1
|
Liang Y, Sun B, Yang M, Meng X, Wang M, Yang L, AI-Hamyari B, Zhang Y, Shen Y, Meng S. Evaluation of Luteolin Nanosuspensions on Pharmacokinetics of Atorvastatin: Drug-Drug Interactions Using Rat Models. Int J Nanomedicine 2025; 20:2557-2573. [PMID: 40046816 PMCID: PMC11881160 DOI: 10.2147/ijn.s492141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 05/13/2025] Open
Abstract
Purpose The co-administration of luteolin (LUT) and atorvastatin (ATV) may drive synergetic effects on against atherosclerotic cardiovascular disease (ASCVD). This study aims to explore the pharmacokinetic (PK) drug-drug interactions (DDIs) of LUT toward ATV and the influencing mechanisms involving CYP450s and OATPs, and using the physiologically based pharmacokinetic (PBPK) models extrapolated to humans to optimize the DDIs dosage regimens for subsequent research. Methods Luteolin nanosuspensions lyophilized powder (LUT-NS-LP) were prepared for improving LUT's solubility and bioavailability, the effects of both LUT on the ATV CYP450s enzyme kinetics and LUT-NS-LP/LUT on the PK behavior of ATV in rats were further studied by UPLC. The DDI PBPK model of ATV and LUT-NS-LP was established with the hepatic CYP450s, OATPs, and enterohepatic circulation, and extrapolated to humans through a physiological allometric scaling process with parameter optimization and verified using clinical datasets obtained from various dosage regimens. Results LUT inhibited ATV as the non-competitive form in rat liver microsomes (RLMs). The C max and AUC (0-t) of ATV in the group receiving combined administration of LUT and LUT-NS-LP increased by 1.87-fold and 2.29-fold, 5.42-fold and 10.35-fold, respectively. The constructed PBPK models successfully predicted the PK DDIs between ATV and LUT in rats, demonstrating excellent performance. LUT might inhibit the hepatic CYP450s and OATPs activities to influence the PK behavior of ATV. The extrapolated human model could adequately describe and predict the systemic exposure of ATV in DDIs. Conclusion LUT nanosuspensions could significantly increase systemic exposure to ATV by inhibiting CYP450s and OATPs activities. The combined application strategy is suggested to run ATV in half of the highest dosage by guidelines. This study offers a valuable experimental foundation for the combined administration of statins with natural drugs and their nanoformulations, providing significant insights into the investigation of underlying mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- You Liang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Bo Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Min Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Xiaona Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Meng Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Lijuan Yang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Bandar AI-Hamyari
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yuqian Zhang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Yutong Shen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| | - Shengnan Meng
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People’s Republic of China
| |
Collapse
|
2
|
Hashimoto Y, Michiba K, Maeda K, Kusuhara H. Quantitative prediction of pharmacokinetic properties of drugs in humans: Recent advance in in vitro models to predict the impact of efflux transporters in the small intestine and blood-brain barrier. J Pharmacol Sci 2021; 148:142-151. [PMID: 34924119 DOI: 10.1016/j.jphs.2021.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Efflux transport systems are essential to suppress the absorption of xenobiotics from the intestinal lumen and protect the critical tissues at the blood-tissue barriers, such as the blood-brain barrier. The function of drug efflux transport is dominated by various transporters. Accumulated clinical evidences have revealed that genetic variations of the transporters, together with coadministered drugs, affect the expression and/or function of transporters and subsequently the pharmacokinetics of substrate drugs. Thus, in the preclinical stage of drug development, quantitative prediction of the impact of efflux transporters as well as that of uptake transporters and metabolic enzymes on the pharmacokinetics of drugs in humans has been performed using various in vitro experimental tools. Various kinds of human-derived cell systems can be applied to the precise prediction of drug transport in humans. Mathematical modeling consisting of each intrinsic metabolic or transport process enables us to understand the disposition of drugs both at the organ level and at the level of the whole body by integrating a variety of experimental results into model parameters. This review focuses on the role of efflux transporters in the intestinal absorption and brain distribution of drugs, in addition to recent advances in predictive tools and methodologies.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Maeda
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Jacob L, Greiner RA, Luedde M, Kostev K. Prevalence of and Factors Associated With the Prescription of Fibrates Among Patients Receiving Lipid-Lowering Drugs in Germany. J Cardiovasc Pharmacol 2021; 78:885-890. [PMID: 34654787 DOI: 10.1097/fjc.0000000000001153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Little recent data are available about the patterns of prescription for fibrates in patients followed in primary care practices. Therefore, the goal of this study was to analyze the prevalence of and the factors associated with the use of fibrates among patients receiving lipid-lowering drugs in Germany. The study included patients aged ≥18 years with at least 1 visit to 1 of 1070 general practices in Germany between January and December 2019. Lipid-lowering drugs included statins (without and with ezetimibe) and fibrates. The prevalence of the prescription of fibrates corresponded to the number of patients with at least 1 prescription for fibrates divided by the total number of patients receiving lipid-lowering drugs. A logistic regression model was used to assess the relationship between several demographic, clinical, and biological factors and the prescription of fibrates. A total of 111,329 patients were included in this study (mean [SD] age 68.8 [11.5] years; 56.0% of patients were men). The prevalence of the prescription of fibrates was 1.5%. Male sex, hypertension, diabetes mellitus, high low-density lipoprotein cholesterol, low high-density lipoprotein cholesterol, and high triglyceride were positively associated with the use of fibrates. By contrast, there was a negative relationship between the odds of receiving fibrates and coronary heart disease, myocardial infarction, peripheral arterial disease, and stroke including transient ischemic attack. Overall, we found that fibrates were infrequently prescribed in general practices in Germany.
Collapse
Affiliation(s)
- Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Dr Antoni Pujadas, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | | | | | | |
Collapse
|
4
|
Current Evidence, Challenges, and Opportunities of Physiologically Based Pharmacokinetic Models of Atorvastatin for Decision Making. Pharmaceutics 2021; 13:pharmaceutics13050709. [PMID: 34068030 PMCID: PMC8152487 DOI: 10.3390/pharmaceutics13050709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
Atorvastatin (ATS) is the gold-standard treatment worldwide for the management of hypercholesterolemia and prevention of cardiovascular diseases associated with dyslipidemia. Physiologically based pharmacokinetic (PBPK) models have been positioned as a valuable tool for the characterization of complex pharmacokinetic (PK) processes and its extrapolation in special sub-groups of the population, leading to regulatory recognition. Several PBPK models of ATS have been published in the recent years, addressing different aspects of the PK properties of ATS. Therefore, the aims of this review are (i) to summarize the physicochemical and pharmacokinetic characteristics involved in the time-course of ATS, and (ii) to evaluate the major highlights and limitations of the PBPK models of ATS published so far. The PBPK models incorporate common elements related to the physicochemical aspects of ATS. However, there are important differences in relation to the analyte evaluated, the type and effect of transporters and metabolic enzymes, and the permeability value used. Additionally, this review identifies major processes (lactonization, P-gp contribution, ATS-Ca solubility, simultaneous management of multiple analytes, and experimental evidence in the target population), which would enhance the PBPK model prediction to serve as a valid tool for ATS dose optimization.
