1
|
Qin Y, Wu F, Wang R, Wang J, Zhang J, Pan Y. Modulation of Autophagy on Cinnamaldehyde Induced THP-1 Cell Activation. Int J Mol Sci 2025; 26:2377. [PMID: 40141022 PMCID: PMC11941762 DOI: 10.3390/ijms26062377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Cinnamaldehyde (CIN), which is a cosmetic fragrance allergen regulated by the European Union, can induce allergic contact dermatitis in consumers, reducing their quality of life. Autophagy may be associated with the dendritic cell (DC) response to chemical sensitizers. We hypothesized that CIN would activate DCs through autophagy during skin sensitization. In this study, Tohoku Hospital Pediatrics-1 cells (THP-1 cells) were used as an in vitro DC model, and we evaluated the expression of cell activation markers, intracellular oxidative stress, and autophagy pathway-related genes in response to CIN in THP-1 cells. CIN exposure activated THP-1 cells, which presented increases in CD54 and CD86 expression and ROS generation. Transcriptomic analysis revealed that the genes that were differentially expressed after CIN stimulation were mostly associated with autophagy. The autophagy markers LC3B, p62, and ATG5 had upregulated mRNA and protein levels after CIN exposure. Furthermore, the effects of the autophagy inhibitor Baf-A1 and the autophagy activator rapamycin were investigated on CIN-treated cells. Pretreatment with Baf-A1 in THP-1 cells impaired autophagic flux and dramatically promoted cell activation and oxidative stress triggered by CIN. Conversely, rapamycin inhibited cell activation and the ROS content in CIN-challenged cells while increasing autophagy levels via a reduction in mTOR expression. These results suggest that the autophagy pathway has a pivotal influence on the regulation of CIN-induced activation in THP-1 cells, which provides new insight into the pathogenesis and precise therapeutic strategies for ACD.
Collapse
Affiliation(s)
- Yi Qin
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Fan Wu
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Rui Wang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Jun Wang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Jiaqi Zhang
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| | - Yao Pan
- Department of Cosmetics, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Q.); (F.W.); (R.W.); (J.W.); (J.Z.)
- Beijing Key Laboratory of Plant Research and Development, Beijing 100048, China
| |
Collapse
|
2
|
Burla S, Chary A, Serchi T, Cambier S, Sullivan K, Baker E, Sadekar N, Gutleb AC. Responses of an In Vitro Coculture Alveolar Model for the Prediction of Respiratory Sensitizers (ALIsens ®) Following Exposure to Skin Sensitizers and Non-Sensitizers. TOXICS 2024; 13:29. [PMID: 39853027 PMCID: PMC11769448 DOI: 10.3390/toxics13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025]
Abstract
In recent years, a global increase in allergy incidence following chemical exposure has been observed. While the process of skin sensitization is well characterized through the adverse outcome pathway (AOP) framework, the immunological mechanisms underlying respiratory sensitization remain less well understood. Respiratory sensitizers are classified as substances of very high concern (SVHC) under the European Union (EU) regulation for the registration, evaluation, authorization and restriction of chemicals (REACH), emphasizing the importance of evaluating respiratory tract sensitization as a critical hazard. However, the existing new approach methodologies (NAMs) for the identification of skin sensitizers lack the capacity to differentiate between skin and respiratory sensitizers. Thus, it is imperative to develop physiologically relevant test systems specifically tailored to assess respiratory sensitizers. This study aimed to evaluate the efficacy of ALIsens®, a three-dimensional (3D) in vitro alveolar model designed for the identification of respiratory sensitizers and to determine its ability to correctly identify sensitizers. In this study, we used a range of skin sensitizers and non-sensitizers to define the optimal exposure dose, identify biomarkers, and establish tentative thresholds for correct sensitizer classification. The results demonstrate that ALIsens® is a promising in vitro complex model that could successfully discriminate respiratory sensitizers from skin sensitizers and non-sensitizers. Furthermore, the thymic stromal lymphopoietin receptor (TSLPr) cell surface marker was confirmed as a reliable biomarker for predicting respiratory sensitization hazards.
Collapse
Affiliation(s)
- Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Invitrolize Sarl, 4422 Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Tommaso Serchi
- Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine (PCRM), Washington, DC 20016, USA
- Institute for In Vitro Sciences, Inc. (IIVS), Gaithersburg, MD 20878, USA
| | - Elizabeth Baker
- Physicians Committee for Responsible Medicine (PCRM), Washington, DC 20016, USA
| | - Nikaeta Sadekar
- Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ 07430, USA
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), 4422 Belvaux, Luxembourg
- Invitrolize Sarl, 4422 Belvaux, Luxembourg
| |
Collapse
|
3
|
Koyama H, Maeda A, Zhai P, Koiwai K, Kurose K. Development of RT h-CLAT, a Rapid Assessment Method for Skin Sensitizers Using THP-1 Cells as a Biosensor. BIOSENSORS 2024; 14:632. [PMID: 39727897 DOI: 10.3390/bios14120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
In recent years, in vitro skin sensitization assays have been recommended as animal-free alternatives for the safety assessment of cosmetics and topical drugs, and these methods have been adopted in OECD test guidelines. However, existing assays remain complex and costly. To address this, we recently developed a more efficient, cost-effective, and accurate method for evaluating skin sensitizers by using immune cell-derived THP-1 cells as a biosensor, coupled with an RT-PCR-based assay. In this study, we further refined this method to enable even faster assessment of skin sensitization. By performing comprehensive RNA sequencing (RNA-Seq) analysis, we examined gene expression profiles induced by sensitizers in THP-1 cells to identify potential sensitization markers, ultimately selecting the optimal markers and conditions for evaluation. Our findings indicate that after exposing a test chemical to THP-1 cells for 5 h, measuring the expression levels of the JUN and HMOX1 genes via real-time PCR allows for a reliable assessment of sensitization. A test compound is defined as a sensitizer if either gene shows a more than two-fold increase in its expression compared to the control. Applying this improved method, designated as RT h-CLAT, we evaluated the sensitization potential of 43 chemicals. The results demonstrated higher accuracy compared to the human cell line activation test (h-CLAT) listed in the OECD guidelines, while also reducing the required assessment time from two days to one.
Collapse
Affiliation(s)
- Hiroki Koyama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ayami Maeda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Peiqi Zhai
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Keiichiro Koiwai
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
4
|
Qiao W, Xie T, Lu J, Jia T. Development of machine learning models for the prediction of the skin sensitization potential of cosmetic compounds. PeerJ 2024; 12:e18672. [PMID: 39686995 PMCID: PMC11648681 DOI: 10.7717/peerj.18672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background To enhance the accuracy of allergen detection in cosmetic compounds, we developed a co-culture system that combines HaCaT keratinocytes (transfected with a luciferase plasmid driven by the AKR1C2 promoter) and THP-1 cells for machine learning applications. Methods Following chemical exposure, cell cytotoxicity was assessed using CCK-8 to determine appropriate stimulation concentrations. RNA-Seq was subsequently employed to analyze THP-1 cells, followed by differential expression gene (DEG) analysis and weighted gene co-expression net-work analysis (WGCNA). Using two data preprocessing methods and three feature extraction techniques, we constructed and validated models with eight machine learning algorithms. Results Our results demonstrated the effectiveness of this integrated approach. The best performing models were random forest (RF) and voom-based diagonal quadratic discriminant analysis (voomDQDA), both achieving 100% accuracy. Support vector machine (SVM) and voom based nearest shrunken centroids (voomNSC) showed excellent performance with 96.7% test accuracy, followed by voom-based diagonal linear discriminant analysis (voomDLDA) at 95.2%. Nearest shrunken centroids (NSC), Poisson linear discriminant analysis (PLDA) and negative binomial linear discriminant analysis (NBLDA) achieved 90.5% and 90.2% accuracy, respectively. K-nearest neighbors (KNN) showed the lowest accuracy at 85.7%. Conclusion This study highlights the potential of integrating co-culture systems, RNA-Seq, and machine learning to develop more accurate and comprehensive in vitro methods for skin sensitization testing. Our findings contribute to the advancement of cosmetic safety assessments, potentially reducing the reliance on animal testing.
Collapse
Affiliation(s)
- Wu Qiao
- Pigeon Manufacturing (Shanghai) Co., Ltd., Shanghai, China
| | - Tong Xie
- Pigeon Manufacturing (Shanghai) Co., Ltd., Shanghai, China
| | - Jing Lu
- Pigeon Manufacturing (Shanghai) Co., Ltd., Shanghai, China
| | - Tinghan Jia
- Pigeon Manufacturing (Shanghai) Co., Ltd., Shanghai, China
| |
Collapse
|
5
|
Hargitai R, Parráková L, Szatmári T, Monfort-Lanzas P, Galbiati V, Audouze K, Jornod F, Staal YCM, Burla S, Chary A, Gutleb AC, Lumniczky K, Vandebriel RJ, Gostner JM. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. FRONTIERS IN TOXICOLOGY 2024; 6:1331803. [PMID: 39135743 PMCID: PMC11317441 DOI: 10.3389/ftox.2024.1331803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/27/2024] [Indexed: 08/15/2024] Open
Abstract
Respiratory sensitization is a complex immunological process eventually leading to hypersensitivity following re-exposure to the chemical. A frequent consequence is occupational asthma, which may occur after long latency periods. Although chemical-induced respiratory hypersensitivity has been known for decades, there are currently no comprehensive and validated approaches available for the prospective identification of chemicals that induce respiratory sensitization, while the expectations of new approach methodologies (NAMs) are high. A great hope is that due to a better understanding of the molecular key events, new methods can be developed now. However, this is a big challenge due to the different chemical classes to which respiratory sensitizers belong, as well as because of the complexity of the response and the late manifestation of symptoms. In this review article, the current information on respiratory sensitization related processes is summarized by introducing it in the available adverse outcome pathway (AOP) concept. Potentially useful models for prediction are discussed. Knowledge gaps and gaps of regulatory concern are identified.
