1
|
Bosch OG, Dornbierer DA, Bavato F, Quednow BB, Landolt HP, Seifritz E. Dexmedetomidine in Psychiatry: Repurposing of its Fast-Acting Anxiolytic, Analgesic and Sleep Modulating Properties. PHARMACOPSYCHIATRY 2023; 56:44-50. [PMID: 36384232 DOI: 10.1055/a-1970-3453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drug repurposing is a strategy to identify new indications for already approved drugs. A recent successful example in psychiatry is ketamine, an anesthetic drug developed in the 1960s, now approved and clinically used as a fast-acting antidepressant. Here, we describe the potential of dexmedetomidine as a psychopharmacological repurposing candidate. This α2-adrenoceptor agonist is approved in the US and Europe for procedural sedation in intensive care. It has shown fast-acting inhibitory effects on perioperative stress-related pathologies, including psychomotor agitation, hyperalgesia, and neuroinflammatory overdrive, proving potentially useful in clinical psychiatry. We offer an overview of the pharmacological profile and effects of dexmedetomidine with potential utility for the treatment of neuropsychiatric symptoms. Dexmedetomidine exerts fast-acting and robust sedation, anxiolytic, analgesic, sleep-modulating, and anti-inflammatory effects. Moreover, the drug prevents postoperative agitation and delirium, possibly via neuroprotective mechanisms. While evidence in animals and humans supports these properties, larger controlled trials in clinical samples are generally scarce, and systematic studies with psychiatric patients do not exist. In conclusion, dexmedetomidine is a promising candidate for an experimental treatment targeting stress-related pathologies common in neuropsychiatric disorders such as depression, anxiety disorders, and posttraumatic stress disorder. First small proof-of-concept studies and then larger controlled clinical trials are warranted in psychiatric populations to test the feasibility and efficacy of dexmedetomidine in these conditions.
Collapse
Affiliation(s)
- Oliver G Bosch
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
| | - Dario A Dornbierer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse, Zürich
| | - Francesco Bavato
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse, Zürich
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland
| |
Collapse
|
2
|
Uys MM, Shahid M, Harvey BH. Therapeutic Potential of Selectively Targeting the α 2C-Adrenoceptor in Cognition, Depression, and Schizophrenia-New Developments and Future Perspective. Front Psychiatry 2017; 8:144. [PMID: 28855875 PMCID: PMC5558054 DOI: 10.3389/fpsyt.2017.00144] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
α2A- and α2C-adrenoceptors (ARs) are the primary α2-AR subtypes involved in central nervous system (CNS) function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine) and atypical antipsychotic (e.g., clozapine) drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA) release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine). While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer's disease. This review will emphasize the importance and relevance of the α2C-AR as a neuropsychiatric drug target in major depression, schizophrenia, and associated cognitive deficits. In addition, we will present new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Madeleine Monique Uys
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | - Brian Herbert Harvey
- Division of Pharmacology, Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Smith KL, Ford GK, Jessop DS, Finn DP. Behavioural, neurochemical and neuroendocrine effects of the endogenous β-carboline harmane in fear-conditioned rats. J Psychopharmacol 2013; 27:162-70. [PMID: 23015542 DOI: 10.1177/0269881112460108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The putative endogenous imidazoline binding site ligand harmane enhances neuronal activation in response to psychological stress and alters behaviour in animal models of anxiety and antidepressant efficacy. However, the neurobiological mechanisms underlying harmane's psychotropic effects are poorly understood. We investigated the effects of intraperitoneal injection of harmane (2.5 and 10 mg/kg) on fear-conditioned behaviour, hypothalamo-pituitary-adrenal axis activity, and monoaminergic activity within specific fear-associated areas of the rat brain. Harmane had no significant effect on the duration of contextually induced freezing or 22 kHz ultrasonic vocalisations and did not alter the contextually induced suppression of motor activity, including rearing. Harmane reduced the duration of rearing and tended to increase freezing in non-fear-conditioned controls, suggesting potential sedative effects. Harmane increased plasma ACTH and corticosterone concentrations, and serotonin (in hypothalamus, amygdaloid cortex, prefrontal cortex and hippocampus) and noradrenaline (prefrontal cortex) content, irrespective of fear-conditioning. Furthermore, harmane reduced dopamine and serotonin turnover in the PFC and hypothalamus, and serotonin turnover in the amygdaloid cortex in both fear-conditioned and non-fear-conditioned rats. In contrast, harmane increased dopamine and noradrenaline content and reduced dopamine turnover in the amygdala of fear-conditioned rats only, suggesting differential effects on catecholaminergic transmission in the presence and absence of fear. The precise mechanism(s) mediating these effects of harmane remain to be determined but may involve its inhibitory action on monoamine oxidases. These findings support a role for harmane as a neuromodulator, altering behaviour, brain neurochemistry and neuroendocrine function.