Collapse
|
5
|
The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. Int J Mol Sci 2020; 21:ijms21228745. [PMID: 33228116 PMCID: PMC7699354 DOI: 10.3390/ijms21228745] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Statins are a class of drugs used to lower low-density lipoprotein cholesterol and are amongst the most prescribed medications worldwide. Most statins work as a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), but statin intolerance from pleiotropic effects have been proposed to arise from non-specific binding due to poor enzyme-ligand sensitivity. Yet, research into the physicochemical properties of statins, and their interactions with off-target sites, has not progressed much over the past few decades. Here, we present a concise perspective on the role of statins in lowering serum cholesterol levels, and how their reported interactions with phospholipid membranes offer a crucial insight into the mechanism of some of the more commonly observed pleiotropic effects of statin administration. Lipophilicity, which governs hepatoselectivity, is directly related to the molecular structure of statins, which dictates interaction with and transport through membranes. The structure of statins is therefore a clinically important consideration in the treatment of hypercholesterolaemia. This review integrates the recent biophysical studies of statins with the literature on the physiological effects and provides new insights into the mechanistic cause of statin pleiotropy, and prospective means of understanding the cholesterol-independent effects of statins.
Collapse
|
6
|
Hwang JG, Yu KS, Lee S. Comparison of the Pharmacokinetics of Highly Variable Drugs in Healthy Subjects Using a Partial Replicated Crossover Study: A Fixed-Dose Combination of Fimasartan 120 mg and Atorvastatin 40 mg versus Separate Tablets. Drug Des Devel Ther 2020; 14:1953-1961. [PMID: 32546962 PMCID: PMC7246321 DOI: 10.2147/dddt.s233732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
PURPOSE A fixed-dose combination (FDC) of fimasartan and atorvastatin is used to treat hypertension and dyslipidemia. The peak plasma concentration (Cmax) of fimasartan and atorvastatin has a large intra-subject variability with a maximum coefficient of variation of 65% and 48%, respectively. Therefore, both drugs are classified as highly variable drugs. The purpose of this study was to compare the pharmacokinetics (PK) between a FDC of fimasartan 120 mg and atorvastatin 40 mg versus separate tablets in healthy male Korean subjects. SUBJECTS AND METHODS A randomized, single-dose, two-treatment, three-sequence, three-period, partial replicated crossover study was conducted with a 7-day washout interval between periods. Blood samples for fimasartan and atorvastatin were collected until 48 hours after administration in each period. PK parameters were calculated using the non-compartmental method. Geometric mean ratios (GMRs) for PK parameters of FDC to loose combination and their 90% confidence intervals (90% CIs) were estimated. RESULTS A total of 56 subjects completed the study. GMRs (90% CIs) of the Cmax for fimasartan and atorvastatin were 1.08 (0.93-1.24) and 1.02 (0.92-1.13), respectively. The expanded 90% CIs of both drugs using the intra-subject variability was calculated range of 0.70-1.43 and 0.73-1.38, respectively. The corresponding values of area under the concentration-time curve from zero to the last measurable time point were 1.02 (0.97-1.08) and 1.02 (0.98-1.07), respectively. CONCLUSION FDC of fimasartan 120 mg and atorvastatin 40 mg between their loose combination showed similar PK characteristics.
Collapse
Affiliation(s)
- Jun Gi Hwang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| |
Collapse
|
7
|
McFeely SJ, Ritchie TK, Yu J, Nordmark A, Berglund EG, Levy RH, Ragueneau‐Majlessi I. Inhibitors of Organic Anion‐Transporting Polypeptides 1B1 and 1B3: Clinical Relevance and Regulatory Perspective. J Clin Pharmacol 2020; 60:1087-1098. [DOI: 10.1002/jcph.1604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Affiliation(s)
| | - Tasha K. Ritchie
- University of Washington Drug Interaction Solutions Seattle Washington USA
| | - Jingjing Yu
- University of Washington Drug Interaction Solutions Seattle Washington USA
| | | | - Eva Gil Berglund
- Certara Strategic ConsultingIntegrated Drug Development Oss The Netherlands
| | - Rene H. Levy
- University of Washington Drug Interaction Solutions Seattle Washington USA
| | | |
Collapse
|
8
|
Liu X. Transporter-Mediated Drug-Drug Interactions and Their Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:241-291. [PMID: 31571167 DOI: 10.1007/978-981-13-7647-4_5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
9
|
Pan G. Roles of Hepatic Drug Transporters in Drug Disposition and Liver Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:293-340. [PMID: 31571168 DOI: 10.1007/978-981-13-7647-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic drug transporters are mainly distributed in parenchymal liver cells (hepatocytes), contributing to drug's liver disposition and elimination. According to their functions, hepatic transporters can be roughly divided into influx and efflux transporters, translocating specific molecules from blood into hepatic cytosol and mediating the excretion of drugs and metabolites from hepatic cytosol to blood or bile, respectively. The function of hepatic transport systems can be affected by interspecies differences and inter-individual variability (polymorphism). In addition, some drugs and disease can redistribute transporters from the cell surface to the intracellular compartments, leading to the changes in the expression and function of transporters. Hepatic drug transporters have been associated with the hepatic toxicity of drugs. Gene polymorphism of transporters and altered transporter expressions and functions due to diseases are found to be susceptible factors for drug-induced liver injury (DILI). In this chapter, the localization of hepatic drug transporters, their regulatory factors, physiological roles, and their roles in drug's liver disposition and DILI are reviewed.
Collapse
Affiliation(s)
- Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, Shanghai, China.
| |
Collapse
|
10
|
Prediction of pharmacokinetic drug-drug interactions causing atorvastatin-induced rhabdomyolysis using physiologically based pharmacokinetic modelling. Biomed Pharmacother 2019; 119:109416. [PMID: 31518878 DOI: 10.1016/j.biopha.2019.109416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
Atorvastatin and its lactone form metabolite are reported to be associated with statin-induced myopathy (SIM) such as myalgia and life-threatening rhabdomyolysis. Though the statin-induced rhabdomyolysis is not common during statin therapy, its incidence will significantly increase due to pharmacokinetic drug-drug interactions (DDIs) with inhibitor drugs which inhibit atorvastatin's and its lactone's metabolism and hepatic uptake. Thus, the quantitative analysis of DDIs of atorvastatin and its lactone with cytochrome P450 3A4 (CYP3A4) and organic anion-transporting polypeptide (OATP) inhibitors is of great importance. This study aimed to predict pharmacokinetic DDIs possibly causing atorvastatin-induced rhabdomyolysis using Physiologically Based Pharmacokinetic (PBPK) Modelling. Firstly, we refined the PBPK models of atorvastatin and atorvastatin lactone for predicting the DDIs with CYP3A4 and OATP inhibitors. Thereafter, we predicted the exposure changes of atorvastatin and atorvastatin lactone originating from the case reports of atorvastatin-induced rhabdomyolysis using the refined models. The simulation results show that pharmacokinetic DDIs of atorvastatin and its lactone with fluconazole, palbociclib diltiazem and cyclosporine are significant. Consequently, clinicians should be aware of necessary dose adjustment of atorvastatin being used with these four inhibitor drugs.