Collapse
Affiliation(s)
- Rita Hargitai
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Lucia Parráková
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Pablo Monfort-Lanzas
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
- Institute of Bioinformatics, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università Degli Studi di Milano (UNIMI), Milano, Italy
| | | | | | - Yvonne C. M. Staal
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sabina Burla
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Aline Chary
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Arno C. Gutleb
- Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Centre for Public Health and Pharmacy (NCPHP), Budapest, Hungary
| | - Rob J. Vandebriel
- Centre for Health Protection, National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Johanna M. Gostner
- Biochemical Immunotoxicology Group, Institute of Medical Biochemistry, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
6
|
Tanabe I, Yoshida K, Ishikawa S, Ishimori K, Hashizume T, Yoshimoto T, Ashikaga T. Development of an In Vitro Sensitisation Test Using a Coculture System of Human Bronchial Epithelium and Immune Cells. Altern Lab Anim 2023; 51:387-400. [PMID: 37796587 DOI: 10.1177/02611929231204823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Chemical respiratory sensitisation is a serious health problem. However, to date, there are no validated test methods available for identifying respiratory sensitisers. The aim of this study was to develop an in vitro sensitisation test by modifying the human cell line activation test (h-CLAT) to detect respiratory sensitisers and distinguish them from skin sensitisers. THP-1 cells were exposed to the test chemicals (two skin sensitisers and six respiratory sensitisers), either as monocultures or as cocultures with air-liquid interface-cultured reconstructed human bronchial epithelium. The responses were analysed by measuring the expression levels of surface markers on THP-1 cells (CD86, CD54 and OX40L) and the concentrations of cytokines in the culture media (interleukin (IL)-8, IL-33 and thymic stromal lymphopoietin (TSLP)). The cocultures exhibited increased CD54 expression on THP-1 cells; moreover, in the cocultures but not in the monocultures, exposure to two uronium salts (i.e. respiratory sensitisers) increased CD54 expression on THP-1 cells to levels above the criteria for a positive h-CLAT result. Additionally, exposure to the respiratory sensitiser abietic acid, significantly increased IL-8 concentration in the culture medium, but only in the cocultures. Although further optimisation of the method is needed to distinguish respiratory from skin sensitisers by using these potential markers (OX40L, IL-33 and TSLP), the coculture of THP-1 cells with bronchial epithelial cells offers a potentially useful approach for the detection of respiratory sensitisers.
Collapse
Affiliation(s)
- Ikuya Tanabe
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Kunitaka Yoshida
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Shinkichi Ishikawa
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Kanae Ishimori
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Tsuneo Hashizume
- Scientific Product Assessment Center, R&D Group, Japan Tobacco Inc., Kanagawa, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takao Ashikaga
- Division of Risk Assessment, National Institute of Health Sciences Center for Biological Safety and Research, Kanagawa, Japan
| |
Collapse
|
7
|
Höper T, Karkossa I, Dumit VI, von Bergen M, Schubert K, Haase A. A comparative proteomics analysis of four contact allergens in THP-1 cells shows distinct alterations in key metabolic pathways. Toxicol Appl Pharmacol 2023; 475:116650. [PMID: 37541627 DOI: 10.1016/j.taap.2023.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Allergic contact dermatitis (ACD) is the predominant form of immunotoxicity in humans. The sensitizing potential of chemicals can be assessed in vitro. However, a better mechanistic understanding could improve the current OECD-validated test battery. The aim of this study was to get insights into toxicity mechanisms of four contact allergens, p-benzoquinone (BQ), 2,4-dinitrochlorobenzene (DNCB), p-nitrobenzyl bromide (NBB) and NiSO4, by analyzing differential proteome alterations in THP-1 cells using two common proteomics workflows, stable isotope labeling by amino acids in cell culture (SILAC) and label-free quantification (LFQ). Here, SILAC was found to deliver more robust results. Overall, the four allergens induced similar responses in THP-1 cells, which underwent profound metabolic reprogramming, including a striking upregulation of the TCA cycle accompanied by pronounced induction of the Nrf2 oxidative stress response pathway. The magnitude of induction varied between the allergens with DNCB and NBB being most potent. A considerable overlap between transcriptome-based signatures of the GARD assay and the proteins identified in our study was found. When comparing the results of this study to a previous proteomics study in human primary monocyte-derived dendritic cells, we found a rather low share in regulated proteins. However, on pathway level, the overlap was high, indicating that affected pathways rather than single proteins are more eligible to investigate proteomic changes induced by contact allergens. Overall, this study confirms the potential of proteomics to obtain a profound mechanistic understanding, which may help improving existing in vitro assays for skin sensitization.
Collapse
Affiliation(s)
- Tessa Höper
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany; Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Verónica I Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
8
|
da Silva ACG, de Morais Carvalho Filho S, Valadares MC. Biological effects triggered by chemical respiratory sensitizers on THP-1 monocytic cells. Toxicol In Vitro 2023; 90:105602. [PMID: 37146919 DOI: 10.1016/j.tiv.2023.105602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Respiratory sensitization encompasses a group of diseases that manifest through airway hyperresponsiveness and airflow limitation. Although the concerns regarding human health, to date there are still no validated methods for preclinical assessment of this class of toxicants once the chemical respiratory allergy mechanistic framework is not fully understood. As Dendritic Cells (DCs) are the bridging elements between innate and adaptative immune responses, we preliminarily investigated the biological alterations triggered by seven different LMW respiratory allergens in the DC model THP-1. The results have shown that exposure to respiratory allergens promoted alterations in DCs maturation/activation status and triggered pro-inflammatory changes in these cells through increased expression for the CD86/HLA-DR/CD11c surface biomarkers and enhancement in IL-8 and IL-6 production by exposed THP-1 cells. Therefore, evidence was found to support the startpoint for chemical respiratory allergy pathogenesis elucidation, subsidizing the contribution of dendritic cells in such pathomechanisms.
Collapse
Affiliation(s)
- Artur Christian Garcia da Silva
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Sérgio de Morais Carvalho Filho
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In vitro Toxicology, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Kolle SN, Flach M, Kleber M, Basketter DA, Wareing B, Mehling A, Hareng L, Watzek N, Bade S, Funk-Weyer D, Landsiedel R. Plant extracts, polymers and new approach methods: Practical experience with skin sensitization assessment. Regul Toxicol Pharmacol 2023; 138:105330. [PMID: 36599391 DOI: 10.1016/j.yrtph.2022.105330] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
Over the last decade, research into methodologies to identify skin sensitization hazards has led to the adoption of several non-animal methods as OECD test guidelines. However, predictive accuracy beyond the chemical domains of the individual validation studies remains largely untested. In the present study, skin sensitization test results from in vitro and in chemico methods for 12 plant extracts and 15 polymeric materials are reported and compared to available in vivo skin sensitization data. Eight plant extracts were tested in the DPRA and h-CLAT, with the 2 out of 3 approach resulting in a balanced accuracy of 50%. The balanced accuracy for the 11 plant extracts assessed in the SENS-IS was 88%. Excluding 5 polymers inconclusive in vitro, the remainder, assessed using the 2 out of 3 approach, resulted in 63% balanced accuracy. The SENS-IS method, excluding one polymeric material due to technical inapplicability, showed 68% balanced accuracy. Although based on limited numbers, the results presented here indicate that some substance subgroups may not be in the applicability domains of the method used and careful analysis is required before positive or negative results can be accepted.
Collapse
Affiliation(s)
| | | | - Marcus Kleber
- BASF Personal Care and Nutrition GmbH, Duesseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hölken JM, Teusch N. The Monocytic Cell Line THP-1 as a Validated and Robust Surrogate Model for Human Dendritic Cells. Int J Mol Sci 2023; 24:1452. [PMID: 36674966 PMCID: PMC9866978 DOI: 10.3390/ijms24021452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
We have implemented an improved, cost-effective, and highly reproducible protocol for a simple and rapid differentiation of the human leukemia monocytic cell line THP-1 into surrogates for immature dendritic cells (iDCs) or mature dendritic cells (mDCs). The successful differentiation of THP-1 cells into iDCs was determined by high numbers of cells expressing the DC activation markers CD54 (88%) and CD86 (61%), and the absence of the maturation marker CD83. The THP-1-derived mDCs are characterized by high numbers of cells expressing CD54 (99%), CD86 (73%), and the phagocytosis marker CD11b (49%) and, in contrast to THP-1-derived iDCs, CD83 (35%) and the migration marker CXCR4 (70%). Treatment of iDCs with sensitizers, such as NiSO4 and DNCB, led to high expression of CD54 (97%/98%; GMFI, 3.0/3.2-fold induction) and CD86 (64%/96%; GMFI, 4.3/3.2-fold induction) compared to undifferentiated sensitizer-treated THP-1 (CD54, 98%/98%; CD86, 55%/96%). Thus, our iDCs are highly suitable for toxicological studies identifying potential sensitizing or inflammatory compounds. Furthermore, the expression of CD11b, CD83, and CXCR4 on our iDC and mDC surrogates could allow studies investigating the molecular mechanisms of dendritic cell maturation, phagocytosis, migration, and their use as therapeutic targets in various disorders, such as sensitization, inflammation, and cancer.
