA, Chawla YK. Indian National Association for Study of the Liver (INASL) Guidance Paper on Nomenclature, Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease (NAFLD). J Clin Exp Hepatol 2023; 13:273-302. [PMID: 36950481 PMCID: PMC10025685 DOI: 10.1016/j.jceh.2022.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 03/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease globally and in India. The already high burden of NAFLD in India is expected to further increase in the future in parallel with the ongoing epidemics of obesity and type 2 diabetes mellitus. Given the high prevalence of NAFLD in the community, it is crucial to identify those at risk of progressive liver disease to streamline referral and guide proper management. Existing guidelines on NAFLD by various international societies fail to capture the entire landscape of NAFLD in India and are often difficult to incorporate in clinical practice due to fundamental differences in sociocultural aspects and health infrastructure available in India. A lot of progress has been made in the field of NAFLD in the 7 years since the initial position paper by the Indian National Association for the Study of Liver on NAFLD in 2015. Further, the ongoing debate on the nomenclature of NAFLD is creating undue confusion among clinical practitioners. The ensuing comprehensive review provides consensus-based, guidance statements on the nomenclature, diagnosis, and treatment of NAFLD that are practically implementable in the Indian setting.
Collapse
Key Words
- AASLD, American Association for the Study of Liver Diseases
- ALD, alcohol-associated liver disease
- ALT, alanine aminotransferase
- APRI, AST-platelet ratio index
- AST, aspartate aminotransferase
- BMI, body mass index
- CAP, controlled attenuation parameter
- CHB, chronic Hepatitis B
- CHC, chronic Hepatitis C
- CK-18, Cytokeratin-18
- CKD, chronic kidney disease
- CRN, Clinical Research Network
- CVD, cardiovascular disease
- DAFLD/DASH, dual etiology fatty liver disease or steatohepatitis
- EBMT, endoscopic bariatric metabolic therapy
- ELF, enhanced liver fibrosis
- FAST, FibroScan-AST
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- FXR, farnesoid X receptor
- GLP-1, glucagon-like peptide-1
- HCC, hepatocellular carcinoma
- INASL, Indian National Association for Study of the Liver
- LAI, liver attenuation index
- LSM, liver stiffness measurement
- MAFLD
- MAFLD, metabolic dysfunction-associated fatty liver disease
- MR-PDFF, magnetic resonance – proton density fat fraction
- MRE, magnetic resonance elastography
- MetS, metabolic syndrome
- NAFL:, nonalcoholic fatty liver
- NAFLD, nonalcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, nonalcoholic steatohepatitis
- NCD, noncommunicable diseases
- NCPF, noncirrhotic portal fibrosis
- NFS, NAFLD fibrosis score
- NHL, non-Hodgkin's lymphoma
- NPCDCS, National Programme for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke
- OCA, obeticholic acid
- PPAR, peroxisome proliferator activated receptor
- PTMS, post-transplant metabolic syndrome
- SAF, steatosis, activity, and fibrosis
- SGLT-2, sodium-glucose cotransporter-2
- SWE, shear wave elastography
- T2DM, DM: type 2 diabetes mellitus
- USG, ultrasound
- VAT, visceral adipose tissue
- VCTE, vibration controlled transient elastography
- fatty liver
- hepatic steatosis
- nonalcoholic steatohepatitis
Collapse
Affiliation(s)
- Ajay Duseja
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - S.P. Singh
- Department of Gastroenterology, SCB Medical College, Cuttack, India
| | - Arka De
- Departmentof Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Madan
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Padaki Nagaraja Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GSMC & KEM Hospital, Mumbai, India
| | - Gourdas Choudhuri
- Department of Gastroenterology and Hepato-Biliary Sciences, Fortis Memorial Research Institute, Gurugram, India
| | - Sanjiv Saigal
- Max Centre for Gastroenterology, Hepatology and Endoscopy, Max Hospitals, Saket, New Delhi, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Arora
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Anil C. Anand
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Ashim Das
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- Institute of Liver, Gastroenterology and Pancreatico-Biliary Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Krishnadas Devadas
- Department of Gastroenterology, Government Medical College, Trivandrum, India
| | | | - Manas Panigrahi
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Manav Wadhawan
- Institute of Liver & Digestive Diseases, BLK Super Speciality Hospital, Delhi, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Neeraj Saraf
- Department of Hepatology, Medanta, The Medicity, Gurugram, India
| | - Preetam Nath
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Sanjib Kar
- Department of Gastroenterology and Hepatology, Gastro Liver Care, Cuttack, India
| | - Seema Alam
- Department of PediatricHepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Samir Shah
- Department of Hepatology, Institute of Liver Disease, HPB Surgery and Transplant, Global Hospitals, Mumbai, India
| | - Sandeep Nijhawan
- Department of Gastroenterology, Sawai Man Singh Medical College, Jaipur, India
| | - Subrat K. Acharya
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Vinayak Aggarwal
- Department of Cardiology, Fortis Memorial Research Institute, Gurugram, India
| | - Vivek A. Saraswat
- Department of Hepatology, Pancreatobiliary Sciences and Liver Transplantation, Mahatma Gandhi University of Medical Sciences and Technology, Jaipur, India
| | - Yogesh K. Chawla
- Department of Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
3
|