Collapse
|
11
|
Morse BL, Alberts JJ, Posada MM, Rehmel J, Kolur A, Tham LS, Loghin C, Hillgren KM, Hall SD, Dickinson GL. Physiologically-Based Pharmacokinetic Modeling of Atorvastatin Incorporating Delayed Gastric Emptying and Acid-to-Lactone Conversion. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:664-675. [PMID: 31250974 PMCID: PMC6765700 DOI: 10.1002/psp4.12447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Abstract
The drug-drug interaction profile of atorvastatin confirms that disposition is determined by cytochrome P450 (CYP) 3A4 and organic anion transporting polypeptides (OATPs). Drugs that affect gastric emptying, including dulaglutide, also affect atorvastatin pharmacokinetics (PK). Atorvastatin is a carboxylic acid that exists in equilibrium with a lactone form in vivo. The purpose of this work was to assess gastric acid-mediated lactone equilibration of atorvastatin and incorporate this into a physiologically-based PK (PBPK) model to describe atorvastatin acid, lactone, and their major metabolites. In vitro acid-to-lactone conversion was assessed in simulated gastric fluid and included in the model. The PBPK model was verified with in vivo data including CYP3A4 and OATP inhibition studies. Altering the gastric acid-lactone equilibrium reproduced the change in atorvastatin PK observed with dulaglutide. The model emphasizes the need to include gastric acid-lactone conversion and all major atorvastatin-related species for the prediction of atorvastatin PK.
Collapse
Affiliation(s)
| | | | | | | | - Anil Kolur
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Lai San Tham
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | | | | |
Collapse
|
12
|
Rattanachotphanit T, Limwattananon C, Waleekhachonloet O. Trends and variations in outpatient coprescribing of simvastatin or atorvastatin with potentially interacting drugs in Thailand. Ther Adv Drug Saf 2019; 10:2042098618820502. [PMID: 30728944 PMCID: PMC6354302 DOI: 10.1177/2042098618820502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/21/2018] [Indexed: 11/15/2022] Open
Abstract
Background: The aim of this study was to assess trends and variations in coprescribing of simvastatin or atorvastatin with interacting drugs in Thailand. Methods: Outpatient prescriptions between 2013 and 2015 in 26 tertiary care hospitals were analyzed for statin coprescribing. The proportion of patients exposed to coprescribing was estimated for semi-annual changes, using a time-series analysis and for hospital variations, using an interquartile range (IQR). Results: The coprescribing of simvastatin with all contraindicated drugs in 10 university and 16 general hospitals, respectively, was 3.6 and 3.1% in 2013, then decreased to 3.2 and 2.6% in 2014 and to 2.6 and 2.0% in 2015. The drug most frequently coprescribed with simvastatin, on a decreasing trend (by 0.19 percentage points) was gemfibrozil (in 2013, 2014 and 2015, respectively; 2.9, 2.3 and 2.0% in university hospitals, and 2.5, 2.0 and 1.6% in general hospitals). A similar trend was found in atorvastatin-gemfibrozil coprescribing. Patients coprescribed simvastatin with the rest of the contraindicated drugs were relatively stable at 0.6–0.8%. No protease inhibitors were coprescribed with simvastatin and atorvastatin. The IQR of simvastatin coprescribing in the university hospitals was smaller than that in the general hospitals and decreased over time. Conclusions: Coprescriptions potentially leading to drug interactions with simvastatin in Thailand were observed although the contraindicated drugs were acknowledged. Mutual awareness among health professionals and the implementation of electronic prescribing should be strengthened as zero drug interaction was possible as in the case of protease inhibitors in the present study.
Collapse
Affiliation(s)
| | - Chulaporn Limwattananon
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | |
Collapse
|
13
|
Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J Clin Pharmacol 2017; 56 Suppl 7:S23-39. [PMID: 27385177 DOI: 10.1002/jcph.671] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/16/2015] [Indexed: 01/04/2023]
Abstract
This review provides a practical clinical perspective on the relevance of hepatic transporters in pharmacokinetics and drug-drug interactions (DDIs). Special emphasis is placed on transporters with clear relevance to clinical DDIs, efficacy, and safety. Basolateral OATP1B1 and 1B3 emerged as important hepatic drug uptake pathways, sites for systemic DDIs, and sources of pharmacogenetic variability. As the first step in hepatic drug removal from the circulation, OATPs are an important determinant of systemic pharmacokinetics, specifically influencing systemic absorption, clearance, and hepatic distribution for subsequent metabolism and/or excretion. Biliary excretion of parent drugs is a less prevalent clearance pathway than metabolism or urinary excretion, but BCRP and MRP2 are critically important to biliary/fecal elimination of drug metabolites. Inhibition of biliary excretion is typically not apparent at the level of systemic pharmacokinetics but can markedly increase liver exposure. Basolateral efflux transporters MRP3 and MRP4 mediate excretion of parent drugs and, more commonly, polar metabolites from hepatocytes into blood. Basolateral excretion is an area in need of further clinical investigation, which will necessitate studies more complex than just systemic pharmacokinetics. Clinical relevance of hepatic uptake is relatively well appreciated, and clinical consequences of hepatic excretion (biliary and basolateral) modulation remain an active research area.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | |
Collapse
|
14
|
Wiggins BS, Saseen JJ, Page RL, Reed BN, Sneed K, Kostis JB, Lanfear D, Virani S, Morris PB. Recommendations for Management of Clinically Significant Drug-Drug Interactions With Statins and Select Agents Used in Patients With Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2016; 134:e468-e495. [DOI: 10.1161/cir.0000000000000456] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Physiologically Based Pharmacokinetic (PBPK) Modeling of Pitavastatin and Atorvastatin to Predict Drug-Drug Interactions (DDIs). Eur J Drug Metab Pharmacokinet 2016; 42:689-705. [DOI: 10.1007/s13318-016-0383-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Tornio A, Neuvonen PJ, Niemi M, Backman JT. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters. Expert Opin Drug Metab Toxicol 2016; 13:83-95. [PMID: 27548563 DOI: 10.1080/17425255.2016.1227791] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.