Collapse
Affiliation(s)
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Chilton ML, Api AM, Foster RS, Gerberick GF, Lavelle M, Macmillan DS, Na M, O'Brien D, O'Leary-Steele C, Patel M, Ponting DJ, Roberts DW, Safford RJ, Tennant RE. Updating the Dermal Sensitisation Thresholds using an expanded dataset and an in silico expert system. Regul Toxicol Pharmacol 2022; 133:105200. [PMID: 35662638 DOI: 10.1016/j.yrtph.2022.105200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
The Dermal Sensitisation Thresholds (DST) are Thresholds of Toxicological Concern, which can be used to justify exposure-based waiving when conducting a skin sensitisation risk assessment. This study aimed to update the published DST values by expanding the size of the Local Lymph Node Assay dataset upon which they are based, whilst assigning chemical reactivity using an in silico expert system (Derek Nexus). The potency values within the expanded dataset fitted a similar gamma distribution to that observed for the original dataset. Derek Nexus was used to classify the sensitisation activity of the 1152 chemicals in the expanded dataset and to predict which chemicals belonged to a High Potency Category (HPC). This two-step classification led to three updated thresholds: a non-reactive DST of 710 μg/cm2 (based on 79 sensitisers), a reactive (non-HPC) DST of 73 μg/cm2 (based on 331 sensitisers) and an HPC DST of 1.0 μg/cm2 (based on 146 sensitisers). Despite the dataset containing twice as many sensitisers, these values are similar to the previously published thresholds, highlighting their robustness and increasing confidence in their use. By classifying reactivity in silico the updated DSTs can be applied within a skin sensitisation risk assessment in a reproducible, scalable and accessible manner.
Collapse
Affiliation(s)
- Martyn L Chilton
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK.
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | - Robert S Foster
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | | | - Maura Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | - Donna S Macmillan
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Mihwa Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | - Devin O'Brien
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | | | - Mukesh Patel
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - David W Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Robert J Safford
- B-Safe Toxicology Consulting, 31 Hayway, Rushden, Northants, NN10 6AG, UK
| | - Rachael E Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| |
Collapse
|
12
|
Expansion of the Cosmetics Europe skin sensitisation database with new substances and PPRA data. Regul Toxicol Pharmacol 2022; 131:105169. [PMID: 35447229 DOI: 10.1016/j.yrtph.2022.105169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
The assessment of skin sensitisation is a key requirement in all regulated sectors, with the European Union's regulation of cosmetic ingredients being most challenging, since it requires quantitative skin sensitisation assessment based on new approach methodologies (NAMs). To address this challenge, an in-depth and harmonised understanding of NAMs is fundamental to inform the assessment. Therefore, we compiled a database of NAMs, and in vivo (human and local lymph node assay) reference data. Here, we expanded this database with 41 substances highly relevant for cosmetic industry. These structurally different substances were tested in six NAMs (Direct Peptide Reactivity Assay, KeratinoSens™, human Cell Line Activation Test, U-SENS™, SENS-IS, Peroxidase Peptide Reactivity Assay). Our analysis revealed that the substances could be tested without technical limitations, but were generally overpredicted when compared to reference results. Reasons for this reduced predictivity were explored through pairwise NAM comparisons and association of overprediction with hydrophobicity. We conclude that more detailed understanding of how NAMs apply to a wider range of substances is needed. This would support a flexible and informed choice of NAMs to be optimally applied in the context of a next generation risk assessment framework, ultimately contributing to the characterisation and reduction of uncertainty.
Collapse
|
13
|
Abstract
Reliable human potency data are necessary for conducting quantitative risk assessments, as well as development and validation of new nonanimal methods for skin sensitization assessments. Previously, human skin sensitization potency of fragrance materials was derived primarily from human data or the local lymph node assay.
Collapse
|
14
|
Ta GH, Weng CF, Leong MK. In silico Prediction of Skin Sensitization: Quo vadis? Front Pharmacol 2021; 12:655771. [PMID: 34017255 PMCID: PMC8129647 DOI: 10.3389/fphar.2021.655771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
Skin direct contact with chemical or physical substances is predisposed to allergic contact dermatitis (ACD), producing various allergic reactions, namely rash, blister, or itchy, in the contacted skin area. ACD can be triggered by various extremely complicated adverse outcome pathways (AOPs) remains to be causal for biosafety warrant. As such, commercial products such as ointments or cosmetics can fulfill the topically safe requirements in animal and non-animal models including allergy. Europe, nevertheless, has banned animal tests for the safety evaluations of cosmetic ingredients since 2013, followed by other countries. A variety of non-animal in vitro tests addressing different key events of the AOP, the direct peptide reactivity assay (DPRA), KeratinoSens™, LuSens and human cell line activation test h-CLAT and U-SENS™ have been developed and were adopted in OECD test guideline to identify the skin sensitizers. Other methods, such as the SENS-IS are not yet fully validated and regulatorily accepted. A broad spectrum of in silico models, alternatively, to predict skin sensitization have emerged based on various animal and non-animal data using assorted modeling schemes. In this article, we extensively summarize a number of skin sensitization predictive models that can be used in the biopharmaceutics and cosmeceuticals industries as well as their future perspectives, and the underlined challenges are also discussed.
Collapse
Affiliation(s)
- Giang Huong Ta
- Department of Chemistry, National Dong Hwa University, Shoufeng, Taiwan
| | - Ching-Feng Weng
- Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
15
|
Preliminary discovery of novel markers for human cell line activation test (h-CLAT). Toxicol In Vitro 2021; 74:105154. [PMID: 33774146 DOI: 10.1016/j.tiv.2021.105154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
The human cell line activation test (h-CLAT) is an OECD approved (Test No. 442E) assay to identify novel skin sensitizers. h-CLAT simulates dendritic cell activation in the skin sensitization pathway and is based on the measurement of CD54 and CD86 overexpression on monocytic, leukemic THP-1 cells. However, the current h-CLAT markers show inconsistent results with moderate and weak sensitizers. Moreover, these markers have accessory roles in cell adhesion and signaling rather than a direct role in cellular inflammation. Therefore, we have explored other inflammation-related markers in this study. PBMCs comprises a mixture of cells that resemble the complex immunological milieu in adults and were primarily used to identify markers. PBMCs (n = 10) and THP-1 cells were treated with 1-chloro-2,4-dinitrobenzene (DNCB, strong) and NiCl2 (Ni, moderate) sensitizers or DMSO (control) and incubated for 24 h. The samples were subjected to RNA sequencing to obtain log2fold change in gene expression. DNCB and NiCl2 significantly upregulated 80 genes in both cell types. Of these, CD109, CD181, CD183, CLEC5A, CLEC8A & CD354 were experimentally validated. DNCB and Ni but not isopropyl alcohol (non-sensitizer) significantly induced the expression of all novel markers except CLEC8A. Moreover, the percentage induction of all novel markers except CLEC8A satisfied the OECD acceptance criteria. In summary, we identified five novel markers that may supplement the current repertoire of h-CLAT markers.
Collapse
|
16
|
The IL-1 promoter-driven luciferase reporter cell line THP-G1b can efficiently predict skin-sensitising chemicals. Arch Toxicol 2021; 95:1647-1657. [PMID: 33715048 DOI: 10.1007/s00204-021-03022-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
IL-1 functions as an essential pro-inflammatory mediator for the sensitisation of allergic contact dermatitis (ACD). However, studies conducted to date have typically used a limited number of haptens and examined their effects only on murine ACD or murine dendritic cells (DCs). It therefore remains unclear whether IL-1α and/or IL-1β is produced in ACD induced by haptens other than those commonly used in mouse ACD models, and whether they are essential for sensitisation leading to ACD in humans. In addition, it is unclear whether human DCs also produce IL-1α or IL-1β after stimulation by haptens in general. Here, we first demonstrated that 10 haptens (3 extreme, 1 strong, 3 moderate and 3 weak) increased both IL-1α mRNA and IL-1β mRNA expression by the human monocyte cell line THP-1, a commonly used surrogate of DCs in in vitro skin sensitisation tests. Next, we constructed an in vitro skin sensitisation test using a stable IL-1β reporter cell line, THP-G1b, and evaluated whether 88 haptens and 34 non-haptens increase IL-1β reporter activity. We found that 94% of 77 haptens evaluated after considering their applicability domain and solubility in the chosen media stimulated reporter activity. These studies demonstrated that most haptens, irrespective of their potency, increased IL-1β mRNA expression by THP-1 cells, confirming that human DCs also produce IL-1β after stimulation by most haptens. The luciferase assay using THP-G1b cells is thus another skin sensitisation test based on the adverse outcome pathway with reasonable performance.
