1
|
Sprunger Y, Longo J, Saeidi A, Ionescu AM. Bridging Blood and Skin: Biomarker Profiling in Dermal Interstitial Fluid (dISF) for Minimally Invasive Diagnostics. BIOSENSORS 2025; 15:301. [PMID: 40422040 DOI: 10.3390/bios15050301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Understanding the biochemical relationship between serum and dermal interstitial fluid (dISF) is critical for advancing minimally invasive diagnostics with wearables and point of care devices focusing on most relevant biomarkers accessible in the ISF. This work compares the composition of dISF and serum using Xsensio's microneedle-based collector, which yields an average of 3.4 μL/h. In the first study, total protein content, human serum albumin (HSA), and immunoglobulin G (IgG) are quantified in twelve volunteers. A second study is dedicated to screening 50 inflammation-related protein biomarkers across twenty volunteers. The results demonstrate that dISF closely resembles serum in its major protein constituents but at reduced concentrations (e.g., 57% for total protein). Strong correlations are observed between dISF and serum for CRP and SAA (R2>0.87), primarily driven by a subject with pathological levels, demonstrating the ability of dISF to reflect systemic inflammation. This study originally reports NT-proBNP detection at comparable levels in both fluids, suggesting that dISF could serve as a reliable proxy for blood NT-proBNP in the non-invasive diagnosis of cardiac failure. Cytokine profiling reveals 36 detectable cytokines, including several unique to dISF. Notably, interleukin concentrations are found to be highly similar between the two fluids. These experimental findings support dISF as a promising diagnostic medium for monitoring both localized and systemic biomarkers in clinical applications.
Collapse
Affiliation(s)
- Yann Sprunger
- Xsensio SA, 1015 Lausanne, Switzerland
- Nanoelectronic Devices Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | - Adrian M Ionescu
- Nanoelectronic Devices Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Emmons N, Gibson JM, McDonough MH, Gerson J, Erdal MK, Leung K, Fetter LC, Plaxco KW, Kippin TE. Simultaneous, Seconds-Resolved Doxorubicin Measurements in the Blood and Subcutaneous Interstitial Fluid Identify Quantitative Pharmacokinetic Relationships between the Two. ACS Pharmacol Transl Sci 2025; 8:1347-1358. [PMID: 40370992 PMCID: PMC12070229 DOI: 10.1021/acsptsci.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025]
Abstract
The kinetics with which chemotherapeutics distribute into solid tissues, including their sites of both action and toxicity, remains poorly characterized. This is due to the limited temporal resolution of traditional methods of measuring drug concentrations in the body, all of which employ sample collection (e.g., via a blood draw or microdialysis) followed by benchtop analysis. Here, we have used electrochemical aptamer-based (EAB) sensors to perform simultaneous, 12 s resolution, nanomolar-precision measurements of the chemotherapeutic doxorubicin in the jugular vein (plasma) and subcutaneous space (interstitial fluid) of live rats. The resulting data sets identify predictively strong correlations between its plasma and solid-tissue pharmacokinetics in terms of both cumulative (area under the curve) and maximum exposure. In contrast, the correlations between delivered body-mass-adjusted and body-surface-area-adjusted doses and drug exposure in both the plasma and solid tissue are relatively poor. The latter observation highlights the need for therapeutic drug monitoring, and the former observation shows the potential value of employing subcutaneous EAB sensors as a convenient, minimally invasive, high-precision means of performing such monitoring. The high time density of our two-compartment data sets also provides unprecedented opportunities to model the distribution of a drug from the central compartment to a distal physiological compartment. We find that the preferred description of doxorubicin transport into the solid tissues for five of our six data sets is a three-compartment model composed of the vein (plasma), the interstitial fluid, and an unobserved third compartment distal to the interstitial fluid, with this additional compartment presumably representing intracellular fluid.
Collapse
Affiliation(s)
- Nicole
A. Emmons
- University of
California, Santa
Barbara, California 93106, United States
| | - Jennifer M. Gibson
- University of
California, Santa
Barbara, California 93106, United States
| | | | - Julian Gerson
- University of
California, Santa
Barbara, California 93106, United States
| | - Murat Kaan Erdal
- University of
California, Santa
Barbara, California 93106, United States
| | - Kaylyn Leung
- University of
California, Santa
Barbara, California 93106, United States
| | - Lisa C. Fetter
- University of
California, Santa
Barbara, California 93106, United States
| | - Kevin W. Plaxco
- University of
California, Santa
Barbara, California 93106, United States
| | - Tod E. Kippin
- University of
California, Santa
Barbara, California 93106, United States
| |
Collapse
|
3
|
Schouten WM, Van Bocxlaer K, Rosing H, Huitema ADR, Beijnen JH, Kratz JM, Mowbray CE, Dorlo TPC. Development and validation of ultra-performance liquid chromatography tandem mass spectrometry methods for the quantitative analysis of the antiparasitic drug DNDI-6148 in human plasma and various mouse biomatrices. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1250:124377. [PMID: 39577310 DOI: 10.1016/j.jchromb.2024.124377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024]
Abstract
DNDI-6148 is a promising new oral drug for the treatment of cutaneous leishmaniasis (CL), a parasitic neglected tropical disease that affects impoverished populations worldwide. Preclinical target site pharmacokinetics (PK) studies are necessary to evaluate the actual exposure to DNDI-6148 of Leishmania parasites in the skin. To facilitate these investigations, we have developed and validated a reversed phase ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) method to quantify DNDI-6148 in relevant target site PK samples, adhering to the relevant International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) M10 guideline on bioanalytical method validation. Full validation was performed for the surrogate biomatrices human K2EDTA plasma, enzymatic digestion buffer and skin microdialysate. Partial validation was conducted for mouse K2EDTA plasma and tissues. The tissue samples, including mouse skin, liver and spleen, were homogenized using a collagenase A-based enzymatic homogenization workflow. This method was found to be 2.9-fold more effective in extracting DNDI-6148 from skin than the commonly used mechanical homogenization. Protein precipitation was subsequently carried out for all biomatrices. A surrogate biomatrix was used for each method and the range was specifically developed for its intended application, resulting in a linear concentration range of 5.00-2000 ng/mL, 2.00-1000 ng/mL, and 3.00-600 ng/mL for human K2EDTA plasma, enzymatic digestion buffer and microdialysate, respectively. Each biomatrix had intra- and inter-run accuracy and precision within 15 % for all concentration levels. Matrix effects did not affect the determination of DNDI-6148, since the stable isotopically-labelled internal standard for DNDI-6148 effectively compensated for these matrix effects. Total recovery across all methods was between 73.5 % and 81.3 % (CV ≤4.5 %). DNDI-6148 was stable under various conditions in all the tested biomatrices. However, a decrease in its concentration was observed during homogenization, for which the internal standard corrected adequately. The suitability of the method for use in future preclinical research involving DNDI-6148 was demonstrated in a preclinical target site PK study using a CL-infected murine model.
Collapse
Affiliation(s)
- Wietse M Schouten
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Katrien Van Bocxlaer
- Skin Research Centre, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands; Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jadel M Kratz
- Drugs for Neglected Diseases Initiative Latin America, Rio de Janeiro, Brazil
| | | | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Sanz-Codina M, van Os W, Pham AD, Jorda A, Wölf-Duchek M, Bergmann F, Lackner E, Lier C, van Hasselt JGC, Minichmayr IK, Dorn C, Zeitlinger M, al Jalali V. Target-site cefiderocol pharmacokinetics in soft tissues of healthy volunteers. J Antimicrob Chemother 2024; 79:3281-3288. [PMID: 39373642 PMCID: PMC11638555 DOI: 10.1093/jac/dkae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Cefiderocol may potentially be used to treat skin and soft tissue infections (SSTIs). However, the pharmacokinetics of cefiderocol in human soft tissues have not yet been determined. The objective of the present PK study was to investigate whether target-site concentrations of cefiderocol are sufficiently high for the treatment of SSTIs. METHODS In this pharmacokinetic study, a single intravenous dose of 2 g cefiderocol was administered to eight healthy male volunteers. Drug concentrations were determined in plasma, muscle and subcutis over 8 h. Free plasma concentrations were calculated using the plasma protein binding determined with ultrafiltration. Free tissue concentrations were obtained using microdialysis. Penetration ratios were calculated as AUC0-8h_free_tissue/AUC0-8h_free_plasma. A population pharmacokinetic model was developed, and the probability of target attainment (PTA) was determined using Monte Carlo simulations. RESULTS Cefiderocol showed good tissue penetration, with mean penetration ratios ± standard deviation of 0.99 ± 0.33 and 0.92 ± 0.30 for subcutis and muscle, respectively. Cefiderocol pharmacokinetics in plasma were best described with a two-compartment model, and tissue concentrations were described by scaling the tissue concentrations to concentrations in the peripheral compartment of the plasma model. For a thrice-daily regimen with 2 g doses intravenously infused over 3 h, PTA was ≥90% for MIC values up to 4 mg/L, both based on free plasma and soft tissue pharmacokinetics. CONCLUSIONS This study indicates that a dose of 2 g cefiderocol achieves concentrations in plasma considered sufficient for treating relevant bacterial species. Assuming a comparable PK/PD target for soft tissues, sufficiently high concentrations would also be achieved in soft tissues.