Collapse
Affiliation(s)
- Aleksi Tornio
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Pertti J Neuvonen
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Mikko Niemi
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| | - Janne T Backman
- a Department of Clinical Pharmacology , University of Helsinki and Helsinki University Hospital , Helsinki , Finland
| |
Collapse
|
17
|
|
18
|
Backman JT, Filppula AM, Niemi M, Neuvonen PJ. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol Rev 2016; 68:168-241. [PMID: 26721703 DOI: 10.1124/pr.115.011411] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed.
Collapse
Affiliation(s)
- Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| | - Pertti J Neuvonen
- Department of Clinical Pharmacology, University of Helsinki (J.T.B., A.M.F., M.N., P.J.N.), and Helsinki University Hospital, Helsinki, Finland (J.T.B., M.N., P.J.N.)
| |
Collapse
|
19
|
Khurana V, Minocha M, Pal D, Mitra AK. Inhibition of OATP-1B1 and OATP-1B3 by tyrosine kinase inhibitors. ACTA ACUST UNITED AC 2015; 29:249-59. [PMID: 24807167 DOI: 10.1515/dmdi-2014-0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/01/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The potential of tyrosine kinase inhibitors (TKIs) interacting with other therapeutics through hepatic uptake transporter inhibition has not been fully delineated in drug-drug interactions (DDIs). This study was designed to estimate the half-maximal inhibitory concentration (IC50) values of five small-molecule TKIs (pazopanib, nilotinib, vandetanib, canertinib and erlotinib) interacting with organic anion-transporting polypeptides (OATPs): OATP-1B1 and -1B3. METHODS The IC50 values of TKIs and rifampicin (positive control) were determined by concentration-dependent inhibition of TKIs on cellular accumulation of radiolabeled probe substrates [3H]estrone sulfate and [3H]cholecystokinin octapeptide. Chinese hamster ovary cells transfected with humanized OATP-1B1 and OATP-1B3 transporter proteins, respectively, were utilized to carry out these studies. RESULTS Pazopanib and nilotinib show inhibitory activity on OATP-1B1 transporter protein. IC50 values for rifampicin, pazopanib and nilotinib were 10.46±1.15, 3.89±1.21 and 2.78±1.13 μM, respectively, for OATP-1B1 transporter. Vandetanib, canertinib and erlotinib did not exhibit any inhibitory potency toward OATP-1B1 transporter protein. Only vandetanib expressed inhibitory potential toward OATP-1B3 transporter protein out of the five selected TKIs. IC50 values for rifampicin and vandetanib for OATP-1B3 transporter inhibition were 3.67±1.20 and 18.13±1.21 μM, respectively. No significant inhibition in the presence of increasing concentrations of pazopanib, nilotinib, canertinib and erlotinib were observed for OATP-1B3 transporter. CONCLUSIONS Because selected TKIs are inhibitors of OATP-1B1 and -1B3 expressed in hepatic tissue, these compounds can be regarded as molecular targets for transporter-mediated DDIs. These findings provide the basis for further preclinical and clinical studies investigating the transporter-based DDI potential of TKIs.
Collapse
|
20
|
Varma MVS, Lin J, Bi YA, Kimoto E, Rodrigues AD. Quantitative Rationalization of Gemfibrozil Drug Interactions: Consideration of Transporters-Enzyme Interplay and the Role of Circulating Metabolite Gemfibrozil 1-O-β-Glucuronide. Drug Metab Dispos 2015; 43:1108-18. [PMID: 25941268 DOI: 10.1124/dmd.115.064303] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/04/2015] [Indexed: 01/06/2023] Open
Abstract
Gemfibrozil has been suggested as a sensitive cytochrome P450 2C8 (CYP2C8) inhibitor for clinical investigation by the U.S. Food and Drug Administration and the European Medicines Agency. However, gemfibrozil drug-drug interactions (DDIs) are complex; its major circulating metabolite, gemfibrozil 1-O-β-glucuronide (Gem-Glu), exhibits time-dependent inhibition of CYP2C8, and both parent and metabolite also behave as moderate inhibitors of organic anion transporting polypeptide 1B1 (OATP1B1) in vitro. Additionally, parent and metabolite also inhibit renal transport mediated by OAT3. Here, in vitro inhibition data for gemfibrozil and Gem-Glu were used to assess their impact on the pharmacokinetics of several victim drugs (including rosiglitazone, pioglitazone, cerivastatin, and repaglinide) by employing both static mechanistic and dynamic physiologically based pharmacokinetic (PBPK) models. Of the 48 cases evaluated using the static models, about 75% and 98% of the DDIs were predicted within 1.5- and 2-fold of the observed values, respectively, when incorporating the interaction potential of both gemfibrozil and its 1-O-β-glucuronide. Moreover, the PBPK model was able to recover the plasma profiles of rosiglitazone, pioglitazone, cerivastatin, and repaglinide under control and gemfibrozil treatment conditions. Analyses suggest that Gem-Glu is the major contributor to the DDIs, and its exposure needed to bring about complete inactivation of CYP2C8 is only a fraction of that achieved in the clinic after a therapeutic gemfibrozil dose. Overall, the complex interactions of gemfibrozil can be quantitatively rationalized, and the learnings from this analysis can be applied in support of future predictions of gemfibrozil DDIs.
Collapse
Affiliation(s)
- Manthena V S Varma
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jian Lin
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Yi-an Bi
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - Emi Kimoto
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| | - A David Rodrigues
- Pharmacokinetics Dynamics and Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
21
|
Abstract
Background The concomitant use of cytochrome P450 3A4 (CYP3A4) metabolized statins (simvastatin, lovastatin, and atorvastatin) with CYP3A4 inhibitors has been shown to increase the rate of adverse events. Objective This study was performed to describe the co-medication prevalence of CYP3A4-metabolized statins with contraindicated drugs. Methods The patients aged 40 or older receiving CYP3A4-metabolized statin prescriptions in 2009 were identified using the national patient sample from a Korea Health Insurance Review and Assessment Service database. Contraindicated co-medication was defined as prescription periods of statins and contraindicated drugs overlapping by at least one day. Co-medication patterns were classified into 3 categories as follows: co-medication in the same prescription, co-medication by the same medical institution, and co-medication by different medical institutions. The proportion of co-medication was analyzed by age, gender, co-morbidities, and the statin’s generic name. Results A total of 2,119,401 patients received CYP3A4-metabolized statins and 60,254 (2.84%) patients were co-medicated with contraindicated drugs. The proportion of co-medication was 4.6%, 2.2%, and 1.8% in simvastatin, lovastatin, and atorvastatin users, respectively. The most frequent combination was atorvastatin-itraconazole, followed by simvastatin-clarithromycin and simvastatin-itraconazole. Among the co-medicated patients, 85.3% were prescribed two drugs by different medical institutions. Conclusion The proportion of co-medication of statins with contraindicated drugs was relatively lower than that of previous studies; however, the co-medication occurring by different medical institutions was not managed appropriately. There is a need to develop an effective system and to conduct outcomes research confirming the association between co-medication and the risk of unfavorable clinical outcomes.