Collapse
|
17
|
Kimber I. The activity of methacrylate esters in skin sensitisation test methods II. A review of complementary and additional analyses. Regul Toxicol Pharmacol 2020; 119:104821. [PMID: 33186628 DOI: 10.1016/j.yrtph.2020.104821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 01/13/2023]
Abstract
Allergic contact dermatitis is an important occupational health issue, and there is a need to identify accurately those chemicals that have the potential to induce skin sensitisation. Hazard identification was performed initially using animal (guinea pig and mouse) models. More recently, as a result of the drive towards non-animal methods, alternative in vitro and in silico approaches have been developed. Some of these new in vitro methods have been formally validated and have been assigned OECD Test Guideline status. The performance of some of these recently developed in vitro methods, and of 2 quantitative structure-activity relationships (QSAR) approaches, with a series of methacrylate esters has been reviewed and reported previously. In this article that first review has been extended further with additional data and complementary analyses. Results obtained using in vitro methods (Direct Peptide Reactivity Assay, DPRA; ARE-Nrf2 luciferase test methods, KeratinoSens and LuSens; Epidermal Sensitisation Assay, EpiSensA; human Cell Line Activation Test, h-CLAT, and the myeloid U937 Skin Sensitisation test, U-SENS), and 2 QSAR approaches (DEREK™-nexus and TIMES-SS), with 11 methacrylate esters and methacrylic acid are reported here, and compared with existing data from the guinea pig maximisation test and the local lymph node assay. With this series of chemicals it was found that some in vitro tests (DPRA and ARE-Nrf2 luciferase) performed well in comparison with animal test results and available human skin sensitisation data. Other in vitro tests (EpiSensA and h-CLAT) proved rather more problematic. Results with DEREK™-nexus and TIMES-SS failed to reflect accurately the skin sensitisation potential of the methacrylate esters. The implications for assessment of skin sensitising activity are discussed.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Gilmour N, Kern PS, Alépée N, Boislève F, Bury D, Clouet E, Hirota M, Hoffmann S, Kühnl J, Lalko JF, Mewes K, Miyazawa M, Nishida H, Osmani A, Petersohn D, Sekine S, van Vliet E, Klaric M. Development of a next generation risk assessment framework for the evaluation of skin sensitisation of cosmetic ingredients. Regul Toxicol Pharmacol 2020; 116:104721. [DOI: 10.1016/j.yrtph.2020.104721] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
|
19
|
Nishikawa MU, Iwaki M, Tashiro K, Kurose K. Identification of gene expression markers and development of evaluation method using cell-based and RT-PCR-based assay for skin sensitising potential of chemicals. Xenobiotica 2020; 50:1359-1369. [PMID: 32394774 DOI: 10.1080/00498254.2020.1767320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recently, alternatives to animal testing have been used to evaluate skin sensitisers in cosmetic products. However, testing is still complicated and expensive. To develop a simpler, cost-effective and more accurate evaluation method for the skin sensitising chemicals, we employed cell-based and RT-PCR-based assay. Representative sensitiser specific gene expression in THP-1 cells was analysed by microarray. Gene ontology (GO) analysis revealed that 26 genes induced by the sensitisers were associated with immune function. First, seven of the 26 genes were chosen arbitrarily as candidate markers for our sensitisation assay. Then, THP-1 cells were exposed to 13 reference chemicals with known sensitising potential, and real-time RT-PCR assays targeting the candidate marker genes were performed. Among them, six markers were able to properly evaluate the sensitisation potential by classifying the gene induction rates with appropriate criteria. Especially, the results of the assay using TREM1 and TNFRSF12A gene markers showed 100% sensitivity and specificity. An existing test method, h-CLAT, requires a flow cytometer and is complicated to operate. In contrast, our method is relatively simpler and more cost-effective. Therefore, our method is a promising one to evaluate sensitising chemicals.
Collapse
Affiliation(s)
- Maho Ukaji Nishikawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Megumi Iwaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kouichi Kurose
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
20
|
Otsubo Y, Nishijo T, Mizumachi H, Saito K, Miyazawa M, Sakaguchi H. Adjustment of a no expected sensitization induction level derived from Bayesian network integrated testing strategy for skin sensitization risk assessment. J Toxicol Sci 2020; 45:57-67. [PMID: 31932558 DOI: 10.2131/jts.45.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Skin sensitization is a key adverse effect to be addressed during hazard identification and risk assessment of chemicals, because it is the first step in the development of allergic contact dermatitis. Multiple non-animal testing strategies incorporating in vitro tests and in silico tools have achieved good predictivities when compared with murine local lymph node assay (LLNA). The binary test battery of KeratinoSensTM and h-CLAT could be used to classify non-sensitizers as the first part of bottom-up approach. However, the quantitative risk assessment for sensitizing chemicals requires a No Expected Sensitization Induction Level (NESIL), the dose not expected to induce skin sensitization in humans. We used Bayesian network integrated testing strategy (BN ITS-3) for chemical potency classification. BN ITS-3 predictions were performed without a pre-processing step (selecting data from their physic-chemical applicability domains) or post-processing step (Michael acceptor chemistry correction), neither of which necessarily improve prediction accuracy. For chemicals within newly defined applicability domain, all under-predictions fell within one potency class when compared with LLNA results, indicating no chemicals that were incorrectly classified by more than one class. Considering the potential under-prediction by one class, a worst case value to each class from BN ITS-3 was used to derive a NESIL. When in vivo and human data from suitable analogs cannot be used to estimate the uncertainty, adjusting the NESIL derived from BN ITS-3 may help perform skin sensitization risk assessment. The overall workflow for risk assessment was demonstrated by incorporating the binary test battery of KeratinoSensTM and h-CLAT.
Collapse
Affiliation(s)
- Yuki Otsubo
- Safety Science Research Laboratories, Kao Corporation
| | - Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation
| | | | | | | | | |
Collapse
|
21
|
Jakopin Ž, Corsini E. THP-1 Cells and Pro-inflammatory Cytokine Production: An in Vitro Tool for Functional Characterization of NOD1/NOD2 Antagonists. Int J Mol Sci 2019; 20:ijms20174265. [PMID: 31480368 PMCID: PMC6747088 DOI: 10.3390/ijms20174265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
THP-1 cells express high levels of native functional nucleotide-binding oligomerization domain 1 (NOD1), NOD2, and Toll-like receptor 4 (TLR4) receptors, and have often been used for investigating the immunomodulatory effects of small molecules. We postulated that they would represent an ideal cell-based model for our study, the aim of which was to develop a new in vitro tool for functional characterization of NOD antagonists. NOD antagonists were initially screened for their effect on NOD agonist-induced interleukin-8 (IL-8) release. Next, we examined the extent to which the selected NOD antagonists block the NOD-TLR4 synergistic crosstalk by measuring the effect of NOD antagonism on tumor necrosis factor-α (TNF-α) secretion from doubly activated THP-1 cells. Overall, the results obtained indicate that pro-inflammatory cytokine secretion from THP-1 provides a valuable, simple and reproducible in vitro tool for functional characterization of NOD antagonists.
Collapse
Affiliation(s)
- Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
22
|
de Ávila RI, Lindstedt M, Valadares MC. The 21st Century movement within the area of skin sensitization assessment: From the animal context towards current human-relevant in vitro solutions. Regul Toxicol Pharmacol 2019; 108:104445. [PMID: 31430506 DOI: 10.1016/j.yrtph.2019.104445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
In a regulatory context, skin sensitization hazard and risk evaluations of manufactured products and their ingredients (e.g. cosmetics) are mandatory in several regions. Great efforts have been made within the field of 21st Century Toxicology to provide non-animal testing approaches to assess the skin allergy potential of materials (e.g. chemicals, mixtures, nanomaterials, particles). Mechanistic understanding of skin sensitization process through the adverse outcome pathway (AOP) has promoted the development of in vitro methods, demonstrating accuracies superior to the traditional animal testing. These in vitro testing approaches are based on one of the four AOP key events (KE) of skin sensitization: formation of immunogenic hapten-protein complexes (KE-1 or the molecular initiating event, MIE), inflammatory keratinocyte responses (KE-2), dendritic cell activation (KE-3), and T-lymphocyte activation and proliferation (KE-4). This update provides an overview of the historically used in vivo methods as well as the current in chemico and in cell methods with and without OECD guideline designations to analyze the progress towards human-relevant in vitro test methods for safety assessment of the skin allergenicity potential of materials. Here our focus is to review 96 in vitro testing approaches directed to the KEs of the skin sensitization AOP.
