1
|
Dadheech N, Bermúdez de León M, Czarnecka Z, Cuesta-Gomez N, Jasra IT, Pawlick R, Marfil-Garza B, Sapkota S, Verhoeff K, Razavy H, Anwar P, Singh A, Ray N, O' Gorman D, Jickling G, Lyon J, MacDonald P, Shapiro AMJ. Scale up manufacturing approach for production of human induced pluripotent stem cell-derived islets using Vertical Wheel® bioreactors. NPJ Regen Med 2025; 10:24. [PMID: 40442082 PMCID: PMC12122946 DOI: 10.1038/s41536-025-00409-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/11/2025] [Indexed: 06/02/2025] Open
Abstract
Advanced protocols show potential for human stem cells (SC)-derived islets generation under planar (2D) alone or three-dimensional (3D) cultures, but show challenges in scalability, cell loss, and batch-to-batch consistency. This study explores Vertical Wheel (VW)® bioreactor suspension technology to differentiate islets from human induced pluripotent stem cells, achieving uniform, transcriptionally mature, and functional SC-islets. A 5x increase in scale from 0.1 L to 0.5 L reactors resulted in a 12-fold (15,005-183,002) increase in islet equivalent count (IEQ) without compromising islet structure. SC-islets show enriched β-cell composition (~63% CPPT+NKX6.1+ISL1+), glucose responsive insulin release (3.9-6.1-fold increase), and reversed diabetes in STZ-treated mice. Single cell RNA sequencing and flowcytometry analysis confirmed transcriptional maturity and functional identity, similar to adult islets. Lastly, harvested SC-islet grafts demonstrate improved islet functionality and mature transcriptomic signatures. Overall, scale-up in VW® bioreactor technology enhances IEQ yield with minimal variability and reduced cell loss, offering a pathway for clinical-grade SC-islet production.
Collapse
Affiliation(s)
- Nidheesh Dadheech
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada.
| | - Mario Bermúdez de León
- Centro de Investigación Biomédica del Noreste, Departamento de Biología Molecular, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Zofia Czarnecka
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nerea Cuesta-Gomez
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Braulio Marfil-Garza
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- CHRISTUS-LatAm Hub-Excellence and Innovation Center, Monterrey, Mexico
| | - Sandhya Sapkota
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Haide Razavy
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Perveen Anwar
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Abhineet Singh
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| | - Nilanjan Ray
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| | - Doug O' Gorman
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada
| | - Glen Jickling
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - James Lyon
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick MacDonald
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Surgery, University of Alberta, Edmonton, AB, Canada.
- Clinical Islet Transplant Program, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Lithovius V, Lahdenpohja S, Ibrahim H, Saarimäki-Vire J, Uusitalo L, Montaser H, Mikkola K, Yim CB, Keller T, Rajander J, Balboa D, Barsby T, Solin O, Nuutila P, Grönroos TJ, Otonkoski T. Non-invasive quantification of stem cell-derived islet graft size and composition. Diabetologia 2024; 67:1912-1929. [PMID: 38871836 PMCID: PMC11410899 DOI: 10.1007/s00125-024-06194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
AIMS/HYPOTHESIS Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.
Collapse
Affiliation(s)
- Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | | | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Mikkola
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Cheng-Bin Yim
- Turku PET Centre, University of Turku, Turku, Finland
| | - Thomas Keller
- Turku PET Centre, University of Turku, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Olof Solin
- Turku PET Centre, University of Turku, Turku, Finland
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- The Wellbeing Services County of Southwest Finland, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Bangari DS, Lanigan LG, Cramer SD, Grieves JL, Meisner R, Rogers AB, Galbreath EJ, Bolon B. Toxicologic Neuropathology of Novel Biotherapeutics. Toxicol Pathol 2023; 51:414-431. [PMID: 38380881 DOI: 10.1177/01926233241230542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Biotherapeutic modalities such as cell therapies, gene therapies, nucleic acids, and proteins are increasingly investigated as disease-modifying treatments for severe and life-threatening neurodegenerative disorders. Such diverse bio-derived test articles are fraught with unique and often unpredictable biological consequences, while guidance regarding nonclinical experimental design, neuropathology evaluation, and interpretation is often limited. This paper summarizes key messages offered during a half-day continuing education course on toxicologic neuropathology of neuro-targeted biotherapeutics. Topics included fundamental neurobiology concepts, pharmacology, frequent toxicological findings, and their interpretation including adversity decisions. Covered biotherapeutic classes included cell therapies, gene editing and gene therapy vectors, nucleic acids, and proteins. If agents are administered directly into the central nervous system, initial screening using hematoxylin and eosin (H&E)-stained sections of currently recommended neural organs (brain [7 levels], spinal cord [3 levels], and sciatic nerve) may need to expand to include other components (e.g., more brain levels, ganglia, and/or additional nerves) and/or special neurohistological procedures to characterize possible neural effects (e.g., cell type-specific markers for reactive glial cells). Scientists who evaluate the safety of novel biologics will find this paper to be a practical reference for preclinical safety testing and risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - René Meisner