Collapse
|
22
|
Patiño-Rodríguez O, Martínez-Medina RM, Torres-Roque I, Martínez-Delgado M, Mares-García AS, Escobedo-Moratilla A, Covarrubias-Pinedo A, Arzola-Paniagua A, Herrera-Torres JL, Pérez-Urizar J. Absence of a significant pharmacokinetic interaction between atorvastatin and fenofibrate: a randomized, crossover, study of a fixed-dose formulation in healthy Mexican subjects. Front Pharmacol 2015; 6:4. [PMID: 25688207 PMCID: PMC4310268 DOI: 10.3389/fphar.2015.00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Several clinical trials have substantiated the efficacy of the co-administration of statins like atorvastatin (ATO) and fibrates. Without information currently available about the interaction between the two drugs, a pharmacokinetic study was conducted to investigate the effect when both drugs were co-administered. The purpose of this study was to investigate the pharmacokinetic profile of tablets containing ATO 20 mg, or the combination of ATO 20 mg with fenofibrate (FNO) 160 mg administered to healthy Mexican volunteers. This was a randomized, two-period, two-sequence, crossover study; 36 eligible subjects aged between 20-50 years were included. Blood samples were collected up to 96 h after dosing, and pharmacokinetic parameters were obtained by non-compartmental analysis. Adverse events were evaluated based on subject interviews and physical examinations. Area under the concentration-time curve (AUC) and maximum plasma drug concentration (Cmax) were measured for ATO as the reference and ATO and FNO as the test product for bioequivalence design. The estimation computed (90% confidence intervals) for ATO and FNO combination versus ATO for Cmax, AUC0-t and AUC0-∞, were 102,09, 125,95, and 120,97%, respectively. These results suggest that ATO and FNO have no relevant clinical-pharmacokinetic drug interaction.
Collapse
Affiliation(s)
- Omar Patiño-Rodríguez
- Dixpertia, Investigación Biofarmacéutica y Farmacológica S.C. San Luis Potosí San Luis Potosí, Mexico
| | - Rosa María Martínez-Medina
- Laboratorio de Farmacología y Fisiología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Irma Torres-Roque
- Dixpertia, Investigación Biofarmacéutica y Farmacológica S.C. San Luis Potosí San Luis Potosí, Mexico
| | - Maricela Martínez-Delgado
- Dixpertia, Investigación Biofarmacéutica y Farmacológica S.C. San Luis Potosí San Luis Potosí, Mexico
| | - América Susana Mares-García
- Laboratorio de Investigación Traslacional en Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | | | | | | | - José Pérez-Urizar
- Laboratorio de Farmacología y Fisiología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| |
Collapse
|
23
|
Malekinejad H, Rokhsartalab-Azar S, Hassani-Dizaj S, Alizadeh-Fanalou S, Rezabakhsh A, Amniattalab A. Effects of silymarin on the pharmacokinetics of atorvastatin in diabetic rats. Eur J Drug Metab Pharmacokinet 2014; 39:311-320. [PMID: 24346850 DOI: 10.1007/s13318-013-0166-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/04/2013] [Indexed: 02/05/2023]
Abstract
The effect of silymarin (SMN) on the pharmacokinetics of atorvastatin in diabetic rats was evaluated. Male Wistar rats were assigned into two major groups and then sub-grouped according to the purposes of the study. The first major group was subdivided into three groups (n = 6) including control, non-treated diabetic and SMN-treated diabetic animals. In the first major group, metabolism of testosterone by the hepatic microsomes was studied. The second major group also was divided to three groups including atorvastatin-treated non-diabetic, atorvastatin-treated diabetic and diabetic animals which received both atorvastatin and SMN. To study the pharmacokinetics of atorvastatin, serum samples were collected at 0, 3, 6, 12 and 24 h after the atorvastatin administration. Pharmacokinetic parameters were calculated using non-compartmental model. Streptozotocin-induced diabetes resulted in a remarkable induction of testosterone hydroxylation as the V max for 6β-hydroxytestosterone production in the diabetic rats (77.3 ± 8.6 pM/min/mg) was significantly higher than that in the control animals (45.9 ± 5.9 pM/min/mg). Moreover, SMN-treated animals showed a significant (P < 0.05) reduction of V max (59.4 ± 6.1 pM/min/mg). Diabetes resulted in a significant reduction of AUC (control 6.98 ± 0.58 vs diabetic rats 4.35 ± 0.24 h mg/ml) and C max values (control 0.52 ± 0.03 vs diabetic group 0.33 ± 0.01 μg/ml), while the SMN-received group showed remarkable recovery of diabetes-reduced values of AUC and C max. These findings indicated that diabetes resulted in a significant up-regulation of microsomal enzyme activities. Moreover, as SMN could significantly regulate the enzyme activities and consequently the atorvastatin pharmacokinetics in diabetic rats, its regulative effect in a combination therapy is concluded.
Collapse
Affiliation(s)
- Hassan Malekinejad
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Urmia University, P.O. Box 1177, Urmia, Iran,
| | | | | | | | | | | |
Collapse
|
24
|
Vildhede A, Karlgren M, Svedberg EK, Wisniewski JR, Lai Y, Norén A, Artursson P. Hepatic uptake of atorvastatin: influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug Metab Dispos 2014; 42:1210-8. [PMID: 24799396 DOI: 10.1124/dmd.113.056309] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Differences in the expression and function of the organic anion transporting polypeptide (OATP) transporters contribute to interindividual variability in atorvastatin clearance. However, the importance of the bile acid transporter sodium taurocholate cotransporting polypeptide (NTCP, SLC10A1) in atorvastatin uptake clearance (CLupt) is not yet clarified. To elucidate this issue, we investigated the relative contribution of NTCP, OATP1B1, OATP1B3, and OATP2B1 to atorvastatin CLupt in 12 human liver samples. The impact of inhibition on atorvastatin CLupt was also studied, using inhibitors of different isoform specificities. Expression levels of the four transport proteins were quantified by liquid chromatography tandem mass spectrometry. These data, together with atorvastatin in vitro kinetics, were used to predict the maximal transport activity (MTA) and interindividual differences in CLupt of each transporter in vivo. Subsequently, hepatic uptake impairment on coadministration of five clinically interacting drugs was predicted using in vitro inhibitory potencies. NTCP and OATP protein expression varied 3.7- to 32-fold among the 12 sample donors. The rank order in expression was OATP1B1 > OATP1B3 ≈ NTCP ≈ OATP2B1. NTCP was found to be of minor importance in atorvastatin disposition. Instead, OATP1B1 and OATP1B3 were confirmed as the major atorvastatin uptake transporters. The average contribution to atorvastatin uptake was OATP1B1 > OATP1B3 >> OATP2B1 > NTCP, although this rank order varied among individuals. The interindividual differences in transporter expression and CLupt resulted in marked differences in drug-drug interactions due to isoform-specific inhibition. We conclude that this variation should be considered in in vitro to in vivo extrapolations.