Collapse
Affiliation(s)
- Renato Ivan de Ávila
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil
| | - Malin Lindstedt
- Department of Immunotechnology, Medicon Village, Lund University, Lund, Sweden
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás State, Brazil.
| |
Collapse
|
23
|
Kolle SN, Natsch A, Gerberick GF, Landsiedel R. A review of substances found positive in 1 of 3 in vitro tests for skin sensitization. Regul Toxicol Pharmacol 2019; 106:352-368. [DOI: 10.1016/j.yrtph.2019.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
24
|
Buzzella A, Mazzini G, Vicini R, Angelinetta C, Pastoris O. A preliminary study of an alternative method for evaluating skin sensitizing potential of chemicals. Int J Cosmet Sci 2019; 41:257-264. [PMID: 30993720 DOI: 10.1111/ics.12530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND In order to comply with the European legislation concerning the risk assessment of skin sensitizers, considerable progress has been made in developing alternative methods, such as human cell line activation test (h-CLAT). H-CLAT is based on cytometric measurement of fluorescence emitted by anti-CD54 and anti-CD86 antibodies in THP-1 cells. Following this method, a range of substances have been analyzed; the emitted fluorescence, generally at low intensity, has caused problems concerning the interpretation of results. AIM Find an alternative parameter to h-CLAT for evaluating the sensitizing potential of chemicals. MATERIALS AND METHODS Cells have been analyzed with flow cytometry after treatment with sensitizing compounds administered at non-cytotoxic concentrations. RESULTS Sensitizers were able to inducealterations in cell morphology to a more 'condensed' one allowing the identification of cells under microscope as a 'sensitized' subpopulation. These variations cause similar modifications in 'scattering' parameters, making cells easily monitorable by flow cytometry. No changes have been observed in cells treated with non-sensitizers or in untreated cells. CONCLUSION This method based on the analysis of forward scatter and side scatter parameters, can be used as an alternative method for identifying sensitization potential of chemical compounds.
Collapse
Affiliation(s)
- A Buzzella
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,BioBasic Europe s.r.l., Pavia, Italy
| | - G Mazzini
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Institute of Molecular Genetics, CNR, Pavia, Italy
| | - R Vicini
- BioBasic Europe s.r.l., Pavia, Italy
| | | | - O Pastoris
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Gilmour N, Kimber I, Williams J, Maxwell G. Skin sensitization: Uncertainties, challenges, and opportunities for improved risk assessment. Contact Dermatitis 2019; 80:195-200. [PMID: 30525211 PMCID: PMC6587935 DOI: 10.1111/cod.13167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023]
Abstract
At the ESCD congress held in Manchester in 2016, a session was organized to encourage more dialogue between clinicians with expertise in skin sensitization and toxicologists seeking to provide effective risk assessment to prevent human health issues. That session focused on the remaining uncertainties regarding the induction and regulation of skin sensitization in humans, and the opportunities and challenges associated with the refinement and improvement of risk assessment methodologies. This short article, prompted by those discussions, debates what the authors regard as being among the most important and most intriguing uncertainties about skin sensitization and allergic contact dermatitis in humans, and the most significant opportunities for improving risk assessment. The aim has been to provide a basis for mapping out the areas that might benefit from a closer alignment between the relevant clinical community and toxicologists charged with the responsibility of ensuring that skin sensitization risks are understood and managed.
Collapse
Affiliation(s)
- Nicola Gilmour
- Unilever Safety and Environmental Assurance CentreBedfordUK
| | - Ian Kimber
- Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Jason Williams
- Contact Dermatitis Investigation Unit, Salford NHS Foundation TrustSalfordUK
| | - Gavin Maxwell
- Unilever Safety and Environmental Assurance CentreBedfordUK
| |
Collapse
|
26
|
Kimber I. The activity of methacrylate esters in skin sensitisation test methods: A review. Regul Toxicol Pharmacol 2019; 104:14-20. [PMID: 30826317 DOI: 10.1016/j.yrtph.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Skin sensitisation associated with allergic contact dermatitis is an important occupational and environmental disease. The identification of skin sensitisation hazards was traditionally performed using animal tests; originally guinea pig assays and subsequently the murine local lymph node assay (LLNA). More recently there has, for a variety of reasons, been an increased interest in, and requirement for, non-animal assays. There are now available both validated in vitro assays and a variety of approaches based on consideration of quantitative structure-activity relationships (QSAR). With the increased availability and use of non-animal alternatives for skin sensitisation testing there is a continuing need to monitor the performance of these approaches using series of chemicals that do not normally form part of validation exercises. Here we report studies conducted with 11 methacrylate esters and methacrylic acid in which results obtained with 3 validated in vitro tests for which there are OECD guidelines (the Direct Peptide Reactivity Assay, DPRA; ARE-Nrf2 luciferase test methods, and - with some chemicals - a dendritic cell activation test, the myeloid U937 Skin Sensitisation test [U-SENS] assay) have been compared with QSAR approaches (DEREK and TIMES-SS), and with LLNA and guinea pig maximisation test (GPMT) data. The conclusions drawn from these data are that - with this series of chemicals at least - there is a strong correlation between the results of animal tests and the in vitro assays considered, but not with either DEREK or TIMES-SS.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Clouet E, Bechara R, Raffalli C, Damiens MH, Groux H, Pallardy M, Ferret PJ, Kerdine-Römer S. The THP-1 cell toolbox: a new concept integrating the key events of skin sensitization. Arch Toxicol 2019; 93:941-951. [PMID: 30806763 DOI: 10.1007/s00204-019-02416-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/14/2019] [Indexed: 11/30/2022]
Abstract
According to the current scientific consensus, one in vitro test is insufficient to cover the key events (KE) defined by the adverse outcome pathway (AOP) for skin sensitization. To address this issue we combined different end points in the same cell line to cover all KEs defined by the skin sensitization AOP. Since dendritic cells (DC) play a key role in the sensitization phase leading to the development of allergic contact dermatitis (ACD), we used THP-1 cells as a surrogate for DC. We measured ROS production and GSH depletion for KE1 (binding to proteins), Nrf2 activation pathway and gene expressions for KE2 (keratinocyte response), phenotype modifications using cell-surface markers and cytokine production for KE3 (DC activation), and T-cell proliferation for KE4 (T-cell activation). These measurements were performed using the THP-1 cell line and an original THP-1/T-cell co-culture system following exposure to a variety of chemicals, including irritant, non-sensitizers, and chemicals sensitizers (pro/prehaptens). Results showed that treatment with sensitizers such as cinnamaldehyde (100 µM) or methylisothiazolinone (150 µM) was able to trigger the three main key events (KE1, KE2, and KE3) of the sensitization phase of ACD in THP-1 cells. In addition, all sensitizers were able to induce T lymphocyte proliferation (KE4), while non-sensitizers and irritants did not. Our study shows for the first time that addressing the four main KE of skin sensitization AOP in a single cell line is an achievable task.
Collapse
Affiliation(s)
- Elodie Clouet
- Safety Assessment Department, Pierre Fabre Dermo Cosmétique, Toulouse, France.,UMR996-Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Rami Bechara
- UMR996-Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Chloé Raffalli
- UMR996-Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Marie-Hélène Damiens
- UMR996-Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | | | - Marc Pallardy
- UMR996-Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | | | - Saadia Kerdine-Römer
- UMR996-Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
28
|
Nishijo T, Miyazawa M, Saito K, Otsubo Y, Mizumachi H, Sakaguchi H. The dermal sensitization threshold (DST) approach for mixtures evaluated as negative in in vitro test methods; mixture DST. J Toxicol Sci 2019; 44:23-34. [PMID: 30626777 DOI: 10.2131/jts.44.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cosmetic ingredients often comprise complex mixtures, such as botanical extracts, which may contain skin sensitizing constituents. In our previous study for the sensitivity of the evaluations of skin sensitizing constituents in mixtures using the binary in vitro test battery with KeratinoSensTM and h-CLAT, some sensitizers showed higher detection limits in in vitro test methods than in murine local lymph node assays (LLNA). Thus, to minimize the uncertainty associated with decreased sensitivity for these sensitizers, a risk assessment strategy was developed for mixtures with negative results from the binary test battery. Assuming that the no expected sensitization induction level of mixtures (mixture NESIL) can be derived for mixtures with negative in vitro test results, we assessed 146 sensitizers with in vitro and LLNA data according to the assumption of indeterminate constituents in mixtures. Finally, we calculated 95th percentile probabilities of mixture NESILs and derived dermal sensitization thresholds for mixtures (mixture DST) with negative in vitro test results of 6010 μg/cm2. Feasibility studies indicated that this approach was practical for risk assessments of products in the cosmetic industry. This approach would be a novel risk assessment strategy for incorporating the DST approach and information from in vitro test methods.
Collapse
Affiliation(s)
- Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation
| | | | | | - Yuki Otsubo
- Safety Science Research Laboratories, Kao Corporation
| | | | | |
Collapse
|
29
|
Nishijo T, Miyazawa M, Saito K, Otsubo Y, Mizumachi H, Sakaguchi H. Sensitivity of KeratinoSens TM and h-CLAT for detecting minute amounts of sensitizers to evaluate botanical extract. J Toxicol Sci 2019; 44:13-21. [PMID: 30626776 DOI: 10.2131/jts.44.13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cosmetic ingredients are often complex mixtures from natural sources such as botanical extracts that might contain minute amounts of constituents with sensitizing potential. The sensitivity of in vitro skin sensitization test methods such as KeratinoSensTM and h-CLAT for the detection of minute amounts of sensitizer in mixtures remains unclear. In this study, we assessed the detection sensitivity of the binary test battery comprising KeratinoSensTM and h-CLAT for minute amounts of sensitizers by comparing the LLNA EC3 (estimated concentration of a substance expected to produce a stimulation index of 3) values to the minimum detection concentrations (MDCs) exceeding the positive criteria for each of the two in vitro test methods. 146 sensitizers with both sets of in vitro data and LLNA data were used. MDC values for KeratinoSensTM and h-CLAT were calculated from exposure concentrations exceeding positive criteria for each in vitro test method (EC1.5 and minimum induction thresholds, respectively). The dilution rate used to expose culture medium was also considered. For 86% of analyzed sensitizers, the in vitro test methods showed MDC values lower than LLNA EC3 values, suggesting that the binary test battery with KeratinoSensTM and h-CLAT have greater sensitivity for detection of minute amounts of sensitizer than LLNA. These results suggest the high applicability of KeratinoSensTM and h-CLAT for detecting skin sensitizing constituents present in botanical extract.