Shalimar, Elhence A, Bansal B, Gupta H, Anand A, Singh TP, Goel A. Prevalence of Non-alcoholic Fatty Liver Disease in India: A Systematic Review and Meta-analysis. J Clin Exp Hepatol 2022; 12:818-829. [PMID: 35677499 PMCID: PMC9168741 DOI: 10.1016/j.jceh.2021.11.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) contributes to a large proportion of liver disease burden in the world. Several groups have studied the prevalence of NAFLD in the Indian population. AIM A systematic review of the published literature and meta-analysis was carried out to estimate the prevalence of NAFLD in the Indian population. METHODS English language literature published until April 2021 was searched from electronic databases. Original data published in any form which had reported NAFLD prevalence in the Indian population were included. The subgroup analysis of prevalence was done based on the age (adults or children) and risk category, i.e., average-risk group (community population, participants of control arm, unselected participants, hypothyroidic individuals, athletes, aviation crew, and army personnel) and high-risk group (obesity or overweight, diabetes mellitus, coronary artery disease, etc.). The prevalence estimates were pooled using the random-effects model. Heterogeneity was assessed with I2. RESULTS Sixty-two datasets (children 8 and adults 54) from 50 studies were included. The pooled prevalence of NAFLD was estimated from 2903 children and 23,581 adult participants. Among adults, the estimated pooled prevalence was 38.6% (95% CI 32-45.5). The NAFLD prevalence in average-risk and high-risk subgroups was estimated to be 28.1% (95% CI 20.8-36) and 52.8% (95% CI 46.5-59.1), respectively. The estimated NAFLD prevalence was higher in hospital-based data (40.8% [95% CI 32.6-49.3%]) than community-based data (28.2% [95% CI 16.9-41%]). Among children, the estimated pooled prevalence was 35.4% (95% CI 18.2-54.7). The prevalence among non-obese and obese children was 12.4 (95% CI 4.4-23.5) and 63.4 (95% CI 59.4-67.3), respectively. CONCLUSION Available data suggest that approximately one in three adults or children have NAFLD in India.
Collapse
Key Words
- ALT, Alanine aminotransferase
- AST, Aspartate aminotransferase
- BMI, Body mass index
- CAD, Coronary artery disease
- CI, Confidence interval
- DM, Diabetes mellitus
- GBD, Global burden of disease
- GDM, Gestational diabetes mellitus
- GDP, Gross domestic product
- HC, Healthy control
- IGT, Impaired glucose tolerance
- NAFLD, Non-alcoholic fatty liver disease
- NASH, Non-alcoholic steatohepatitis
- NPCDCS, National Program for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke
- OSA, Obstructive sleep apnea
- PCOS, Polycystic ovarian syndrome
- UT, Union Territories
- diabetes mellitus
- fatty liver
- metabolic syndrome
- obesity
- steatohepatitis
Collapse
Affiliation(s)
- Shalimar
- All India Institute of Medical Sciences, New Delhi, India
| | - Anshuman Elhence
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Bhavik Bansal
- All India Institute of Medical Sciences, New Delhi, India
| | - Hardik Gupta
- All India Institute of Medical Sciences, New Delhi, India
| | - Abhinav Anand
- All India Institute of Medical Sciences, New Delhi, India
| | - Thakur P. Singh
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amit Goel
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
4
|
Ranhulova T. Non-Alcoholic Fatty Liver Disease and Hypothyroidism: Review of Clinical and Experimental Studies. GALICIAN MEDICAL JOURNAL 2021. [DOI: 10.21802/gmj.2021.4.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Hypothyroidism is a widespread condition affecting people of different socio-economic background and geographical location. A lot of studies highlight the effect of hypothyroidism on the metabolic processes in various organs, including the liver. On the other hand, liver damage often results in the development of non-alcoholic fatty liver disease; however, the data on the impact of hypothyroidism on liver morphology, which can serve as a direct indicator and marker of liver condition and function, are limited and controversial. In this report, we reviewed the relationship between non-alcoholic fatty liver disease and hypothyroidism with an accent on morphological alteration of the liver discovered in clinical and experimental studies.
Collapse
|
5
|
TSH Levels as an Independent Risk Factor for NAFLD and Liver Fibrosis in the General Population. J Clin Med 2021; 10:jcm10132907. [PMID: 34209831 PMCID: PMC8267939 DOI: 10.3390/jcm10132907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Thyroid hormones may be a risk factor for the development of non-alcoholic fatty liver disease (NAFLD) and its progression to liver fibrosis. The aim of this study is to investigate the relationship between thyroid stimulating hormone (TSH) levels, NAFLD, and liver fibrosis in the general population. A descriptive cross-sectional study was performed in subjects aged 18–75 years randomly selected from primary care centers between 2012 and 2016. Each subject underwent clinical evaluation, physical examination, blood tests and transient elastography. Descriptive and multivariate logistic regression analyses were used to identify factors associated with NAFLD and fibrosis. We included 2452 subjects (54 ± 12 years; 61% female). Subjects with TSH ≥ 2.5 μIU/mL were significantly associated with obesity, atherogenic dyslipidemia, metabolic syndrome (MetS), hypertransaminasemia and altered cholesterol and triglycerides. The prevalence of NAFLD and liver fibrosis was significantly higher in subjects with TSH ≥ 2.5 (μIU/mL). We found a 1.5 times increased risk of NAFLD, 1.8 and 2.3 times increased risk of liver fibrosis for cut-off points of ≥8.0 kPa and ≥9.2 kPa, respectively, in subjects with TSH ≥ 2.5 μIU/mL compared with TSH < 2.5 μIU/mL (control group), independent of the presence of MetS. These findings remained significant when stratifying TSH, with values ≥ 10 μIU/mL.
Collapse
|