Collapse
Affiliation(s)
- Anna Vildhede
- Department of Pharmacy, Uppsala University, Uppsala, Sweden (A.V., M.K., E.K.S., P.A.); Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium Sweden (M.K., P.A.), Uppsala, Sweden; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany (J.R.W.); Pharmacokinetics, Dynamics and Drug Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (Y.L.); and Department of Surgery, Uppsala University, Uppsala, Sweden (A.N.)
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden (A.V., M.K., E.K.S., P.A.); Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium Sweden (M.K., P.A.), Uppsala, Sweden; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany (J.R.W.); Pharmacokinetics, Dynamics and Drug Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (Y.L.); and Department of Surgery, Uppsala University, Uppsala, Sweden (A.N.)
| | - Elin K Svedberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden (A.V., M.K., E.K.S., P.A.); Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium Sweden (M.K., P.A.), Uppsala, Sweden; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany (J.R.W.); Pharmacokinetics, Dynamics and Drug Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (Y.L.); and Department of Surgery, Uppsala University, Uppsala, Sweden (A.N.)
| | - Jacek R Wisniewski
- Department of Pharmacy, Uppsala University, Uppsala, Sweden (A.V., M.K., E.K.S., P.A.); Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium Sweden (M.K., P.A.), Uppsala, Sweden; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany (J.R.W.); Pharmacokinetics, Dynamics and Drug Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (Y.L.); and Department of Surgery, Uppsala University, Uppsala, Sweden (A.N.)
| | - Yurong Lai
- Department of Pharmacy, Uppsala University, Uppsala, Sweden (A.V., M.K., E.K.S., P.A.); Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium Sweden (M.K., P.A.), Uppsala, Sweden; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany (J.R.W.); Pharmacokinetics, Dynamics and Drug Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (Y.L.); and Department of Surgery, Uppsala University, Uppsala, Sweden (A.N.)
| | - Agneta Norén
- Department of Pharmacy, Uppsala University, Uppsala, Sweden (A.V., M.K., E.K.S., P.A.); Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium Sweden (M.K., P.A.), Uppsala, Sweden; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany (J.R.W.); Pharmacokinetics, Dynamics and Drug Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (Y.L.); and Department of Surgery, Uppsala University, Uppsala, Sweden (A.N.)
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden (A.V., M.K., E.K.S., P.A.); Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical Biology Consortium Sweden (M.K., P.A.), Uppsala, Sweden; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany (J.R.W.); Pharmacokinetics, Dynamics and Drug Metabolism, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (Y.L.); and Department of Surgery, Uppsala University, Uppsala, Sweden (A.N.)
| |
Collapse
|
25
|
Winsemius A, Ansquer JC, Olbrich M, van Amsterdam P, Aubonnet P, Beckmann K, Driessen S, van Assche H, Piskol G, Lehnick D, Mihara K. Pharmacokinetic interaction between simvastatin and fenofibrate with staggered and simultaneous dosing: Does it matter? J Clin Pharmacol 2014; 54:1038-47. [PMID: 24691799 DOI: 10.1002/jcph.291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/21/2014] [Indexed: 11/07/2022]
Abstract
Simvastatin and fenofibrate are frequently co-prescribed at staggered intervals for the treatment of dyslipidemia. Since a drug-drug interaction has been reported when the two drugs are given simultaneously, it is of clinical interest to know whether the interaction differs between simultaneous and staggered combinations. A study, assessing the impact of both combinations on the interaction, was conducted with 7-day treatment regimens using simvastatin 40 mg and fenofibrate 145 mg: (A) simvastatin only (evening), (B) simvastatin and fenofibrate (both in evening), and (C) simvastatin (evening) and fenofibrate (morning). Eighty-five healthy subjects received the respective treatments in a randomized, 3-way cross-over study. The pharmacokinetics of simvastatin and the active metabolite simvastatin acid were determined. There was a limited reduction in the AUC0-24h of simvastatin acid of 21 and 29% for simultaneous and staggered combination, respectively. The geometric mean AUC0-24h ratio of simvastatin acid for the two combined dosing regimens (B/C) and 90% confidence interval were 111% (102-121). The interaction apparently had no impact on lipid markers. The findings imply that the observed pharmacokinetic interaction is unlikely clinically relevant, and support the combined use of simvastatin and fenofibrate not only given at staggered interval but also given simultaneously.
Collapse
Affiliation(s)
- Anneke Winsemius
- Abbott Healthcare Products B.V., Established Pharmaceuticals, Weesp, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are generally well tolerated as monotherapy. Statins are associated with two important adverse effects, asymptomatic elevation in liver enzymes and myopathy. Myopathy is most likely to occur when statins are administered with other drugs. Statins are substrates of multiple drug transporters (including OAT- -P1B1, BCRP and MDR1) and several cytochrome P450 (CYP) enzymes (including CYP3A4, CYP2C8, CYP2C19, and CYP2C9). Possible adverse effects of statins can occur due to interactions in concomitant use of drugs that substantially inhibit or induce their methabolic pathway. This review summarizes the most important interactions of statins.
Collapse
|
28
|
Dunn SP, Holmes DR, Moliterno DJ. Drug-drug interactions in cardiovascular catheterizations and interventions. JACC Cardiovasc Interv 2013; 5:1195-208. [PMID: 23257367 DOI: 10.1016/j.jcin.2012.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 12/29/2022]
Abstract
Patients presenting for invasive cardiovascular procedures are frequently taking a variety of medications aimed to treat risk factors related to heart and vascular disease. During the procedure, antithrombotic, sedative, and analgesic medications are commonly needed, and after interventional procedures, new medications are often added for primary and secondary prevention of ischemic events. In addition to these prescribed medications, the use of over-the-counter drugs and supplements continues to rise. Most elderly patients, for example, are taking 5 or more prescribed medications and 1 or more supplements, and they often have some degree of renal insufficiency. This polypharmacy might result in drug-drug interactions that affect the balance of thrombotic and bleeding events during the procedure and during long-term treatment. Mixing of anticoagulants, for instance, might lead to periprocedural bleeding, and this is associated with an increase in long-term adverse events. Furthermore, the range of possible interactions with thienopyridine antiplatelets is of concern, because these drugs are essential to immediate and extended interventional success. The practical challenges in the field are great-some drug-drug interactions are likely present yet not well understood due to limited assays, whereas other interactions have well-described biological effects but seem to be more theoretical, because there is little to no clinical impact. Interventional providers need to be attentive to the potential for drug-drug interaction, the associated harm, and the appropriate action, if any, to minimize the potential for medication-related adverse events. This review will focus on drug-drug interactions that have the potential to affect procedural success, either through increases in immediate complications or compromising longer-term outcome.