Collapse
Affiliation(s)
- Taku Nishijo
- Safety Science Research Laboratories, Kao Corporation
| | | | | | - Yuki Otsubo
- Safety Science Research Laboratories, Kao Corporation
| | | | | |
Collapse
|
30
|
Mitachi T, Kouzui M, Maruyama R, Yamashita K, Ogata S, Kojima H, Itagaki H. Some non-sensitizers upregulate CD54 expression by activation of the NLRP3 inflammasome in THP-1 cells. J Toxicol Sci 2019; 44:213-224. [DOI: 10.2131/jts.44.213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takafumi Mitachi
- Department of Chemical and Energy Engineering, Yokohama National University
- Corporate Research Center, Daicel Corporation
| | - Mai Kouzui
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Ryo Maruyama
- Department of Chemical and Energy Engineering, Yokohama National University
| | | | - Shinichi Ogata
- Department of Environment and Information Science, Yokohama National University
| | - Hajime Kojima
- Division of Risk Assessment, National Institute of Health Sciences
| | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University
| |
Collapse
|
31
|
Are skin sensitisation test methods relevant for proteins? Regul Toxicol Pharmacol 2018; 99:244-248. [DOI: 10.1016/j.yrtph.2018.09.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022]
|
32
|
Optimizing the cutoff for the identification of skin sensitizers by the HaCaSens assay: Introducing an ROC-analysis-based cutoff approach. Toxicol Lett 2018; 299:86-94. [PMID: 30266623 DOI: 10.1016/j.toxlet.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/23/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022]
Abstract
The worldwide restricted use of animal testing makes it challenging to identify the skin sensitizing potentials of newly manufactured products. The HaCaSens assay has shown promise as an in vitro skin sensitizing assay comparable to existing assays, and is currently under pre-validation. However, there is little agreement on how to assess the results of the assay to discriminate sensitizers from non-sensitizers as the stimulation index (SI) cutoff value was arbitrarily chosen without appropriate statistical methods. Here, we investigated the SI cutoff values in identifying sensitizers to obtain the optimal value. Sensitivities and specificities were calculated for a set of 30 test substances, and plotted in receiver operator characteristics (ROC) curves. The SI cutoff values with the highest sum of sensitivity and specificity according to LLNA data were 2.2, 1.8 and 3.0 for interleukin 1α (IL-1α), interleukin 6 (IL-6), and the combination of the two cytokines respectively. Also, the same statistical analysis of human data demonstrated optimal SI cutoff values 2.0, 2.0 and 3.2 for the same respective parameters. When considering the predictive capacity of each possible SI cutoff value determined by ROC curves, the optimal value for HaCaSens is 3.0 for the combination of IL-1α and IL-6 as it had the highest sensitivity (90.9%), specificity (75.0%) and accuracy (86.7%) based on LLNA data. Thus, we recommend the wide use of the SI cutoff value of 3.0 to ensure consistent endpoints.
Collapse
|
33
|
Narita K, Ishii Y, Vo PTH, Nakagawa F, Ogata S, Yamashita K, Kojima H, Itagaki H. Improvement of human cell line activation test (h-CLAT) using short-time exposure methods for prevention of false-negative results. J Toxicol Sci 2018. [PMID: 29540657 DOI: 10.2131/jts.43.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recently, animal testing has been affected by increasing ethical, social, and political concerns regarding animal welfare. Several in vitro safety tests for evaluating skin sensitization, such as the human cell line activation test (h-CLAT), have been proposed. However, similar to other tests, the h-CLAT has produced false-negative results, including in tests for acid anhydride and water-insoluble chemicals. In a previous study, we demonstrated that the cause of false-negative results from phthalic anhydride was hydrolysis by an aqueous vehicle, with IL-8 release from THP-1 cells, and that short-time exposure to liquid paraffin (LP) dispersion medium could reduce false-negative results from acid anhydrides. In the present study, we modified the h-CLAT by applying this exposure method. We found that the modified h-CLAT is a promising method for reducing false-negative results obtained from acid anhydrides and chemicals with octanol-water partition coefficients (LogKow) greater than 3.5. Based on the outcomes from the present study, a combination of the original and the modified h-CLAT is suggested for reducing false-negative results. Notably, the combination method provided a sensitivity of 95% (overall chemicals) or 93% (chemicals with LogKow > 2.0), and an accuracy of 88% (overall chemicals) or 81% (chemicals with LogKow > 2.0). We found that the combined method is a promising evaluation scheme for reducing false-negative results seen in existing in vitro skin-sensitization tests. In the future, we expect a combination of original and modified h-CLAT to be applied in a newly developed in vitro test for evaluating skin sensitization.
Collapse
Affiliation(s)
- Kazuto Narita
- Department of Chemical and Energy Engineering, Yokohama National University.,Division of Risk Assessment, National Institute of Health Sciences
| | - Yuuki Ishii
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Phuc Thi Hong Vo
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Fumiko Nakagawa
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Shinichi Ogata
- Department of Environment and Information Sciences, Yokohama National University
| | | | - Hajime Kojima
- Division of Risk Assessment, National Institute of Health Sciences
| | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University
| |
Collapse
|
34
|
Kim MK, Kim KB, Yoon K, Kacew S, Kim HS, Lee BM. IL-1α and IL-1β as alternative biomarkers for risk assessment and the prediction of skin sensitization potency. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:830-843. [PMID: 30020862 DOI: 10.1080/15287394.2018.1494474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Potential biomarkers of skin sensitization in RAW264.7 mouse macrophages were investigated as alternatives to animal experiments and risk assessment. The concentrations that resulted in a cell viability of 90% (CV90) and 75% (CV75) were calculated by using a water-soluble tetrazolium salt (WST)-1 assay and used to analyze the skin sensitization potency of 23 experimental materials under equivalent treatment conditions. In addition, the expression of interleukin (IL)-1α, IL-1β, IL-31, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), prostaglandin E2 (PGE2), and cyclooxygenase-2 (COX-2) was analyzed utilizing Western blotting. In the cell viability analysis, skin sensitizers were generally more cytotoxic and exhibited increased skin sensitization potency. However, nonsensitizers did not show any marked cytotoxic tendency. Biomarker analysis demonstrated that IL-1α, IL-1β, and the combination of IL-1α and IL-1β (IL-1α + IL-1β) predicted reliably skin sensitization potential (1) sensitivities of 94.4%, 83.3%, and 83.3%, specificities of 100%, 100%, and 100%, and (2) accuracies of 95.7%, 87%, and 87%, respectively. These observations correlated most reliably as indicators for skin sensitization potency. Data suggest that IL-1α and IL-1β may serve as potential biomarkers for skin sensitization and provide an alternative method to animal experiments for prediction of skin sensitization potency and risk assessment.
Collapse
Affiliation(s)
- Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Kyungsil Yoon
- c Lung Cancer Branch , Research Institute, National Cancer Center , Goyang , Gyeonggi-do , South Korea
| | - Sam Kacew
- d McLaughlin Centre for Population Health Risk Assessment,University of Ottawa, Ottawa, ON, Canada
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
35
|
Kimber I, Poole A, Basketter DA. Skin and respiratory chemical allergy: confluence and divergence in a hybrid adverse outcome pathway. Toxicol Res (Camb) 2018; 7:586-605. [PMID: 30090609 PMCID: PMC6060610 DOI: 10.1039/c7tx00272f] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Sensitisation of the respiratory tract to chemicals resulting in respiratory allergy and allergic asthma is an important occupational health problem, and presents toxicologists with no shortage of challenges. A major issue is that there are no validated or, even widely recognised, methods available for the identification and characterisation of chemical respiratory allergens, or for distinguishing respiratory allergens from contact allergens. The first objective here has been review what is known (and what is not known) of the mechanisms through which chemicals induce sensitisation of the respiratory tract, and to use this information to construct a hybrid Adverse Outcome Pathway (AOP) that combines consideration of both skin and respiratory sensitisation. The intention then has been to use the construction of this hybrid AOP to identify areas of commonality/confluence, and areas of departure/divergence, between skin sensitisation and sensitisation of the respiratory tract. The hybrid AOP not only provides a mechanistic understanding of how the processes of skin and respiratory sensitisation differ, buy also a means of identifying areas of uncertainty about chemical respiratory allergy that benefit from a further investment in research.