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | |
Collapse
|
4
|
Beetler DJ, Di Florio DN, Law EW, Groen CM, Windebank AJ, Peterson QP, Fairweather D. The evolving regulatory landscape in regenerative medicine. Mol Aspects Med 2023; 91:101138. [PMID: 36050142 PMCID: PMC10162454 DOI: 10.1016/j.mam.2022.101138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/12/2022] [Indexed: 01/17/2023]
Abstract
Regenerative medicine as a field has emerged as a new component of modern medicine and medical research that encompasses a wide range of products including cellular and acellular therapies. As this new field emerged, regulatory agencies like the Food and Drug Administration (FDA) rapidly adapted existing regulatory frameworks to address the transplantation, gene therapy, cell-based therapeutics, and acellular biologics that fall under the broader regenerative medicine umbrella. Where it has not been possible to modify existing regulation and processes, entirely new frameworks have been generated with the intention of providing flexible, forward-facing systems to regulate this rapidly growing field. This review discusses the current state of FDA regulatory affairs in the context of stem cells and extracellular vesicles by highlighting gaps in the current regulatory system and then discussing where regulatory science in regenerative medicine may be headed based on these gaps and the FDA's historical ability to deal with emerging fields. Lastly, we utilize case studies in stem cell and acellular based treatments to demonstrate how regulatory science has evolved in regenerative medicine and highlight the ongoing clinical efforts and challenges of these therapies.
Collapse
Affiliation(s)
- Danielle J Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Damian N Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ethan W Law
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - Chris M Groen
- Department of Neurology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Anthony J Windebank
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Neurology, Mayo Clinic, Rochester, MN, 55902, USA
| | - Quinn P Peterson
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, 55902, USA
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Wagner LE, Melnyk O, Duffett BE, Linnemann AK. Mouse models and human islet transplantation sites for intravital imaging. Front Endocrinol (Lausanne) 2022; 13:992540. [PMID: 36277698 PMCID: PMC9579277 DOI: 10.3389/fendo.2022.992540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023] Open
Abstract
Human islet transplantations into rodent models are an essential tool to aid in the development and testing of islet and cellular-based therapies for diabetes prevention and treatment. Through the ability to evaluate human islets in an in vivo setting, these studies allow for experimental approaches to answer questions surrounding normal and disease pathophysiology that cannot be answered using other in vitro and in vivo techniques alone. Intravital microscopy enables imaging of tissues in living organisms with dynamic temporal resolution and can be employed to measure biological processes in transplanted human islets revealing how experimental variables can influence engraftment, and transplant survival and function. A key consideration in experimental design for transplant imaging is the surgical placement site, which is guided by the presence of vasculature to aid in functional engraftment of the islets and promote their survival. Here, we review transplantation sites and mouse models used to study beta cell biology in vivo using intravital microscopy and we highlight fundamental observations made possible using this methodology.
Collapse
Affiliation(s)
- Leslie E. Wagner
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryce E. Duffett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amelia K. Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Cuesta-Gomez N, Verhoeff K, Jasra IT, Pawlick R, Dadheech N, Shapiro AMJ. Characterization of stem-cell-derived islets during differentiation and after implantation. Cell Rep 2022; 40:111238. [PMID: 36001981 DOI: 10.1016/j.celrep.2022.111238] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/26/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022] Open
Abstract
Recapitulation of embryonic pancreatic development has enabled development of methods for in vitro islet cell differentiation using human pluripotent stem cells (hPSCs), which have the potential to cure diabetes. Advanced methods for optimal generation of stem-cell-derived islets (SC-islets) has enabled successful diabetes reversal in rodents and shown promising early clinical trial outcomes. The main impediment for use of SC-islets is concern about safety because of off-target growth resulting from contaminated residual cells. In this review, we summarize the different endocrine and non-endocrine cell populations that have been described to emerge throughout β cell differentiation and after transplantation. We discuss the most recent approaches to enrich endocrine populations and remove off-target cells. Finally, we discuss the critical quality control and release criteria testing that we anticipate will be required prior to transplantation to ensure product safety.
Collapse
Affiliation(s)
- Nerea Cuesta-Gomez
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Kevin Verhoeff
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Ila Tewari Jasra
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Rena Pawlick
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada
| | - Nidheesh Dadheech
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada.
| | - A M James Shapiro
- Alberta Diabetes Institute, Department of Surgery, 1-002 Li Ka Shing Centre for Health Research Innovation, University of Alberta, 112 St. NW & 87 Ave. NW, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|