Collapse
Affiliation(s)
- Karen L Smith
- Pharmacology and Therapeutics, School of Medicine and NCBES Neuroscience Cluster, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
4
|
Smith KL, Jessop DS, Finn DP. Modulation of stress by imidazoline binding sites: implications for psychiatric disorders. Stress 2009; 12:97-114. [PMID: 19006007 DOI: 10.1080/10253890802302908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
In this review, we present evidence for the involvement of imidazoline binding sites (IBS) in modulating responses to stress, through central control of monoaminergic and hypothalamo-pituitary-adrenal (HPA) axis activity. Pharmacological and physiological evidence is presented for differential effects of different IBS subtypes on serotoninergic and catecholaminergic pathways involved in control of basal and stress-stimulated HPA axis activity. IBS ligands can modulate behavioural and neuroendocrine responses in animal models of stress, depression and anxiety, and a body of evidence exists for alterations in central IBS expression in psychiatric patients, which can be normalised partially or fully by treatment with antidepressants. Dysfunction in monoaminergic systems and the HPA axis under basal and stress-induced activation has been extensively reported in psychiatric illnesses. On the basis of the literature, we suggest a potential therapeutic role for selective IBS ligands in the treatment of depression and anxiety disorders.
Collapse
Affiliation(s)
- Karen L Smith
- Department of Pharmacology and Therapeutics, NCBES Neuroscience Cluster, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
5
|
Idazoxan attenuates spinal cord injury by enhanced astrocytic activation and reduced microglial activation in rat experimental autoimmune encephalomyelitis. Brain Res 2009; 1253:198-209. [DOI: 10.1016/j.brainres.2008.11.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 11/20/2022]
|
6
|
Russell JA, Douglas AJ, Brunton PJ. Reduced Hypothalamo-pituitary-adrenal Axis Stress Responses in Late Pregnancy. Ann N Y Acad Sci 2008; 1148:428-38. [DOI: 10.1196/annals.1410.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Konstandi M, Lang MA, Kostakis D, Johnson EO, Marselos M. Predominant role of peripheral catecholamines in the stress-induced modulation of CYP1A2 inducibility by benzo(alpha)pyrene. Basic Clin Pharmacol Toxicol 2007; 102:35-44. [PMID: 17973897 DOI: 10.1111/j.1742-7843.2007.00154.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential involvement of catecholamines and in particular of alpha(2)-adrenoceptor-related signalling pathways, in the regulation of drug-metabolizing enzymes by stress was investigated in Wistar rats after exposure to the environmental pollutant benzo(alpha)pyrene. For this purpose, total cytochrome P450 content, the CYP1A2 mRNA levels, 7-methoxyresorufin-O-dealkylase (MROD), 7-pentoxyresorufin-O-dealkylase (PROD) and p-nitrophenol hydroxylase activity levels were determined in the livers of rats exposed to repeated restraint stress after treatment with benzo(alpha)pyrene coupled with pharmacological manipulations of peripheral and/or central catecholamines and alpha(2)-adrenoceptors. The data show that stress is a significant factor in the regulation of CYP1A2 induction and that catecholamines play a central role in the stress-mediated modulation of hepatic CYP1A2 inducibility by benzo(alpha)pyrene. The up-regulating effect of stress on benzo(alpha)pyrene-induced CYP1A2 gene expression was eliminated after a generalized catecholamine depletion with reserpine. Similarly, in a state where only peripheral catecholamines were depleted and central catecholamines remained intact after guanethidine administration, the up-regulating effect of stress was eliminated. It is apparent that stress up-regulates the induction of CYP1A2 by benzo(alpha)pyrene mainly via peripheral catecholamines, while central catecholamines hold a minor role in the regulation. Pharmacological manipulations of alpha(2)-adrenoceptors appear to interfere with the effect of stress on the regulation of CYP1A2 inducibility. Either blockade or stimulation of alpha(2)-adrenoceptors with atipamezole and dexmedetomidine respectively, eliminated the up-regulating effect of stress on CYP1A2 benzo(alpha)pyrene-induced expression, while it enhanced MROD activity. In contrast, stress and pharmacological manipulations of catecholamines and alpha(2)-adrenoceptors did not affect total P450 content, the CYP2B1/2-dependent PROD and the CYP2E1-dependent p-nitrophenol hydroxylase activities. In conclusion, stress is a significant factor in the regulation of the CYP1A2 inducibility by benzo(alpha)pyrene, which in turn is involved in the metabolism of a large spectrum of toxicants, drugs and carcinogenic agents. Although the mechanism underlying the stress effect on CYP1A2 induction has not been clearly elucidated, it appears that peripheral catecholamines hold a predominant role, while central catecholamines and in particular, central noradrenergic pathways hold a minor role.