Collapse
Affiliation(s)
- Ian Kimber
- Faculty of Biology , Medicine and Health , University of Manchester , Oxford Road , Manchester M13 9PT , UK . ; Tel: +44 (0) 161 275 1587
| | - Alan Poole
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) , 2 Av E Van Nieuwenhuyse , 1160 Brussels , Belgium
| | | |
Collapse
|
36
|
Hoffmann S, Kleinstreuer N, Alépée N, Allen D, Api AM, Ashikaga T, Clouet E, Cluzel M, Desprez B, Gellatly N, Goebel C, Kern PS, Klaric M, Kühnl J, Lalko JF, Martinozzi-Teissier S, Mewes K, Miyazawa M, Parakhia R, van Vliet E, Zang Q, Petersohn D. Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database. Crit Rev Toxicol 2018; 48:344-358. [DOI: 10.1080/10408444.2018.1429385] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | - Anne Marie Api
- The Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | - Takao Ashikaga
- Shiseido Global Innovation Center, Hayabuchi, Kanagawa, Japan
| | | | | | | | | | | | - Petra S. Kern
- Procter and Gamble Services Company NV, Strombeek-Bever, Belgium
| | | | | | - Jon F. Lalko
- The Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | | | | | | | - Rahul Parakhia
- The Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | - Erwin van Vliet
- Services and Consultations on Alternative Methods (SeCAM), Magliaso, Switzerland
| | | | | |
Collapse
|
37
|
Tsukumo H, Matsunari N, Yamashita K, Kojima H, Itagaki H. Lipopolysaccharide interferes with the use of the human Cell Line Activation Test to determine the allergic potential of proteins. J Pharmacol Toxicol Methods 2018; 92:34-42. [PMID: 29438744 DOI: 10.1016/j.vascn.2018.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 11/24/2022]
Abstract
It was believed that high molecular weight molecules including proteins cannot penetrate the skin. However, protein penetration through disrupted/ruptured skin has been reported recently, thus carrying the potential for inducing an allergic response. We used the human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test, to assess the allergic potential of proteins by measuring levels of CD86 and CD54 in the human monocytic leukemia cell line THP-1. Six allergens including ovalbumin (OVA) and human serum albumin (HSA; negative control) upregulated CD86 and/or CD54; a false-positive result was obtained using HSA. This was caused by lipopolysaccharide (LPS) contamination. Naturally derived materials often include LPS at various concentrations and may influence protein induction of CD86 and CD54. Additionally, polymyxin B, an LPS inhibitor, could not completely overcome the effect of LPS. Therefore, if test proteins contain ≥0.1 EU/mL LPS, their allergenic potency will not be assessed accurately using h-CLAT. These data show that naturally occurring materials or those derived from living organisms should be evaluated for their LPS content. It is important to confirm the applicability of in vitro methods such as h-CLAT for assessing the allergenic potency of naturally occurring proteins; our findings can be a foundation for future studies.
Collapse
Affiliation(s)
- Hanae Tsukumo
- Department of Chemical and Energy Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; Division of Risk Assessment, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Natsumi Matsunari
- University of Fukui School of Medical Sciences, 23-3, Matsuokashimoaizuki, eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Kunihiko Yamashita
- Corporate Research Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Hajime Kojima
- Division of Risk Assessment, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
38
|
Abstract
Over the recent years development toward assessing skin sensitization hazard has moved toward non-animal testing methods. These methods are based on the key events as described in the OECD Adverse Outcome Pathway (AOP) for skin sensitization initiated by covalent binding to proteins. As these individual methods address mainly one mechanistic event (key event) in the initiation of skin sensitization, combination of different methods are needed to conclude on the skin sensitization hazard. Validated and regulatory adopted (EU and OECD) in chemico/in vitro methods are available for KEs 1-3 and are presented here. This chapter also illustrates how individual test methods can be combined by providing two examples of defined approaches to testing and assessment for skin sensitization hazard identification and assessment.
Collapse
|
39
|
Mitachi T, Mezaki M, Yamashita K, Itagaki H. Acidic conditions induce the suppression of CD86 and CD54 expression in THP-1 cells. J Toxicol Sci 2018; 43:299-309. [DOI: 10.2131/jts.43.299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Takafumi Mitachi
- Department of Chemical and Energy Engineering, Yokohama National University
| | - Minori Mezaki
- Department of Chemical and Energy Engineering, Yokohama National University
| | | | - Hiroshi Itagaki
- Department of Chemical and Energy Engineering, Yokohama National University
| |
Collapse
|
40
|
Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol 2017; 92:803-822. [DOI: 10.1007/s00204-017-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
|
41
|
Narita K, Vo PTH, Yamamoto K, Kojima H, Itagaki H. Preventing false-negatives in the in vitro skin sensitization testing of acid anhydrides using interleukin-8 release assays. Toxicol In Vitro 2017; 42:69-75. [DOI: 10.1016/j.tiv.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
|
42
|
Otsubo Y, Nishijo T, Miyazawa M, Saito K, Mizumachi H, Sakaguchi H. Binary test battery with KeratinoSens™ and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction. Regul Toxicol Pharmacol 2017; 88:118-124. [DOI: 10.1016/j.yrtph.2017.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/12/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
|
43
|
Iwata K, Watanabe M, Kurai J, Burioka N, Nakamoto S, Hantan D, Shimizu E. Association between transported Asian dust and outdoor fungal concentration during winter in a rural area of western Japan. Genes Environ 2017; 39:19. [PMID: 28680509 PMCID: PMC5493889 DOI: 10.1186/s41021-017-0079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background Recently, Asian dust (AD) has become a serious health problem and several studies have clearly proven that AD can aggravate asthma. However, it remains unclear as to which components of AD have a strong effect on the asthma exacerbation caused by AD exposure. Outdoor fungi can increase emergency department visits and hospitalization for asthma exacerbation and can aggravate asthma symptoms. Therefore, this study was aimed at investigating the relationship between AD and outdoor fungi and determining the potential of fungi to cause airborne particulate matter (PM)-related inflammatory responses. Methods Airborne PM was collected each day from January 26, 2015 to February 27, 2015. Daily levels of outdoor fungi-associated PM were calculated using a culture-based method. Production of cytokines such as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α was assessed in THP1 cells stimulated by the collected airborne PM each day. Results Daily levels of AD particles were assessed using Light Detection and Ranging and did not correlate with outdoor fungi (r = −0.17, P = 0.94). There was also no association between outdoor fungi and the daily production of IL-6 (r = 0.16, P = 0.37), IL-8 (r = 0.19, P = 0.30), or TNF-α induced by collected PM (r = 0.07, P = 0.70). However, the daily levels of AD particles were significantly associated with IL-6 (r = 0.91, P < 0.0001), IL-8 (r = 0.64, P = 0.0004), and TNF-α (r = 0.72, P < 0.0001) production. Conclusion AD did not increase the acute levels of outdoor fungi and outdoor fungi did not affect the cytokine production induced by airborne PM. These results suggest that outdoor fungi do not have any detectable effect on the asthma exacerbation caused by AD exposure.
Collapse
Affiliation(s)
- Kyoko Iwata
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan.,Mio Fertility Clinic, Reproductive Centre, Tottori, Japan
| | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Naoto Burioka
- Division of School of Health Science, Department of Pathobiological Science and Technology, Tottori University Faculty of Medicine, Tottori, Japan
| | - Sachiko Nakamoto
- Division of School of Health Science, Department of Pathobiological Science and Technology, Tottori University Faculty of Medicine, Tottori, Japan
| | - Degejirihu Hantan
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
44
|
Clouet E, Kerdine-Römer S, Ferret PJ. Comparison and validation of an in vitro skin sensitization strategy using a data set of 33 chemical references. Toxicol In Vitro 2017; 45:374-385. [PMID: 28539215 DOI: 10.1016/j.tiv.2017.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 11/29/2022]
Abstract
Allergic contact dermatitis (ACD) is an adverse health effect that develops following repeated exposure to skin sensitizing chemicals. An animal testing ban has been applied in EU, leading to development of reliably predictive non-animal methods. Several in vitro methods have been developed as alternatives but one single non-animal test method is not been sufficient to fully address since the LLNA test ban. Here, we have selected an ITS (Integrated Testing Strategy) for skin sensitization which focuses on three in vitro methods that covered the first three steps of the AOP (DPRA, SENS-IS or h-CLAT). The aim of this study was to compare these three methods due to the WoE approach based on a 2-out-of-3-assessment. The results of 33 references were compared to in vivo data (especially human). We have shown that tested firstly DPRA and SENS-IS have permitted to conclude on 29 of 33 chemicals, whereas DPRA and h-CLAT on 25, and SENS-IS and h-CLAT on 23. With this sequence, DPRA and SENS-IS and then h-CLAT in case of equivocal results, we conclude more quickly by performing fewer tests. Thereby, we have shown that it is better to follow a preferential sequence than testing chemicals simultaneously with these three methods.
Collapse
Affiliation(s)
- Elodie Clouet
- Pierre Fabre Dermo-Cosmetics Research & Development, Toxicology Division, Safety Department, Toulouse, France; UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Saadia Kerdine-Römer
- UMR996 - Inflammation, Chemokines and Immunopathology, INSERM, Univ Paris-Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Pierre-Jacques Ferret
- Pierre Fabre Dermo-Cosmetics Research & Development, Toxicology Division, Safety Department, Toulouse, France
| |
Collapse
|
45
|
Crawford SE, Hartung T, Hollert H, Mathes B, van Ravenzwaay B, Steger-Hartmann T, Studer C, Krug HF. Green Toxicology: a strategy for sustainable chemical and material development. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:16. [PMID: 28435767 PMCID: PMC5380705 DOI: 10.1186/s12302-017-0115-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/24/2017] [Indexed: 05/04/2023]
Abstract
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.