Collapse
Affiliation(s)
- Maria Sanz-Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Wisse van Os
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Anh Duc Pham
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Anselm Jorda
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Wölf-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Felix Bergmann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Edith Lackner
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Constantin Lier
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - J G Coen van Hasselt
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Iris K Minichmayr
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Valentin al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Ravindra Babu M, Vishwas S, Gulati M, Dua K, Kumar Singh S. Harnessing the role of microneedles as sensors: current status and future perspectives. Drug Discov Today 2024; 29:104030. [PMID: 38762087 DOI: 10.1016/j.drudis.2024.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
In recent years, microneedles (MNs) have been transformed to serve a wide range of applications in the biomedical field. Their role as sensors in wearable devices has provided an alternative to blood-based monitoring of health and diagnostic methods. Hence, they have become a topic of research interest for several scientists working in the biomedical field. These MNs as sensors offer the continuous monitoring of biomarkers like glucose, nucleic acids, proteins, polysaccharides and electrolyte ions, which can therefore screen for and diagnose disease conditions in humans. The present review focuses on types of MN sensors and their applications. Various clinical trials and bottlenecks of MN R&D are also discussed.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411 Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia.
| |
Collapse
|
6
|
Pang Y, Li Y, Chen K, Wu M, Zhang J, Sun Y, Xu Y, Wang X, Wang Q, Ning X, Kong D. Porous Microneedles Through Direct Ink Drawing with Nanocomposite Inks for Transdermal Collection of Interstitial Fluid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305838. [PMID: 38258379 DOI: 10.1002/smll.202305838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/19/2023] [Indexed: 01/24/2024]
Abstract
Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.
Collapse
Affiliation(s)
- Yushuang Pang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yanyan Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Kerong Chen
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Ming Wu
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaxue Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Yurui Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Xiaoliang Wang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qian Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| | - Xinghai Ning
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Hu Y, Chatzilakou E, Pan Z, Traverso G, Yetisen AK. Microneedle Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306560. [PMID: 38225744 PMCID: PMC10966570 DOI: 10.1002/advs.202306560] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Eleni Chatzilakou
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zhisheng Pan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Giovanni Traverso
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
8
|
Wijnant GJ, Moulik S, Chatterjee K, Das NK, de la Flor R, Van Bocxlaer K, Croft SL, Chatterjee M. Dermal microdialysis: A method to determine drug levels in the skin of patients with Post kala-azar dermal leishmaniasis (PKDL). Exp Parasitol 2024; 257:108687. [PMID: 38114040 DOI: 10.1016/j.exppara.2023.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Post-kala-azar-dermal leishmaniasis (PKDL) is an infectious skin disease that occurs as sequela of visceral leishmaniasis (VL) and causes cutaneous lesions on the face and other exposed body parts. While the first-line drug miltefosine is typically used for 28 days to treat VL, 12 weeks of therapy is required for PKDL, highlighting the need to evaluate the extent of drug penetration at the dermal site of infection. In this proof-of-concept study, we demonstrate the use of a minimally invasive sampling technique called microdialysis to measure dermal drug exposure in a PKDL patient, providing a tool for the optimization of treatment regimens. METHODS AND MATERIALS One PKDL patient receiving treatment with miltefosine (50 mg twice daily for 12 weeks) was recruited to this proof-of-concept study and consented to undergo dermal microdialysis. Briefly, a μDialysis Linear Catheter 66 for skin and muscle, a probe with a semi-permeable membrane, was inserted in the dermis. A perfusate (a drug-free physiological solution) was pumped through the probe at a low flow rate, allowing miltefosine present in the dermis to cross the membrane and be collected in the dialysates over time. Protein-free (dialysates) and total (blood and skin biopsies) drug concentrations were analysed using LC-MS/MS. RESULTS and conclusions: Using microdialysis, protein-free miltefosine drug concentrations could be detected in the infected dermis over time (Cmax ≈ 450 ng/ml). This clinical proof-of-concept study thus illustrates the potential of dermal microdialysis as a minimally invasive alternative to invasive skin biopsies to quantify drug concentrations directly at the pharmacological site of action in PKDL.
Collapse
Affiliation(s)
- Gert-Jan Wijnant
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Srija Moulik
- Dept. of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | | | - Nilay K Das
- Dept. of Dermatology, Bankura Sammilani Medical College, Bankura, India
| | - Raúl de la Flor
- Pharmidex Pharmaceutical Services Ltd, London, United Kingdom
| | - Katrien Van Bocxlaer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Dept. of Biology, York Biomedical Research Institute, University of York, York, United Kingdom.
| | - Simon L Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Mitali Chatterjee
- Dept. of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| |
Collapse
|
9
|
Li H, Li J, Xu J, Li L, Wang Y, Liu C, Zhou J. Advances in dermatological application of GelMA hydrogel microneedles. Skin Res Technol 2023; 29:e13327. [PMID: 37113084 PMCID: PMC10234172 DOI: 10.1111/srt.13327] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Compared with systemic administration methods like injection and oral administration, traditional transdermal drug delivery has the advantages of rapid onset of activity and low side effects. However, hydrophilic drugs and bioactive substances are often unsuitable for traditional transdermal drug delivery. METHODS The application of microneedles made from gelatin methylacryloyl (GelMA) has greatly expanded thepossibilities for skin transdermal drug delivery. We have reviewed the latest literatures about the dermatological application of GelMA hydrogel microneedles in recent years using Google Scholar, PubMed and Springer. RESULTS GelMA hydrogel microneedles exhibit huge potency in the diagnosis and treatment of skin diseases, and this technology also brings broad application prospects for subcutaneous micro-invasive transdermal targeted drug delivery, which mainly used in skin tissue fluid collection, local substance delivery and wound healing. CONCLUSION With in-depth research on GelMA hydrogel, this technology will bring more breakthroughs and developments in the clinical diagnosis and treatment of skin diseases.
Collapse
Affiliation(s)
- Hongyang Li
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIsInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jiayi Li
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Jingjing Xu
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
- School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lingjun Li
- Pharmacal Research LaboratoryInstitute of DermatologyChinese Academy of Medical Sciences and Peking Union Medical CollegeNanjingChina
| | - Yurong Wang
- School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Chunhui Liu
- Physics and Chemistry Test Center of Jiangsu ProvinceNanjingChina
| | - Jia Zhou
- School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
10
|
Himawan A, Vora LK, Permana AD, Sudir S, Nurdin AR, Nislawati R, Hasyim R, Scott CJ, Donnelly RF. Where Microneedle Meets Biomarkers: Futuristic Application for Diagnosing and Monitoring Localized External Organ Diseases. Adv Healthc Mater 2023; 12:e2202066. [PMID: 36414019 PMCID: PMC11468661 DOI: 10.1002/adhm.202202066] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Indexed: 11/24/2022]
Abstract
Extracellular tissue fluids are interesting biomatrices that have recently attracted scientists' interest. Many significant biomarkers for localized external organ diseases have been isolated from this biofluid. In the diagnostic and disease monitoring context, measuring biochemical entities from the fluids surrounding the diseased tissues may give more important clinical value than measuring them at a systemic level. Despite all these facts, pushing tissue fluid-based diagnosis and monitoring forward to clinical settings faces one major problem: its accessibility. Most extracellular tissue fluid, such as interstitial fluid (ISF), is abundant but hard to collect, and the currently available technologies are invasive and expensive. This is where novel microneedle technology can help tackle this significant obstacle. The ability of microneedle technology to minimally invasively access tissue fluid-containing biomarkers will enable ISF and other tissue fluid utilization in the clinical diagnosis and monitoring of localized diseases. This review attempts to present the current pursuit of the application of microneedle systems as a diagnostic and monitoring platform, along with the recent progress of biomarker detection in diagnosing and monitoring localized external organ diseases. Then, the potential use of various microneedles in future clinical diagnostics and monitoring of localized diseases is discussed by presenting the currently studied cases.