Collapse
Affiliation(s)
- Steven P Dunn
- Department of Pharmacy Services, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
29
|
Hoch M, Hoever P, Theodor R, Dingemanse J. Almorexant effects on CYP3A4 activity studied by its simultaneous and time-separated administration with simvastatin and atorvastatin. Eur J Clin Pharmacol 2013; 69:1235-45. [PMID: 23334403 DOI: 10.1007/s00228-012-1470-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/23/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To characterise further the previously observed cytochrome P450 3A4 (CYP3A4) interaction of the dual orexin receptor antagonist almorexant. METHODS Pharmacokinetic interactions were investigated (n = 14 healthy male subjects in two treatment groups) between almorexant at steady-state when administered either concomitantly or 2 h after administration of single doses of simvastatin (40 mg) or atorvastatin (40 mg). RESULTS Almorexant dose-dependently increased simvastatin exposure (AUC0-∞) when administered concomitantly [geometric mean ratios (90 % CI): 2.5 (2.1, 2.9) (100 mg), 3.9 (3.3, 4.6) (200 mg)], but not Cmax [3.7 (3.0, 4.5) for both doses]. Time-separated administration resulted in relevant reductions of the interaction [AUC0-∞: 1.4 (1.2, 1.7) (100 mg), 1.7 (1.5, 2.0) (200 mg); Cmax: 1.5 (1.3, 1.9) (100 mg), 1.9 (1.6, 2.4) (200 mg)]. Similar results were obtained for hydroxyacid simvastatin. Independent of almorexant dose and relative time of administration, AUC0-∞ and Cmax of atorvastatin increased (ratios ranged from 1.1 to 1.5). AUC0-∞ and Cmax of o-hydroxy atorvastatin decreased dose-independently [AUC0-∞: 0.8 (0.8, 0.9) (100 mg), 0.6 (0.5, 0.6) (200 mg); Cmax: 0.3 (0.3, 0.4) (100 mg), 0.2 (0.2, 0.3) (200 mg)] when atorvastatin was concomitantly administered. Cmax of o-hydroxy atorvastatin slightly decreased (0.8 for both doses) following time-separated administration; AUC0-∞ was unchanged. CONCLUSIONS Whereas almorexant increased simvastatin exposure dose- and relative time of administration-dependently, atorvastatin exposure increased to a smaller extent and irrespective of dose and time. This suggests that the observed interaction of almorexant with simvastatin is mainly caused by intestinal CYP3A4 inhibition, whereas the interaction with atorvastatin is more due to hepatic CYP3A4 inhibition.
Collapse
Affiliation(s)
- Matthias Hoch
- Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | | | | | | |
Collapse
|
30
|
Koenen A, Kroemer HK, Grube M, Meyer zu Schwabedissen HE. Current understanding of hepatic and intestinal OATP-mediated drug-drug interactions. Expert Rev Clin Pharmacol 2012; 4:729-42. [PMID: 22111859 DOI: 10.1586/ecp.11.58] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
At present, many patients are medicated with various drugs, which are, at the same time, associated with an increased risk of drug-drug interactions (DDIs). Detailed analysis of mechanisms underlying DDIs is the basis of a better prediction of adverse drug events caused by drug interactions. In the last few decades, an involvement of transporters in such processes has been more and more recognized. Indeed, uptake transporters belonging to the organic anion-transporting polypeptide (OATP) family have been shown to interact with a variety of drugs in clinical use. Particularly, the subfamily of OATP1B transporters has been extensively studied, identifying several clinical significant DDIs based on those hepatic uptake transporters. By contrast, the role of OATP2B1 in this context is rather underestimated. Therefore, in addition to known interactions based on OATP1B transporters, we have focused on DDIs probably based on OATP2B1 inhibition in the liver and those possibly owing to the inhibition of OATP2B1-mediated drug absorption in the intestine.
Collapse
Affiliation(s)
- Anna Koenen
- Institute of Pharmacology, Ernst Moritz Arndt University, Friedrich-Loeffler-Straße 23, 17487 Greifswald, Germany
| | | | | | | |
Collapse
|
31
|
Nicolas JM, Chanteux H, Rosa M, Watanabe S, Stockis A. Effect of gemfibrozil on the metabolism of brivaracetam in vitro and in human subjects. Drug Metab Dispos 2012; 40:1466-72. [PMID: 22538270 DOI: 10.1124/dmd.112.045328] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Brivaracetam (BRV) is a new high-affinity synaptic vesicle protein 2A ligand in phase III for epilepsy. Initial studies suggested that the hydroxylation of BRV into BRV-OH is supported by CYP2C8. Other metabolic routes include hydrolysis into a carboxylic acid derivative (BRV-AC), which could be further oxidized into a hydroxy acid derivative (BRV-OHAC). The aim of the present study was to investigate the effect of gemfibrozil (CYP2C9 inhibitor) and its 1-O-β-glucuronide (CYP2C8 inhibitor) on BRV disposition both in vivo (healthy participants) and in vitro (human liver microsomes and hepatocytes). In a two-period randomized crossover study, 26 healthy male participants received a single oral dose of 150 mg of BRV alone or at steady state of gemfibrozil (600 mg b.i.d). Gemfibrozil did not modify plasma and urinary excreted BRV, BRV-OH, or BRV-AC. The only observed change was a modest decrease (approximately -40%) in plasma and urinary BRV-OHAC. In human hepatocytes and/or liver microsomes, gemfibrozil potently inhibited the hydroxylation of BRV-AC into BRV-OHAC (K(I) 12 μM) while having a marginal effect on BRV-OH formation (K(I) ≥153 μM). Gemfibrozil-1-O-β-glucuronide had no relevant effect on either reaction (K(I) >200 μM). In conclusion, gemfibrozil did not influence the pharmacokinetics of BRV and its hydroxylation into BRV-OH. Overall, in vitro and in vivo data suggest that CYP2C8 and CYP2C9 are not involved in BRV hydroxylation, whereas hydroxylation of BRV-AC to BRV-OHAC is likely to be mediated by CYP2C9.