Collapse
Affiliation(s)
- Sarah E. Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas Hartung
- John Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
- CAAT-Europe, University of Konstanz, Universitaetsstrasse 10, 78467 Constance, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Björn Mathes
- DECHEMA e.V., Theodor-Heuss-Allee 25, 60486 Frankfurt, Germany
| | | | | | - Christoph Studer
- Federal Office of Public Health, Schwarzenburgstraße 157, 3003 Bern, Switzerland
| | - Harald F. Krug
- Empa, Materials Science and Technology, Lerchenfeld-straße 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
46
|
Vukmanović S, Sadrieh N. Skin sensitizers in cosmetics and beyond: potential multiple mechanisms of action and importance of T-cell assays for in vitro screening. Crit Rev Toxicol 2017; 47:415-432. [DOI: 10.1080/10408444.2017.1288025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stanislav Vukmanović
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| | - Nakissa Sadrieh
- Cosmetics Division, Office of Cosmetics and Colors (OCAC), Center for Food Safety and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), MD, USA
| |
Collapse
|
47
|
Behaviour of chemical respiratory allergens in novel predictive methods for skin sensitisation. Regul Toxicol Pharmacol 2017; 86:101-106. [PMID: 28274809 DOI: 10.1016/j.yrtph.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/07/2017] [Accepted: 03/02/2017] [Indexed: 12/30/2022]
Abstract
Asthma resulting from sensitisation of the respiratory tract to chemicals is an important occupational health issue, presenting many toxicological challenges. Most importantly there are no recognised predictive methods for respiratory allergens. Nevertheless, it has been found that all known chemical respiratory allergens elicit positive responses in assays for skin sensitising chemicals. Thus, chemicals failing to induce a positive response in skin sensitisation assays such as the local lymph node assay (LLNA) lack not only skin sensitising activity, but also the potential to cause respiratory sensitisation. However, it is unclear whether it will be possible to regard chemicals that are negative in in vitro skin sensitisation tests also as lacking respiratory sensitising activity. To address this, the behaviour of chemical respiratory allergens in the LLNA and in recently validated non-animal tests for skin sensitisation have been examined. Most chemical respiratory allergens are positive in one or more newly validated non-animal test methods, although the situation varies between individual assays. The use of an integrated testing strategy could provide a basis for recognition of most respiratory sensitising chemicals. However, a more complete picture of the performance characteristics of such tests is required before specific recommendations can be made.
Collapse
|
48
|
Petry T, Bosch A, Coste X, Eigler D, Germain P, Seidel S, Jean PA. Evaluation of in vitro assays for the assessment of the skin sensitization hazard of functional polysiloxanes and silanes. Regul Toxicol Pharmacol 2017; 84:64-76. [DOI: 10.1016/j.yrtph.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/21/2016] [Accepted: 12/16/2016] [Indexed: 11/15/2022]
|
49
|
Zang Q, Paris M, Lehmann DM, Bell S, Kleinstreuer N, Allen D, Matheson J, Jacobs A, Casey W, Strickland J. Prediction of skin sensitization potency using machine learning approaches. J Appl Toxicol 2017; 37:792-805. [PMID: 28074598 DOI: 10.1002/jat.3424] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
The replacement of animal use in testing for regulatory classification of skin sensitizers is a priority for US federal agencies that use data from such testing. Machine learning models that classify substances as sensitizers or non-sensitizers without using animal data have been developed and evaluated. Because some regulatory agencies require that sensitizers be further classified into potency categories, we developed statistical models to predict skin sensitization potency for murine local lymph node assay (LLNA) and human outcomes. Input variables for our models included six physicochemical properties and data from three non-animal test methods: direct peptide reactivity assay; human cell line activation test; and KeratinoSens™ assay. Models were built to predict three potency categories using four machine learning approaches and were validated using external test sets and leave-one-out cross-validation. A one-tiered strategy modeled all three categories of response together while a two-tiered strategy modeled sensitizer/non-sensitizer responses and then classified the sensitizers as strong or weak sensitizers. The two-tiered model using the support vector machine with all assay and physicochemical data inputs provided the best performance, yielding accuracy of 88% for prediction of LLNA outcomes (120 substances) and 81% for prediction of human test outcomes (87 substances). The best one-tiered model predicted LLNA outcomes with 78% accuracy and human outcomes with 75% accuracy. By comparison, the LLNA predicts human potency categories with 69% accuracy (60 of 87 substances correctly categorized). These results suggest that computational models using non-animal methods may provide valuable information for assessing skin sensitization potency. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joanna Matheson
- US Consumer Product Safety Commission, Bethesda, MD, 20814, USA
| | | | - Warren Casey
- NIH/NIEHS/DNTP/NICEATM, Research Triangle Park, NC, 27709, USA
| | | |
Collapse
|
50
|
Blume-Peytavi U, Tan J, Tennstedt D, Boralevi F, Fabbrocini G, Torrelo A, Soares-Oliveira R, Haftek M, Rossi AB, Thouvenin MD, Mangold J, Galliano MF, Hernandez-Pigeon H, Aries MF, Rouvrais C, Bessou-Touya S, Duplan H, Castex-Rizzi N, Mengeaud V, Ferret PJ, Clouet E, Saint Aroman M, Carrasco C, Coutanceau C, Guiraud B, Boyal S, Herman A, Delga H, Biniek K, Dauskardt R. Fragility of epidermis in newborns, children and adolescents. J Eur Acad Dermatol Venereol 2016; 30 Suppl 4:3-56. [PMID: 27062556 DOI: 10.1111/jdv.13636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Within their first days of life, newborns' skin undergoes various adaptation processes needed to accommodate the transition from the wet uterine environment to the dry atmosphere. The skin of newborns and infants is considered as a physiological fragile skin, a skin with lower resistance to aggressions. Fragile skin is divided into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. Extensive research of the past 10 years have proven evidence that at birth albeit showing a nearly perfect appearance, newborn skin is structurally and functionally immature compared to adult skin undergoing a physiological maturation process after birth at least throughout the first year of life. This article is an overview of all known data about fragility of epidermis in 'fragile populations': newborns, children and adolescents. It includes the recent pathological, pathophysiological and clinical data about fragility of epidermis in various dermatological diseases, such as atopic dermatitis, acne, rosacea, contact dermatitis, irritative dermatitis and focus on UV protection.
Collapse
Affiliation(s)
- U Blume-Peytavi
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin, Berlin, Germany
| | - J Tan
- Department of Medicine, Faculty of Medicine, Schulich School of Medicine and Dentistry, Western University, Windsor campus, Windsor, ON, Canada.,Windsor Clinical Research Inc., Windsor campus, Windsor, ON, Canada
| | - D Tennstedt
- Department of Dermatology, Saint-Luc University Clinics, Brussels, Belgium
| | - F Boralevi
- Pediatric Dermatology, Pellegrin Hospital, Bordeaux, France
| | - G Fabbrocini
- Department of Dermatology, University Hospital of Naples, Naples, Italy
| | - A Torrelo
- Pediatric Dermatology, Hospital del Niño Jesús, Madrid, Spain
| | | | - M Haftek
- University Lyon 1, Lyon, France.,University Lyon 1, EA4169, "Fundamental, clinical and therapeutic aspects of the skin barrier function", Lyon, France
| | - A B Rossi
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Department of Dermatology, Toulouse University hospital, France
| | - M D Thouvenin
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - J Mangold
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - M F Galliano
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - H Hernandez-Pigeon
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - M F Aries
- Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - C Rouvrais
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - S Bessou-Touya
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Medical Department, Pierre Fabre Research and Laboratoires Dermatologiques A-Derma, Lavaur, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - H Duplan
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - N Castex-Rizzi
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - V Mengeaud
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France
| | - P J Ferret
- Pierre Fabre Dermo-Cosmétique Research & Development, Toxicology Division, Vigoulet-Auzil, France.,Pierre Fabre Dermo-Cosmétique Research & Developement Center, Toxicology division, Vigoulet, France
| | - E Clouet
- Pierre Fabre Dermo-Cosmétique Research & Development, Toxicology Division, Vigoulet-Auzil, France.,Pierre Fabre Dermo-Cosmétique Research & Developement Center, Toxicology division, Vigoulet, France
| | | | - C Carrasco
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - C Coutanceau
- Medical Department, Pierre Fabre Research and Laboratoires Dermatologiques A-Derma, Lavaur, France
| | - B Guiraud
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - S Boyal
- Windsor Clinical Research Inc., Windsor campus, Windsor, ON, Canada
| | - A Herman
- Department of Dermatology, Saint-Luc University Clinics, Brussels, Belgium
| | - H Delga
- Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - K Biniek
- Department of Materials Science and Engineering, Stanford University hospital, Stanford, CA, USA
| | - R Dauskardt
- Department of Materials Science and Engineering, Stanford University hospital, Stanford, CA, USA
| |
Collapse
|