Collapse
Affiliation(s)
- Achmad Himawan
- School of PharmacyQueen's University BelfastBelfastBT97BLUK
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | | | - Andi Dian Permana
- Department of Pharmaceutical Science and TechnologyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Sumarheni Sudir
- Department of PharmacyFaculty of PharmacyHasanuddin UniversityMakassar90245Indonesia
| | - Airin R. Nurdin
- Department of Dermatology and VenereologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
| | - Ririn Nislawati
- Hasanuddin University HospitalHasanuddin UniversityMakassar90245Indonesia
- Department of OphthalmologyFaculty of MedicineHasanuddin UniversityMakassar90245Indonesia
| | - Rafikah Hasyim
- Department of Oral BiologyFaculty of DentistryHasanuddin UniversityMakassar90245Indonesia
| | - Christopher J. Scott
- Patrick G Johnson Centre for Cancer ResearchQueen's University BelfastBelfastBT97BLUK
| | | |
Collapse
|
11
|
Xu N, Zhang M, Xu W, Ling G, Yu J, Zhang P. Swellable PVA/PVP hydrogel microneedle patches for the extraction of interstitial skin fluid toward minimally invasive monitoring of blood glucose level. Analyst 2022; 147:1478-1491. [PMID: 35285841 DOI: 10.1039/d1an02288a] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Interstitial skin fluid (ISF) is an emerging alternative source of blood samples that has attracted great interest from researchers. It is a very promising way to use microneedle patches for extracting ISF. However, the recovery of ISF still faces great challenges, such as long extraction time and low extraction volume, which may affect the analysis of biomarkers. Traditional centrifugation methods cannot completely recover ISF, which leads to inaccuracy in ISF detection. In this paper, the prepared polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) microneedle patches had the ability to insert into the skin in a dry state; at the same time, the microneedle patches had good swelling properties and could extract ISF in a short time without any additional devices. Due to the thermal degradation of PVA, the way of gentle heating was used to recover ISF, which could greatly improve the accuracy of detection. By comparing the D-glucose content assay kit with the blood glucose concentration of rats detected using a commercial glucometer, the detection accuracy of the microneedle patches was verified. The microneedle patches can be used to sample ISF and analyze the level of biomarkers in ISF, and are expected to provide a basis for the prevention and diagnosis of clinical diseases in the future.
Collapse
Affiliation(s)
- Na Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Manyue Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Wenxin Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
12
|
Sun Q, Purvis CG, Iqbal SN, Emmerich VK, Feldman SR, Maibach H. Percutaneous egression: What do we know? Skin Pharmacol Physiol 2022; 35:187-195. [PMID: 35325893 DOI: 10.1159/000523795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The process by which drugs leave the bloodstream to enter the skin compartments is important in determining appropriate routes of delivery and developing more efficacious medications. We conducted a general literature review on percutaneous egression mechanisms. SUMMARY Studies demonstrate that the stratum corneum (SC) is a compartment for systemically delivered drugs. Upon reviewing the available literature, it became apparent that there may be multiple mechanisms of percutaneous egression dependent upon drug physiochemical properties. These mechanisms include, but are not limited to, desquamation, sebum secretion, sweat transport and passive diffusion. While drugs often utilize one major pathway, it is possible that all mechanisms may play a role to varying extents. KEY MESSAGES Available literature suggests that hydrophilic substances tended to travel from blood to the upper layers of the skin via sweat, whereas lipophilic substances utilized sebum secretion to reach the SC. Upon reaching the skin surface, the drugs spread laterally before penetrating back into the skin as if they were topically administered. More data are warranted to identify additional percutaneous egression mechanisms, precise drug action sites and accelerate drug development.
Collapse
Affiliation(s)
- Qisi Sun
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Internal Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin G Purvis
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sahir N Iqbal
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Veronica K Emmerich
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Steven R Feldman
- Center for Dermatology Research, Department of Dermatology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Department of Dermatology, University of Southern Denmark, Odense, Denmark
| | - Howard Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
13
|
Samant PP, Niedzwiecki MM, Raviele N, Tran V, Mena-Lapaix J, Walker DI, Felner EI, Jones DP, Miller GW, Prausnitz MR. Sampling interstitial fluid from human skin using a microneedle patch. Sci Transl Med 2020; 12:eaaw0285. [PMID: 33239384 PMCID: PMC7871333 DOI: 10.1126/scitranslmed.aaw0285] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/14/2019] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Tissue interstitial fluid (ISF) surrounds cells and is an underutilized source of biomarkers that complements conventional sources such as blood and urine. However, ISF has received limited attention due largely to lack of simple collection methods. Here, we developed a minimally invasive, microneedle-based method to sample ISF from human skin that was well tolerated by participants. Using a microneedle patch to create an array of micropores in skin coupled with mild suction, we sampled ISF from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in ISF when compared to companion plasma samples based on mass spectrometry analysis. Many biomarkers used in research and current clinical practice were common to ISF and plasma. Because ISF does not clot, these biomarkers could be continuously monitored in ISF similar to current continuous glucose monitors but without requiring an indwelling subcutaneous sensor. Biomarkers distinct to ISF included molecules associated with systemic and dermatological physiology, as well as exogenous compounds from environmental exposures. We also determined that pharmacokinetics of caffeine in healthy adults and pharmacodynamics of glucose in children and young adults with diabetes were similar in ISF and plasma. Overall, these studies provide a minimally invasive method to sample dermal ISF using microneedles and demonstrate human ISF as a source of biomarkers that may enable research and translation for future clinical applications.
Collapse
Affiliation(s)
- Pradnya P Samant
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Megan M Niedzwiecki
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Raviele
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vilinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Juan Mena-Lapaix
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Douglas I Walker
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eric I Felner
- Department of Pediatrics, Division of Endocrinology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health Science, Columbia University, New York, NY 10032, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
14
|
Zhu J, Zhou X, Kim HJ, Qu M, Jiang X, Lee K, Ren L, Wu Q, Wang C, Zhu X, Tebon P, Zhang S, Lee J, Ashammakhi N, Ahadian S, Dokmeci MR, Gu Z, Sun W, Khademhosseini A. Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905910. [PMID: 32101371 PMCID: PMC7182487 DOI: 10.1002/smll.201905910] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/23/2020] [Indexed: 05/18/2023]
Abstract
The extraction of interstitial fluid (ISF) from skin using microneedles (MNs) has attracted growing interest in recent years due to its potential for minimally invasive diagnostics and biosensors. ISF collection by absorption into a hydrogel MN patch is a promising way that requires the materials to have outstanding swelling ability. Here, a gelatin methacryloyl (GelMA) patch is developed with an 11 × 11 array of MNs for minimally invasive sampling of ISF. The properties of the patch can be tuned by altering the concentration of the GelMA prepolymer and the crosslinking time; patches are created with swelling ratios between 293% and 423% and compressive moduli between 3.34 MPa and 7.23 MPa. The optimized GelMA MN patch demonstrates efficient extraction of ISF. Furthermore, it efficiently and quantitatively detects glucose and vancomycin in ISF in an in vivo study. This minimally invasive approach of extracting ISF with a GelMA MN patch has the potential to complement blood sampling for the monitoring of target molecules from patients.