Collapse
Affiliation(s)
- J-M Nicolas
- UCB Pharma, Chemin du Foriest, Braine-l'Alleud B-1420, Belgium.
| | | | | | | | | |
Collapse
|
32
|
Guo CX, Pei Q, Yin JY, Peng XD, Zhou BT, Zhao YC, Wu LX, Meng XG, Wang G, Li Q, Ouyang DS, Liu ZQ, Zhang W, Zhou HH. Effects ofGinkgo bilobaextracts on pharmacokinetics and efficacy of atorvastatin based on plasma indices. Xenobiotica 2012; 42:784-90. [DOI: 10.3109/00498254.2012.661100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Abstract
Fenofibrate is a fibric acid derivative indicated for the treatment of severe hypertriglyceridaemia and mixed dyslipidaemia in patients who have not responded to nonpharmacological therapies. The lipid-modifying effects of fenofibrate are mediated by the activation of peroxisome proliferator-activated receptor-α. Fenofibrate also has nonlipid, pleiotropic effects (e.g. reducing levels of fibrinogen, C-reactive protein and various pro-inflammatory markers, and improving flow-mediated dilatation) that may contribute to its clinical efficacy, particularly in terms of improving microvascular outcomes. Fenofibrate improves the lipid profile (particularly triglyceride [TG] and high-density lipoprotein-cholesterol [HDL-C] levels) in patients with dyslipidaemia. Compared with statin monotherapy, fenofibrate monotherapy tends to improve TG and HDL-C levels to a significantly greater extent, whereas statins improve low-density lipoprotein-cholesterol (LDL-C) and total cholesterol levels to a significantly greater extent. Fenofibrate is also associated with promoting a shift from small, dense, atherogenic LDL particles to larger, less dense LDL particles. Combination therapy with a statin plus fenofibrate generally improves the lipid profile to a greater extent than monotherapy with either agent in patients with dyslipidaemia and/or type 2 diabetes mellitus or the metabolic syndrome. In the pivotal FIELD and ACCORD trials in patients with type 2 diabetes, fenofibrate did not significantly reduce the risk of coronary heart disease events to a greater extent than placebo, and simvastatin plus fenofibrate did not significantly reduce the risk of major cardiovascular (CV) events to a greater extent than simvastatin plus placebo. However, the risk of some nonfatal macrovascular events and the incidence of certain microvascular outcomes were reduced significantly more with fenofibrate than with placebo in the FIELD trial, and in the ACCORD trial, patients receiving simvastatin plus fenofibrate were less likely to experience progression of diabetic retinopathy than those receiving simvastatin plus placebo. Subgroup analyses in the FIELD and ACCORD Lipid trials indicate that fenofibrate is of the greatest benefit in decreasing CV events in patients with atherogenic dyslipidaemia. Fenofibrate is generally well tolerated when administered alone or in combination with a statin. Thus, in patients with dyslipidaemia, particularly atherogenic dyslipidaemia, fenofibrate is a useful treatment option either alone or in combination with a statin.
Collapse
Affiliation(s)
- Kate McKeage
- Adis, a Wolters Kluwer Business, Auckland, New Zealand.
| | | |
Collapse
|
34
|
Abstract
Drug-drug interactions are a serious clinical issue. An important mechanism underlying drug-drug interactions is induction or inhibition of drug transporters that mediate the cellular uptake and efflux of xenobiotics. Especially drug transporters of the small intestine, liver and kidney are major determinants of the pharmacokinetic profile of drugs. Transporter-mediated drug-drug interactions in these three organs can considerably influence the pharmacokinetics and clinical effects of drugs. In this article, we focus on probe drugs lacking significant metabolism to highlight mechanisms of interactions of selected intestinal, hepatic and renal drug transporters (e.g., organic anion transporting polypeptide [OATP] 1A2, OATP2B1, OATP1B1, OATP1B3, P-gp, organic anion transporter [OAT] 1, OAT3, breast cancer resistance protein [BCRP], organic cation transporter [OCT] 2 and multidrug and toxin extrusion protein [MATE] 1). Genotype-dependent drug-drug interactions are also discussed.
Collapse
Affiliation(s)
- Fabian Müller
- Institute of Experimental & Clinical Pharmacology & Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany
| | | |
Collapse
|
35
|
Keating GM. Fenofibrate: a review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am J Cardiovasc Drugs 2011; 11:227-247. [PMID: 21675801 DOI: 10.2165/11207690-000000000-00000] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Fenofibrate is a fibric acid derivative with lipid-modifying effects that are mediated by the activation of peroxisome proliferator-activated receptor-α. Fenofibrate also has a number of nonlipid, pleiotropic effects (e.g. reducing levels of fibrinogen, C-reactive protein, and various pro-inflammatory markers, and improving flow-mediated dilatation) that may contribute to its clinical efficacy, particularly in terms of improving microvascular outcomes. The beneficial effects of fenofibrate on the lipid profile have been shown in a number of randomized controlled trials. In primary dyslipidemia, fenofibrate monotherapy consistently decreased triglyceride (TG) levels to a significantly greater extent than placebo; significantly greater increases in high-density lipoprotein cholesterol (HDL-C) levels and significantly greater reductions in low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) levels were also seen in some trials. Monotherapy with fenofibrate or gemfibrozil had generally similar effects on TG and HDL-C levels, although in one trial, TC and LDL-C levels were reduced to a significantly greater extent with fenofibrate than with gemfibrozil. Fenofibrate monotherapy tended to improve TG and HDL-C levels to a significantly greater extent than statin monotherapy in primary dyslipidemia, whereas statin monotherapy decreased LDL-C and TC levels to a significantly greater extent than fenofibrate monotherapy. Fenofibrate also had a beneficial effect on atherogenic dyslipidemia in patients with the metabolic syndrome or type 2 diabetes mellitus, reducing TG levels, tending to increase HDL-C levels, and promoting a shift to larger low-density lipoprotein particles. In terms of cardiovascular outcomes, fenofibrate did not reduce the risk of coronary heart disease (CHD) events to a greater extent than placebo in patients with type 2 diabetes in the FIELD trial. However, the risk of some nonfatal macrovascular events (e.g. nonfatal myocardial infarction, revascularization) and certain microvascular outcomes (e.g. amputation, first laser therapy for diabetic retinopathy, progression of albuminuria) was reduced to a significantly greater extent with fenofibrate than with placebo. Subgroup analysis revealed a significant reduction in the cardiovascular disease (CVD) event rate among fenofibrate recipients in the subgroup of patients with marked hypertriglyceridemia or marked dyslipidemia at baseline. In the ACCORD Lipid trial, there were no significant differences between patients with type 2 diabetes and a high risk of CVD events who received fenofibrate plus simvastatin and those who received placebo plus simvastatin for any of the primary or secondary cardiovascular outcomes. However, fenofibrate plus simvastatin was of benefit in patients who had markedly high TG levels and markedly low HDL-C levels at baseline. In addition, fenofibrate plus simvastatin slowed the progression of diabetic retinopathy. Fenofibrate is generally well tolerated. Common adverse events included increases in transaminase levels that were usually transient, minor, and asymptomatic, and gastrointestinal signs and symptoms. In conclusion, monotherapy with fenofibrate remains a useful option in patients with dyslipidemia, particularly in atherogenic dyslipidemia characterized by high TG and low HDL-C levels.
Collapse
|
36
|
Shitara Y. Clinical Importance of OATP1B1 and OATP1B3 in DrugDrug Interactions. Drug Metab Pharmacokinet 2011; 26:220-7. [DOI: 10.2133/dmpk.dmpk-10-rv-094] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|