Collapse
Affiliation(s)
- Jixiang Zhu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Xingwu Zhou
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Han-Jun Kim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Moyuan Qu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xing Jiang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - KangJu Lee
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Li Ren
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qingzhi Wu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Canran Wang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xunmin Zhu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Peyton Tebon
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mehmet Remzi Dokmeci
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhen Gu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA90095, USA
| | - Wujin Sun
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA90095, USA
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA90095, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143701, Republic of Korea
| |
Collapse
|
15
|
Kolluru C, Gupta R, Jiang Q, Williams M, Gholami Derami H, Cao S, Noel RK, Singamaneni S, Prausnitz MR. Plasmonic Paper Microneedle Patch for On-Patch Detection of Molecules in Dermal Interstitial Fluid. ACS Sens 2019; 4:1569-1576. [PMID: 31070358 DOI: 10.1021/acssensors.9b00258] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Minimally invasive devices to detect molecules in dermal interstitial fluid (ISF) are desirable for point-of-care diagnostic and monitoring applications. In this study, we developed a microneedle (MN) patch that collects ISF for on-patch biomarker analysis by surface-enhanced Raman scattering (SERS). The micrometer-scale MNs create micropores in the skin surface, through which microliter quantities of ISF are collected onto plasmonic paper on the patch backing. The plasmonic paper was prepared by immobilizing poly(styrenesulfonate) (PSS) coated gold nanorods (AuNRs) on a thin strip of filter paper using plasmonic calligraphy. Negatively charged PSS was used to bind positively charged rhodamine 6G (R6G), which served as a model compound, and thereby localize R6G on AuNR surface. R6G bound on the AuNR surface was detected and quantified by acquiring SERS spectra from the plasmonic paper MN patch. This approach was used to measure pharmacokinetic profiles of R6G in ISF and serum from rats in vivo. This proof-of-concept study indicates that a plasmonic paper MN patch has the potential to enable on-patch measurement of molecules in ISF for research and future medical applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Rohit Gupta
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Qisheng Jiang
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Hamed Gholami Derami
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Sisi Cao
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Richard K. Noel
- Physiological Research Laboratory, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Srikanth Singamaneni
- Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Huq M, Tascon M, Nazdrajic E, Roszkowska A, Pawliszyn J. Measurement of Free Drug Concentration from Biological Tissue by Solid-Phase Microextraction: In Silico and Experimental Study. Anal Chem 2019; 91:7719-7728. [DOI: 10.1021/acs.analchem.9b00983] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohammad Huq
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajic
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
17
|
Kolluru C, Williams M, Yeh JS, Noel RK, Knaack J, Prausnitz MR. Monitoring drug pharmacokinetics and immunologic biomarkers in dermal interstitial fluid using a microneedle patch. Biomed Microdevices 2019; 21:14. [PMID: 30725230 PMCID: PMC6533066 DOI: 10.1007/s10544-019-0363-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minimally invasive point-of-care diagnostic devices are of great interest for rapid detection of biomarkers in diverse settings. Although blood is the most common source of biomarkers, interstitial fluid (ISF) is an alternate body fluid that does not clot or contain red blood cells that often complicate analysis. However, ISF is difficult to collect. In this study, we assessed the utility of a microneedle patch to sample microliter volumes of ISF in a simple and minimally invasive manner. We demonstrated the use of ISF collected in this way for therapeutic drug monitoring by showing similar vancomycin pharmacokinetic profiles in ISF and serum from rats. We also measured polio-specific neutralizing antibodies and anti-polio IgG in ISF similar to serum in rats immunized with polio vaccine. These studies demonstrate the potential utility of ISF collected by microneedle patch in therapeutic drug monitoring and immunodiagnostic applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jihee Stephanie Yeh
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Richard K Noel
- Physiological Research Laboratory, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Jennifer Knaack
- School of Pharmaceutical Sciences, Mercer University, Atlanta, GA, 30341, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
18
|
Kirbs C, Kluwe F, Drescher F, Lackner E, Matzneller P, Weiss J, Zeitlinger M, Kloft C. High voriconazole target-site exposure after approved sequence dosing due to nonlinear pharmacokinetics assessed by long-term microdialysis. Eur J Pharm Sci 2019; 131:218-229. [PMID: 30731238 DOI: 10.1016/j.ejps.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/20/2018] [Accepted: 02/03/2019] [Indexed: 01/18/2023]
Abstract
Voriconazole, a broad-spectrum antifungal drug used to prevent and treat invasive fungal infections, shows complex pharmacokinetics and is primarily metabolised by various CYP enzymes. An adequate unbound antibiotic concentration-time profile at the target-site of an infection is crucial for effective prophylaxis or therapy success. Therefore, the aim was to evaluate the pharmacokinetics of voriconazole after the approved sequence dosing in healthy volunteers in interstitial space fluid, assessed by microdialysis, and in plasma. Moreover, potential pharmacogenetic influences of CYP2C19 polymorphisms on pharmacokinetics were investigated. The prospective, open-labelled, uncontrolled long-term microdialysis study included 9 healthy male individuals receiving the approved sequence dosing regimen for voriconazole. Unbound voriconazole concentrations were sampled over 84 h in interstitial space fluid of subcutaneous adipose tissue and in plasma and subsequently quantified via high-performance liquid chromatography. For pharmacokinetic data analysis, non-compartmental analysis was used. High interindividual variability in voriconazole concentration-time profiles was detected although dosing was adapted to body weight for the first intravenous administrations. Due to nonlinear pharmacokinetics, target-site exposure of voriconazole in healthy volunteers was found to be highly comparable to plasma exposure, particularly after multiple dosing. Regarding the CYP2C19 genotype-predicted phenotype, the individuals revealed a broad spectrum, ranging from poor to rapid metaboliser status. A strong relation between CYP2C19 genotype-predicted phenotype and voriconazole clearance was identified.
Collapse
Affiliation(s)
- Claudia Kirbs
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Department of Clinical Pharmacy, Institute of Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany.
| | - Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Graduate Research Training Program PharMetrX, Germany.
| | - Franziska Drescher
- Department of Clinical Pharmacy, Institute of Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany
| | - Edith Lackner
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Peter Matzneller
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Department of Clinical Pharmacy, Institute of Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
19
|
Kolluru C, Williams M, Chae J, Prausnitz MR. Recruitment and Collection of Dermal Interstitial Fluid Using a Microneedle Patch. Adv Healthc Mater 2019; 8:e1801262. [PMID: 30609270 DOI: 10.1002/adhm.201801262] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Indexed: 12/16/2022]
Abstract
Interstitial fluid (ISF) that surrounds cells in tissues of the body is a novel source of biomarker that complements conventional sources like blood, urine, and saliva. To overcome difficulties in harvesting ISF, a minimally invasive, rapid, simple-to-use, cost-effective method is developed to collect ISF from the skin involving a microneedle (MN) patch. By pressing 650 µm long MNs at an angle just below the skin surface, blood-free ISF flows through micropores to the skin surface and is absorbed into a thin strip of paper on the MN patch backing for subsequent analysis. An optimized method in rat skin in vivo is well tolerated and able to collect >2 µL of ISF within 1 min. Brief skin pretreatment with MNs followed by a 5 min delay dramatically increases subsequent ISF collection by a mechanism believed to involve increased skin hydration. ISF collection using an MN patch has the potential to simplify access to biomarkers in ISF for research and future medical diagnostic and monitoring applications.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 311 Ferst Drive Atlanta GA 30332 USA
| | - Mikayla Williams
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 311 Ferst Drive Atlanta GA 30332 USA
| | - Jeremy Chae
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 311 Ferst Drive Atlanta GA 30332 USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 311 Ferst Drive Atlanta GA 30332 USA
| |
Collapse
|
20
|
Yu Y, Chandasana H, Sangari T, Seubert C, Derendorf H. Simultaneous Retrodialysis by Calibrator for Rapid In Vivo Recovery Determination in Target Site Microdialysis. J Pharm Sci 2018; 107:2259-2265. [DOI: 10.1016/j.xphs.2018.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023]
|
21
|
Cefazolin tissue concentrations with a prophylactic dose administered before sleeve gastrectomy in obese patients: a single centre study in 116 patients. Br J Anaesth 2017; 120:1202-1208. [PMID: 29793587 DOI: 10.1016/j.bja.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND In obese patients undergoing sleeve gastrectomy, the blood and fatty-tissue concentrations of cefazolin required for adequate antibiotic prophylaxis are uncertain. METHODS This was a single centre prospective study in obese (Group A: 40≤ BMI ≤50 kg m-2) and severely obese (Group B: 50< BMI ≤65 kg m-2) patients undergoing bariatric surgery. Blood and fatty-tissue samples were collected after a cefazolin 4 g i.v. injection. The primary aim was to compare cefazolin concentrations in subcutaneous fatty tissue with a targeted tissue concentration of 4 μg g-1 according to Staphylococcus aureus resistance breakpoint. RESULTS One hundred and sixteen patients were included: 79 in Group A and 37 in Group B. At the beginning of the surgery, cefazolin concentration in subcutaneous fatty tissue was 12.2 (5.4) μg g-1 in Group A and 12 (6.1) μg g-1 in Group B (P=0.7). At the end, cefazolin concentrations in subcutaneous fatty tissue were 9.0 (4.9) and 7.8 (4.2) μg g-1 in Groups A and B, respectively (P=0.2). The plasma concentration of free cefazolin during surgery was higher in Group A than in Group B (P<0.0001). Fatty-tissue concentrations of 95% and 83% patients in Groups A and B, respectively, were above S. aureus resistance breakpoint. CONCLUSIONS After a 4 g dose, the concentrations of cefazolin in fatty tissue were above the 4 μg g-1 tissue concentration target, providing adequate antibiotic tissue concentrations during bariatric surgery. As cefazolin concentration in fatty tissue is a surrogate endpoint, the results should be considered in conjunction with the results on free cefazolin concentrations in subcutaneous tissue. CLINICAL TRIAL REGISTRATION NCT01537380.
Collapse
|
22
|
Gritsenko D, Fedorenko M, Ruhe JJ, Altshuler J. Combination Therapy With Vancomycin and Ceftaroline for Refractory Methicillin-resistant Staphylococcus aureus Bacteremia: A Case Series. Clin Ther 2017; 39:212-218. [PMID: 28038791 DOI: 10.1016/j.clinthera.2016.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Although vancomycin has been the mainstay of therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections, its effectiveness has been challenged. Combination therapy may be used for patients with persistent MRSA bacteremia refractory to initial therapy. Studies have reported in vitro synergy between vancomycin and ceftaroline; however, clinical experience with this therapy is limited. Here, we report our experience with 5 cases of vancomycin-refractory MRSA bacteremia treated with the combination of vancomycin and ceftaroline. METHODS Between January 2014 and August 2016, 5 patients were identified who received vancomycin and ceftaroline combination therapy due to persistent bacteremia or deterioration of their clinical status on vancomycin alone (despite a vancomycin MIC within the susceptible range). FINDINGS Five patients presented with MRSA bacteremia secondary to endocarditis (n = 2), epidural abscess (n = 2), or left iliopsoas abscess (n = 1). Four of the 5 patients experienced microbiologic cure, and 1 patient transitioned to palliative care. IMPLICATIONS This case series serves to describe additional clinical experience with vancomycin and ceftaroline combination therapy. This combination may be considered when vancomycin monotherapy does not lead to microbiological and/or clinical improvement in patients with metastatic MRSA bacteremia. Additional studies are warranted to further define its role in salvage therapy for persistent MRSA bacteremia.
Collapse
Affiliation(s)
- Diana Gritsenko
- Department of Pharmacy, Mount Sinai Beth Israel, New York, New York; Touro College of Pharmacy, New York, New York.
| | | | - Jorg J Ruhe
- Division of Infectious Diseases, Department of Medicine, Mount Sinai Beth Israel, New York, New York; Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jerry Altshuler
- Department of Pharmacy, Mount Sinai Beth Israel, New York, New York
| |
Collapse
|
23
|
Deitchman AN, Heinrichs MT, Khaowroongrueng V, Jadhav SB, Derendorf H. Utility of Microdialysis in Infectious Disease Drug Development and Dose Optimization. AAPS JOURNAL 2016; 19:334-342. [PMID: 27943149 DOI: 10.1208/s12248-016-0020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023]
Abstract
Adequate drug penetration to a site of infection is absolutely imperative to ensure sufficient antimicrobial treatment. Microdialysis is a minimally invasive, versatile technique, which can be used to study the penetration of an antiinfective agent in virtually any tissue of interest. It has been used to investigate drug distribution and pharmacokinetics in variable patient populations, as a tool in dose optimization, a potential utility in therapeutic drug management, and in the study of biomarkers of disease progression. While all of these applications have not been fully explored in the field of antiinfectives, this review provides an overview of how microdialysis has been applied in various phases of drug development, a focus on the specific applications in the subspecialties of infectious disease (treatment of bacterial, fungal, viral, parasitic, and mycobacterial infections), and developing applications (biomarkers and therapeutic drug management).
Collapse
Affiliation(s)
- Amelia N Deitchman
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - M Tobias Heinrichs
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Vipada Khaowroongrueng
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Satyawan B Jadhav
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA.
| |
Collapse
|
24
|
Marchand S, Chauzy A, Dahyot-Fizelier C, Couet W. Microdialysis as a way to measure antibiotics concentration in tissues. Pharmacol Res 2016; 111:201-207. [DOI: 10.1016/j.phrs.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
|
25
|
Erdő F, Hashimoto N, Karvaly G, Nakamichi N, Kato Y. Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review. J Control Release 2016; 233:147-61. [DOI: 10.1016/j.jconrel.2016.05.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
|
26
|
Ray A, Malin D, Nicolau DP, Wiskirchen DE. Antibiotic Tissue Penetration in Diabetic Foot Infections A Review of the Microdialysis Literature and Needs for Future Research. J Am Podiatr Med Assoc 2015; 105:520-31. [PMID: 26667505 DOI: 10.7547/14-036.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although many antimicrobial agents display good in vitro activity against the pathogens frequently implicated in diabetic foot infections, effective treatment can be complicated by reduced tissue penetration in this population secondary to peripheral arterial disease and emerging antimicrobial resistance, which can result in clinical failure. Improved characterization of antibiotic tissue pharmacokinetics and penetration ratios in diabetic foot infections is needed. Microdialysis offers advantages over the skin blister and tissue homogenate studies historically used to define antibiotic penetration in skin and soft-tissue infections by defining antibiotic penetration into the interstitial fluid over the entire concentration versus time profile. However, only a select number of agents currently recommended for treating diabetic foot infections have been evaluated using these methods, which are described herein. Better characterization of the tissue penetration of antibiotic agents is needed for the development of methods for maximizing the pharmacodynamic profile of these agents to ultimately improve treatment outcomes for patients with diabetic foot infections.
Collapse
Affiliation(s)
- Amanda Ray
- Section of Podiatric Surgery, Department of Surgery, Saint Francis Hospital and Medical Center, Hartford, CT
| | - Danielle Malin
- Section of Podiatric Surgery, Department of Surgery, Saint Francis Hospital and Medical Center, Hartford, CT
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT
| | - Dora E. Wiskirchen
- Department of Pharmacy Practice and Administration, School of Pharmacy, University of Saint Joseph, Hartford, CT
- Department of Pharmacy, Saint Francis Hospital and Medical Center, Hartford, CT
| |
Collapse
|
27
|
Sørensen O, Andersen AM, Kristian A, Giercksky KE, Flatmark K. Impact of hyperthermia on pharmacokinetics of intraperitoneal mitomycin C in rats investigated by microdialysis. J Surg Oncol 2013; 109:521-6. [PMID: 24347444 DOI: 10.1002/jso.23527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/18/2013] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Patients with peritoneal surface malignancies are treated with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy, commonly using mitomycin C (MMC). The purpose of this study was to investigate impact of hyperthermia on pharmacokinetics of intraperitoneal MMC. METHODS In 14 athymic nude male rats, microdialysis (MD) probes were implanted in jugular vein (V), hind leg muscle (M) and extraperitoneal space (XP). Probes were calibrated by retrodialysis. Intraperitonal chemotherapy perfusion (IPEC) was administered over 90 min with MMC 5 mg/kg and saline 0.9% 500 ml/kg at 35 and 41°C, defining the normothermic (NG) and hyperthermic groups (HG), respectively. MD and peritoneal perfusion fluid (PPF) samples were collected at 10 min intervals to determine MMC concentration. RESULTS Time-concentration curves were virtually parallel between temperature groups, with equal peak concentrations (µM) of 0.3 (V), 0.7 (XP) and 0.3 (M). The following area under time-concentration curve (AUC) ratios were calculated: AUC PPF/AUC V were 69 in NG and 79 in HG (P = 0.54); AUC XP/AUC V were 2.7 in NG and 2.6 in HG (P = 0.90). CONCLUSIONS IPEC provides high intraperitoneal MMC concentration and increased bioavailability in extraperitoneal tissue, combined with low systemic absorption. Hyperthermia at 41°C did not modify MMC pharmacokinetics.
Collapse
Affiliation(s)
- Olaf Sørensen
- Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
28
|
Brill MJE, Houwink API, Schmidt S, Van Dongen EPA, Hazebroek EJ, van Ramshorst B, Deneer VH, Mouton JW, Knibbe CAJ. Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis. J Antimicrob Chemother 2013; 69:715-23. [DOI: 10.1093/jac/dkt444] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Melgaard L, Hersini KJ, Gazerani P, Petersen LJ. Retrodialysis: a review of experimental and clinical applications of reverse microdialysis in the skin. Skin Pharmacol Physiol 2013; 26:160-74. [PMID: 23751503 DOI: 10.1159/000351341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/11/2013] [Indexed: 12/15/2022]
Abstract
Microdialysis is a method that has been used for decades to recover endogenous mediators, metabolites and drugs from the interstitial space in several tissues of both animals and humans. The principle of microdialysis is the flux of compounds across a semipermeable membrane. The application of microdialysis as a method of drug delivery is a process referred to as retrodialysis, i.e. the introduction of a substance into the extracellular space via a microdialysis probe. Thus, microdialysis also offers opportunities to deliver mediators and drugs to target tissues by adding solutes to the perfusion medium. In this context, retrodialysis combines a method for minimally invasive delivery with a sampling method to study biological processes in health and disease. The aim of this review is to give insight into the use of retrodialysis by outlining examples of retrodialysis studies focusing on applications in skin in animal studies, human experimental investigations and clinical settings.
Collapse
Affiliation(s)
- L Melgaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | | | |
Collapse
|
30
|
|
31
|
Noninvasive determination of 2-[18F]-fluoroisonicotinic acid hydrazide pharmacokinetics by positron emission tomography in Mycobacterium tuberculosis-infected mice. Antimicrob Agents Chemother 2012; 56:6284-90. [PMID: 23006755 DOI: 10.1128/aac.01644-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis (TB) is a global pandemic requiring sustained therapy to facilitate curing and to prevent the emergence of drug resistance. There are few adequate tools to evaluate drug dynamics within infected tissues in vivo. In this report, we evaluated a fluorinated analog of isoniazid (INH), 2-[(18)F]fluoroisonicotinic acid hydrazide (2-[(18)F]-INH), as a probe for imaging Mycobacterium tuberculosis-infected mice by dynamic positron emission tomography (PET). We developed a tail vein catheter system to safely deliver drugs to M. tuberculosis aerosol-infected mice inside sealed biocontainment devices. Imaging was rapid and noninvasive, and it could simultaneously visualize multiple tissues. Dynamic PET imaging demonstrated that 2-[(18)F]-INH was extensively distributed and rapidly accumulated at the sites of infection, including necrotic pulmonary TB lesions. Compared to uninfected animals, M. tuberculosis-infected mice had a significantly higher PET signal within the lungs (P < 0.05) despite similar PET activity in the liver (P > 0.85), suggesting that 2-[(18)F]-INH accumulated at the site of the pulmonary infection. Furthermore, our data indicated that similar to INH, 2-[(18)F]-INH required specific activation and accumulated within the bacterium. Pathogen-specific metabolism makes positron-emitting INH analogs attractive candidates for development into imaging probes with the potential to both detect bacteria and yield pharmacokinetic data in situ. Since PET imaging is currently used clinically, this approach could be translated from preclinical studies to use in humans.
Collapse
|
32
|
Folkesson KT, Samuelsson A, Tesselaar E, Dahlström B, Sjöberg F. A human vascular model based on microdialysis for the assessment of the vasoconstrictive dose-response effects of norepinephrine and vasopressin in skin. Microcirculation 2012; 19:352-9. [PMID: 22332827 DOI: 10.1111/j.1549-8719.2012.00170.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Microdialysis enables drug delivery in the skin and simultaneous measurement of their effects. The present study aimed to evaluate dose-dependent changes in blood flow and metabolism during microdialysis of norepinephrine and vasopressin. METHODS We investigated whether increasing concentrations of norepinephrine (NE, 1.8-59 μmol/L) and vasopressin (VP, 1-100 nmol/L), delivered sequentially in one catheter or simultaneously through four catheters, yield dose-dependent changes in blood flow (as measured using urea clearance) and metabolism (glucose and lactate). RESULTS We found a significant dose-dependent vasoconstriction with both drugs. Responses were characterized by a sigmoid dose response model. Urea in the dialysate increased from a baseline of 7.9 ± 1.7 to 10.9 ± 0.9 mmol/L for the highest concentration of NE (p < 0.001) and from 8.1 ± 1.4 to 10.0 ± 1.7 mmol/L for the highest concentration of VP (p = 0.037). Glucose decreased from 2.3 ± 0.7 to 0.41 ± 0.18 mmol/L for NE (p = 0.001) and from 2.7 ± 0.6 to 1.3 ± 0.5 mmol/L for VP (p < 0.001). Lactate increased from 1.1 ± 0.4 to 2.6 ± 0.5 mmol/L for NE (p = 0.005) and from 1.1 ± 0.4 to 2.6 ± 0.5 mmol/L for VP (p = 0.008). There were no significant differences between responses from a single catheter and from those obtained simultaneously using multiple catheters. CONCLUSIONS Microdialysis in the skin, either with a single catheter or using multiple catheters, offers a useful tool for studying dose response effects of vasoactive drugs on local blood flow and metabolism without inducing any systemic effects.
Collapse
Affiliation(s)
- Kim Tchou Folkesson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | | | | | |
Collapse
|
33
|
Stein GE, Smith CL, Missavage A, Saunders JP, Nicolau DP, Battjes SM, Kepros JP. Tigecycline Penetration into Skin and Soft Tissue. Surg Infect (Larchmt) 2011; 12:465-7. [DOI: 10.1089/sur.2011.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gary E. Stein
- Department of Medicine, Michigan State University, East Lansing, Michigan
| | | | - Anne Missavage
- Department of Surgery, Sparrow Hospital, Lansing, Michigan
| | | | - David P. Nicolau
- Department of Infectious Diseases, Hartford Hospital, Hartford, Connecticut
| | | | - John P. Kepros
- Department of Surgery, Michigan State University, East Lansing, Michigan
| |
Collapse
|
34
|
Iontophoresis of a 13 kDa protein monitored by subcutaneous microdialysis in vivo. Bioanalysis 2011; 3:2419-26. [DOI: 10.4155/bio.11.238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The purpose of this study was to optimize parameters pertaining to microdialysis technique so as to make this method feasible for evaluating transdermal transport of macromolecules. Results: Microdialysis experiments were performed in vivo using hairless rats with daniplestim as the model protein. Two perfusion fluids – phosphate-buffered saline (PBS) and 3% dextran in PBS – were evaluated with respect to their effect on sample volume retrieval and recovery of the target protein from the microdialysis probe. Incorporation of dextran-60 in the perfusion fluid reduced fluid loss to 10% as opposed to 34% in the absence of dextran-60. Improvement in daniplestim recovery was also seen with dextran-PBS (56.5 ± 10.3%) as the perfusion fluid than with PBS alone (26.7±4.5%). Conclusion: Subcutaneous levels of daniplestim were measured following iontophoresis after improving recovery and minimizing fluid loss from the microdialysis probe.
Collapse
|
35
|
Brunner M, Davies D, Martin W, Leuratti C, Lackner E, Müller M. A new topical formulation enhances relative diclofenac bioavailability in healthy male subjects. Br J Clin Pharmacol 2011; 71:852-9. [PMID: 21241352 DOI: 10.1111/j.1365-2125.2011.03914.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Therapy with topical non-steroidal anti-inflammatory drugs (NSAIDs) relies on the ability of the active drug to penetrate the skin in sufficiently high amounts to exert a clinical effect, which is linked to the specific galenic properties of the formulation. WHAT THIS STUDY ADDS • This phase 1 study characterizes the transdermal penetration and plasma exposure of different dose levels with galenic differences of a novel topical diclofenac formulation under development and indicates greater diclofenac penetration through the skin when compared with a commercially available formulation. AIMS To evaluate the relative plasma and tissue availability of diclofenac after repeated topical administration of a novel diclofenac acid-based delivery system under development (DCF100C). METHODS This was a single-centre, open-label, three-period, crossover clinical trial of five discrete diclofenac formulations. Test preparations comprised two concentrations (1.0% and 2.5%) of DCF100C, with and without menthol and eucalyptus oil (total daily doses of 5 mg and 12.5 mg). Voltaren Emulgel gel (1.0%) was the commercially available comparator (total daily dose of 40 mg). Topical application was performed onto the thigh of 20 male healthy subjects for 3 days. Applying a Youden square design, each drug was evaluated in 12 subjects, with each subject receiving three test preparations. Blood sampling and in vivo microdialysis in subcutaneous adipose and skeletal muscle tissues were performed for 10 h after additional final doses on the morning of day 4. RESULTS All four DCF100C formulations demonstrated a three- to fivefold, dose-dependent increase in systemic diclofenac availability compared with Voltaren Emulgel and were approximately 30-40 times more effective at facilitating diclofenac penetration through the skin, taking different dose levels into account. Tissue concentrations were low and highly variable. The 2.5% DCF100C formulation without sensory excipients reached the highest tissue concentrations. AUC(0,10 h) was 2.71 times greater than for Voltaren Emulgel (90% CI 99.27, 737.46%). Mild erythema at the application site was the most frequent adverse event associated with DCF100C. There were no local symptoms after treatment with the reference formulation. CONCLUSION DCF100C formulations were safe and facilitated greater diclofenac penetration through the skin compared with the commercial comparator. DCF100C represents a promising alternative to oral and topical diclofenac treatments that warrants further development.
Collapse
Affiliation(s)
- Martin Brunner
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
36
|
Holmgaard R, Benfeldt E, Bangsgaard N, Sorensen JA, Brosen K, Nielsen F, Nielsen JB. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin. Skin Pharmacol Physiol 2011; 25:9-16. [PMID: 21849814 DOI: 10.1159/000330491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 05/09/2011] [Indexed: 12/25/2022]
Abstract
Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis and the amount of drug sampled following topical penetration ex vivo. The result is of relevance to the in vivo situation, and it can be predicted that the differences in sampling at different probe depths will have a more significant impact in the beginning of a study or in studies of short duration. Based on this study it can be recommended that studies of topical drug penetration using DMD sampling should include measurements of probe depth and that efforts should be made to minimize probe depth variability.
Collapse
Affiliation(s)
- R Holmgaard
- Department of Environmental Medicine, University of Southern Denmark, Odense. rikkeholmgaard @ gmail.com
| | | | | | | | | | | | | |
Collapse
|
37
|
Determination of tissue penetration and pharmacokinetics of linezolid in patients with diabetic foot infections using in vivo microdialysis. Antimicrob Agents Chemother 2011; 55:4170-5. [PMID: 21709078 DOI: 10.1128/aac.00445-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus and other Gram-positive organisms, including methicillin-resistant S. aureus, continue to be the predominant pathogens associated with diabetic foot infections. Consequently, linezolid is often used to treat these infections. The purpose of the current study was to describe the pharmacokinetic profile and determine the level of penetration of linezolid into healthy thigh tissue and infected wound tissue of the same extremity in 9 diabetic patients with chronic lower limb infections by use of in vivo microdialysis. Hourly plasma and dialysate samples were obtained over a 12-h dosing interval following 3 to 4 doses of linezolid (600 mg intravenously every 12 h). Plasma protein binding was also assessed at 1, 6, and 12 h postdose. The means ± standard deviations (SD) for the maximum concentration in serum (C(max)), the volume of distribution at terminal phase (V(z)), and the half-life (t(1/2)) for linezolid in plasma were 11.99 ± 3.67 μg/ml, 0.71 ± 0.25 liters/kg of body weight, and 4.71 ± 1.23 h, respectively. Mean protein binding was 14.78% (range, 3.85 to 32.03%). The mean areas under the concentration-time curves from 0 to 12 h for the free, unbound fraction of linezolid (fAUC(0-12) values) ± SD for plasma, wound tissue, and thigh tissue were 51.24 ± 12.72, 82.76 ± 59.01, and 92.52 ± 60.44 μg · h/ml, respectively. Tissue penetration ratios (tissue fAUC to plasma fAUC) were similar for thigh (1.42; range, 1.08 to 2.23) and wound (1.27; range, 0.86 to 2.26) tissues (P = 0.648). With the currently approved dosing regimen, linezolid penetrated well into both healthy thigh tissue and infected wound tissue in these diabetic patients.
Collapse
|
38
|
Pharmacokinetics and protein binding of cefazolin in morbidly obese patients. Eur J Clin Pharmacol 2011; 67:985-92. [DOI: 10.1007/s00228-011-1048-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/30/2011] [Indexed: 01/22/2023]
|
39
|
Han HK, Buckley J, Kursa K, O’Neill C, Lotz J. Microdialysis Technique to Quantify Drug Concentration in Human Intervertebral Disks. J Med Device 2010. [DOI: 10.1115/1.4003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
No dependable method has yet been established to find time-dependent concentrations of substances injected into the intervertebral disk. This study investigated the feasibility of microdialysis in the measurement of local concentrations of a low-molecular weight drug in the human lumbar disk. A quasi-static experiment and a dynamic computer finite element simulation were used to study the spread of lidocaine in the lumbar disk. Fresh-frozen cadaveric lumbar motion segments were immersed in a 0.1% lidocaine HCl solution for 6 days prior to continuous microdialysis sampling for 30 min at the posterolateral annulus. Samples were collected every 10 min, for a total of three samples per probe. To maintain quasi-static conditions, where the output of lidocaine was equal to the diffusion rate, the microdialysis flow rate was set to 0.6 μl/min. The finite element model treated the disk as poroelastic tissue under compressive load and introduced 1 ml of 4% lidocaine into the nucleus pulposus. Higher microdialysis flow rates suffered from significant losses during consecutive recoveries. Relative recovery in the annulus at 0.6 μl/min was found to be 53.3%±16.2% of the initial solution. This was determined to be a result of low diffusivity of lidocaine through tissue. The FEA model predicted low diffusivity of lidocaine and slow transport to the posterolateral annulus if no fissures were present in the annulus. The results from in vitro experiments and computer simulations showed that while microdialysis can take reliable concentration measurements in the posterolateral annulus, probe placement near a fissure is critical if a measurement is to be made immediately following injection of a drug into the nucleus.
Collapse
Affiliation(s)
- Hyun Kyu Han
- Biomechanical Testing Facility, UCSF/SFGH Orthopaedic Trauma Institute, San Francisco, CA
| | - Jenni Buckley
- Biomechanical Testing Facility, UCSF/SFGH Orthopaedic Trauma Institute, San Francisco, CA
| | - Kathy Kursa
- Medtronic Spinal and Biologics, Sunnyvale, CA
| | - Conor O’Neill
- Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco, CA
| | - Jeffrey Lotz
- Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco, CA
| |
Collapse
|
40
|
Estes KS, Derendorf H. Comparison of the pharmacokinetic properties of vancomycin, linezolid, tigecyclin, and daptomycin. Eur J Med Res 2010; 15:533-43. [PMID: 21163728 PMCID: PMC3352102 DOI: 10.1186/2047-783x-15-12-533] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 11/24/2022] Open
Abstract
The rapid antibiotic resistance development has created a major demand for new antimicrobial agents that can combat resistant strains such as methicillin-resistant S. aureus (MRSA). Until a short time ago, the glycopeptide vancomycin was the only therapeutic choice in this situation. However, in recent years some newer agents with different mechanisms of actions have been added to the arsenal, and more are on the horizon. For a successful therapy it is of vital importance that these compounds are used judiciously and dosed appropriately. The present article reviews the pharmacokinetic properties of vancomycin, linezolid, tigecycline and daptomycin. The first major difference between these compounds is their oral bioavailability. Only linezolid can be administered orally, whereas vancomycin, daptomycin and tigecycline are limited to parenteral use. Once in the body, they show very different disposition. Daptomycin has a very small volume of distribution of 7L indicating very little tissue distribution whereas tigecycline has a very large volume of distribution of 350-500 L. Vancomycin and linezolid are in-between with volumes of distribution of approximately 30 and 50 L, close to total body water. However, studies have shown that linezolid shows better tissue penetration than vancomycin. Newer studies using microdialysis, a new technique that allows direct monitoring of unbound tissue levels, support this finding. As far as drug elimination, daptomycin and vancomycin are mainly eliminated into the urine and require dosing adjustments in renally impaired patients, whereas tigecycline is eliminated into the bile and linezolid is metabolized so that in renal patients no dosing adjustments are needed for these compounds. Although the elimination pathways are very different, the resulting half-lives of linezolid, vancomycin, and daptomycin are not greatly different and vary from 4-8 h. Tigecycline, however, has a much longer half-life of up to 1-2 days due to the slow redistribution from tissue binding sites.
Collapse
Affiliation(s)
| | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Tissue penetration and pharmacokinetics of tigecycline in diabetic patients with chronic wound infections described by using in vivo microdialysis. Antimicrob Agents Chemother 2010; 54:5209-13. [PMID: 20921312 DOI: 10.1128/aac.01051-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue penetration of systemic antibiotics is an important consideration for positive outcomes in diabetic patients. Herein we describe the exposure profile and penetration of tigecycline in the interstitial fluid of wound margins versus that of uninfected thigh tissue in 8 adult diabetic patients intravenously (IV) administered 100 mg and then 50 mg of tigecycline twice daily for 3 to 5 doses. Prior to administration of the first dose, 2 microdialysis catheters were inserted into the subcutaneous tissue, the first within 10 cm of the wound margin and the second in the thigh of the same extremity. Samples for determination of plasma and tissue concentrations were simultaneously collected over 12 h under steady-state conditions. Tissue concentrations were corrected for percent in vivo recovery by the retrodialysis technique. Plasma samples were also collected for determination of protein binding at 1, 6, and 12 h postdose for each patient. Protein binding data were corrected using a fitted polynomial equation. The mean patient weight was 95.1 kg (range, 63.6 to 149.2 kg), the mean patient age was 63.5 ± 9.4 years, and 75% of the patients were males. The mean values for the plasma, thigh, and wound free area under the concentration-time curve from 0 to 24 h (fAUC(0-24)) were 2.65 ± 0.33, 2.52 ± 1.15, and 2.60 ± 1.02 μg·h/ml, respectively. Protein binding was nonlinear, with the percentage of free drug increasing with decreasing serum concentrations. Exposure values for thigh tissue and wound tissue were similar (P = 0.986). Mean steady-state tissue concentrations for the thigh and wound were similar at 0.12 ± 0.02 μg/ml, and clearance from the tissues appeared similar to that from plasma. Tissue penetration ratios (tissue fAUC/plasma fAUC) were 99% in the thigh and 100% in the wound (P = 0.964). Tigecycline penetrated equally well into wound and uninfected tissue of the same extremity.
Collapse
|
42
|
Bioequivalence for Topical Products—An Update. Pharm Res 2010; 27:2590-601. [DOI: 10.1007/s11095-010-0250-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 08/16/2010] [Indexed: 01/30/2023]
|
43
|
Sørensen O, Andersen A, Olsen H, Alexandr K, Ekstrøm PO, Giercksky KE, Flatmark K. Validation and use of microdialysis for determination of pharmacokinetic properties of the chemotherapeutic agent mitomycin C - an experimental study. BMC Cancer 2010; 10:469. [PMID: 20809961 PMCID: PMC2940807 DOI: 10.1186/1471-2407-10-469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 09/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitomycin C is a chemotherapeutic agent used in the treatment of peritoneal surface malignancies, administered as hyperthermic intraperitoneal chemotherapy after cytoreductive surgery. Pharmacokinetic studies have been based on analyses of blood, urine and abdominal perfusate, but actual tissue concentrations of the drug have never been determined. Microdialysis is an established method for continuous monitoring of low-molecular substances in tissues, and in the present study microdialysis of mitomycin C was studied in vitro and in vivo. METHODS Using in vitro microdialysis, relative recovery was determined when varying drug concentration, temperature and perfusion flow rate. In vivo microdialysis was performed in rats to verify long-term stability of relative recovery in four compartments (vein, peritoneum, extraperitoneal space and hind leg muscle). Subsequently, intravenous and intraperitoneal bolus infusion experiments were performed and pharmacokinetic parameters were calculated. RESULTS In vitro, compatibility of mitomycin C and microdialysis equipment was demonstrated, and relative recovery was stable over an adequate concentration range, moderately increased by raising medium temperature and increased when flow rate was reduced, all according to theory. In vivo, stable relative recovery was observed over seven hours. Mitomycin C exhibited fast and even distribution in rat tissues, and equal bioavailability was achieved by intravenous and intraperitoneal infusion. The half-life of mitomycin C calculated after intravenous infusion was 40 minutes. CONCLUSIONS Mitomycin C concentration can be reliable monitored in vivo using microdialysis, suggesting that this technique can be used in pharmacokinetic studies of this drug during hyperthermic intraperitoneal chemotherapy.
Collapse
Affiliation(s)
- Olaf Sørensen
- Department of Surgical Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
44
|
Patel S, Shukla C, Patel G, Stagni G. Pharmacokinetics of amitriptyline in rabbit skin and plasma following iontophoretic administrations. Drug Dev Ind Pharm 2010; 36:379-84. [DOI: 10.3109/03639040903188463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Kitano M, Sakamoto H, Das K, Komaki T, Kudo M. EUS-guided in vivo microdialysis of the pancreas: a novel technique with potential diagnostic and therapeutic application. Gastrointest Endosc 2010; 71:176-9. [PMID: 19846076 DOI: 10.1016/j.gie.2009.05.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 05/29/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND Microdialysis has been used in vivo to measure dynamic temporal variations in extracellular or interstitial concentrations of non-protein-bound substances that are unstable in the systemic circulation. OBJECTIVE To evaluate the technical feasibility and possible complications of EUS-guided in vivo microdialysis of the pancreas. DESIGN AND INTERVENTION Under the guidance of an echoendoscope inserted into the stomach of each dog, the pancreatic parenchyma was punctured by using a 19-gauge needle. A specially developed microdialysis probe threaded through the lumen of the 19-gauge needle was positioned in the pancreas. The probe was constantly perfused with saline solution at a flow rate of 1.0 microL/minute. SETTING Experiments on 8 beagle dogs. MAIN OUTCOME MEASUREMENTS The concentration of 5-fluorouracil (5-FU) in the microdialysate was measured at 10-minute intervals, once before and for 8 times after a single (20 mg/kg) bolus intravenous infusion of 5-FU. RESULTS Following the administration of 5-FU, the concentration of 5-FU in all macrodialysate samples exceeded the cut-off value by more than 100-fold. The 5-FU levels in the microdialysate increased rapidly, peaked by 10 minutes (13.9 microg/mL), and gradually declined thereafter. No local bleeding or accumulation of fluid around the pancreas was observed. LIMITATION Sampling was unsuccessful in 2 of the 8 dogs because the probe broke while being inserted into the pancreatic parenchyma. CONCLUSION EUS-guided pancreatic microdialysis is feasible and has multiple potential clinical/therapeutic applications, including monitoring pharmacokinetics focally and detecting novel biomarkers that are unstable or undetectable in the plasma.
Collapse
Affiliation(s)
- Masayuki Kitano
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kinki University School of Medicine, Osaka-Sayama, Japan.
| | | | | | | | | |
Collapse
|
46
|
Barbour A, Schmidt S, Rout WR, Ben-David K, Burkhardt O, Derendorf H. Soft tissue penetration of cefuroxime determined by clinical microdialysis in morbidly obese patients undergoing abdominal surgery. Int J Antimicrob Agents 2009; 34:231-5. [DOI: 10.1016/j.ijantimicag.2009.03.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
|
47
|
Wu K, Blomgren AL, Ekholm K, Weber B, Edsbaecker S, Hochhaus G. Budesonide and ciclesonide: effect of tissue binding on pulmonary receptor binding. Drug Metab Dispos 2009; 37:1421-6. [PMID: 19364829 DOI: 10.1124/dmd.108.026039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Newer inhaled glucocorticoids often show low systemic side effects because of their high protein binding. This study was interested in evaluating the effects of increased plasma protein and tissue binding on pulmonary receptor occupancy. Rats received des-ciclesonide (des-CIC; the active metabolite of the prodrug ciclesonide) and budesonide (BUD; a drug with lower protein binding but similar receptor affinity) as constant rate infusion over 6 h (intravenous bolus of 30 microg/kg, followed by 10 microg/h/kg over 6 h). Total and free glucocorticoid concentration in plasma and tissues, as well as the number of occupied lung glucocorticoid receptors, was determined. A pharmacokinetic/pharmacodynamic (PK/PD) model investigated the effects of varying plasma and tissue binding on pulmonary and systemic receptor occupancy after inhalation. After constant rate infusion, the total drug concentration in tissues and plasma was comparable for both drugs, whereas the free concentration of des-CIC in all the tissues and plasma was one fifth to one seventh that of BUD. This translated into lower receptor occupancy in the lung for des-CIC (49 +/- 11%) than for BUD (94 +/- 8%). The PK/PD model predicted lower receptor occupancy in the lung and the systemic tissues when a drug with pronounced binding was inhaled. Glucocorticoids with higher plasma and tissue binding might show not only lower systemic side effects but also reduced efficacy in the lung when given in a similar microgram dose.
Collapse
Affiliation(s)
- Kai Wu
- University of Florida, College of Pharmacy, Department of Pharmaceutics, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
48
|
Russell LM, Guy RH. Measurement and prediction of the rate and extent of drug delivery into and through the skin. Expert Opin Drug Deliv 2009; 6:355-69. [DOI: 10.1517/17425240902865561] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Patlolla RR, Mallampati R, Fulzele SV, Babu RJ, Singh M. Dermal microdialysis of inflammatory markers induced by aliphatic hydrocarbons in rats. Toxicol Lett 2009; 185:168-74. [PMID: 19152832 PMCID: PMC2884169 DOI: 10.1016/j.toxlet.2008.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 11/17/2022]
Abstract
In the present study we made an attempt to understand the skin irritation cascade of selected aliphatic hydrocarbons using microdialysis technique. Microdialysis probes were inserted into dermis in the dorsal skin of hairless rats. After 2h of probes insertion, occlusive dermal exposure (2h) was carried out with 230 microl of nonane, dodecane and tetradecane, using Hill top chambers((R)). Inflammatory biomarkers such as substance P (SP), alpha-melanocyte stimulating hormone (alpha-MSH) Interleukin 6 (IL-6) and prostaglandin E2 (PGE(2)) were analyzed in the dialysis samples by enzyme immunoassay (EIA). SP, alpha-MSH and IL6 were released in significant amounts following the dermal exposure of nonane and dodecane, whereas tetradecane did not induce any of these markers in significant amounts compared to control. Nonane increased the PGE(2) levels in significant amounts within 2h of chemical exposure compared to dodecane and tetradecane. IL-6 response was found to be slow and 2-3-fold increase in IL-6 levels was observed after 5h following nonane and dodecane application. The magnitude of skin irritation exerted by all three chemicals was in the order of nonane>or=dodecane>or=tetradecane. The results demonstrate that microdialysis can be used to measure the inflammatory biomarkers in the skin irritation studies and irritation response of chemicals was quantifiable by this method. In conclusion, microdialysis was found to be an excellent tool to measure several inflammatory biomarkers as a function of time after dermal exposures with irritant chemicals.
Collapse
Affiliation(s)
- Ram R. Patlolla
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ramya Mallampati
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Suniket V. Fulzele
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - R. Jayachandra Babu
- Department of Pharmaceutical Sciences, Harrison School of Pharmacy, Auburn University, AL 36849, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
50
|
In vivo microdialysis study of the penetration of daptomycin into soft tissues in diabetic versus healthy volunteers. Antimicrob Agents Chemother 2008; 52:3941-6. [PMID: 18779352 DOI: 10.1128/aac.00589-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Daptomycin is approved for the treatment of complicated skin and soft tissue infections, including diabetic wounds of the lower extremities, at a dose of 4 mg/kg of body weight once daily. For such localized tissue infections, drug concentrations in the interstitial space are an important determinant of successful therapy. In the diabetic population, peripheral arterial disease may limit antibiotic penetration into the target tissue. The objective of this study was to describe and compare the pharmacokinetic profiles of daptomycin in the interstitial fluid of soft tissues in diabetic and healthy volunteers by using in vivo microdialysis. Twelve subjects (six diabetic and six healthy) received a single 4-mg/kg dose of daptomycin intravenously. Samples of plasma and tissue were simultaneously collected over 24 h. Diabetic and healthy groups were matched in mean age (+/-10 years), gender ratio, mean weight (+/-10 kg), and creatinine clearance rate (+/-20 ml/min/1.73 m(2)). Pharmacokinetic parameters for plasma were similar between groups (P > 0.05). The mean peak drug concentrations +/- standard deviations in tissue were 4.3 +/- 3.3 microg/ml and 3.8 +/- 1.4 microg/ml for diabetic and healthy subjects, respectively. The degree of tissue penetration, defined as the ratio of the area under the free drug concentration-time curve for tissue to that for plasma, was 0.93 +/- 0.61 for diabetic subjects and 0.74 +/- 0.09 for healthy subjects (P = 0.46). Daptomycin at 4 mg/kg penetrated well into the soft tissue, reaching concentrations approximately 70 to 90% of those of the free drug in plasma. Moreover, these free, bioactive concentrations in tissue exceeded the MICs for staphylococci and streptococci over the 24-h dosing interval.
Collapse
|