Collapse
Affiliation(s)
- Maria Konstandi
- Department of Pharmacology, Medical School, University of Ioannina, Ioannina, Greece.
| | | | | | | | | |
Collapse
|
8
|
Pirnik Z, Jezova D, Mikkelsen JD, Kiss A. Xylazine activates oxytocinergic but not vasopressinergic hypothalamic neurons under normal and hyperosmotic conditions in rats. Neurochem Int 2005; 47:458-65. [PMID: 16125277 DOI: 10.1016/j.neuint.2005.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/07/2005] [Accepted: 07/12/2005] [Indexed: 11/26/2022]
Abstract
Role of central alpha2-adrenoceptors in the regulation of hypothalamic magnocellular cells was studied under hyperosmotic challenge elicited by hypertonic saline (HS). Rats pretreated with receptor agonist, xylazine (XYL), were injected intraperitoneally with different (low: 0.375, moderate: 0.75, high: 1.5 M) HS 30 min later. The activity of the paraventricular (PVN) and supraoptic (SON) vasopressin and oxytocin perikarya was established by Fos-dual-immunohistochemistry 60 min after HS administration. Results showed that 1/XYL is a potent stimulus for oxytocin but not vasopressin magnocellular cells under basal and weak hyperosmotic conditions 2/highHS completely overlaps the effect of XYL. In addition, XYL partially suppressed Fos expression in the parvocellular PVN cells activated by highHS. The data suggest that alpha2-adrenoceptors may play an important role in the regulation of oxytocinergic PVN and SON neurons under basal and weak hyperosmotic conditions and that alpha2-adrenoceptors may also participate in the control of PVN parvocellular cells under intense osmotic challenge.
Collapse
Affiliation(s)
- Z Pirnik
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska str. 3, 833 06 Bratislava, Slovakia
| | | | | | | |
Collapse
|
9
|
MacInnes N, Handley SL. Autoradiographic localisation of [3H]2-BFI imidazoline I2 binding sites in mouse brain. Eur J Pharmacol 2005; 516:139-44. [PMID: 15925361 DOI: 10.1016/j.ejphar.2005.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 03/23/2005] [Accepted: 04/08/2005] [Indexed: 11/23/2022]
Abstract
Imidazoline I2 binding sites are heterogeneous in nature and have been observed in the brain of a number of species. Development of specific imidazoline I2 radioligands, such as [3H]2-BFI and [3H]BU224, that have a high affinity for the imidazoline I2 binding site, has enabled the central distribution of these sites to be mapped. Extensive studies have been conducted on the rat brain with a number of radioligands. However, to date a comprehensive analysis of imidazoline I2 ligand binding in mouse brain has not been completed. In the present work we describe levels of [3H]2-BFI specific binding found throughout the mouse brain. [3H]2-BFI (2 nM) showed discrete regional distribution which was readily displaced by saturating concentrations of the specific imidazoline I2 ligand BU224. The highest levels of [3H]2-BFI specific binding were found in the dorsal raphe, paraventricular thalamus and nucleus accumbens. Moderate levels were found throughout the lining of the aqueduct, lateral ventricle, lateral 4th ventricle, 4th ventricle, 3rd ventricle, but not the dorsal 3rd ventricle. Based on the loss of [3H]idazoxan binding in brain homogenates from monoamine oxidase-A and B (MAO-A and MAO-B) deficient mice it has been suggested that imidazoline I2 binding sites are predominantly on MAO. Consistent with this hypothesis the regional distribution of [3H]2-BFI shows some overlap with that previously reported for MAO. However, in the rat imidazoline I2 binding sites have been shown to be heterogeneous in nature and it is likely [3H]2-BFI is binding to multiple imidazoline I2 binding sites within mouse brain.
Collapse
Affiliation(s)
- Nicholas MacInnes
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham, B4 7ET, United Kingdom.
| | | |
Collapse
|
10
|
Douglas AJ. Central noradrenergic mechanisms underlying acute stress responses of the Hypothalamo-pituitary-adrenal axis: adaptations through pregnancy and lactation. Stress 2005; 8:5-18. [PMID: 16019594 DOI: 10.1080/10253890500044380] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Hypothalamo-pituitary-adrenal axis responses to stress are attenuated perinatally, and may contribute towards conservation of energy stores and/or prevention of overexposure to glucocorticoid and its adverse effects in the developing fetus/neonate. Previous work has shown that reduced central drive to the hypothalamo-pituitary-adrenal axis is responsible, since parvocellular paraventricular nucleus neurone responses are reduced. One of the main input pathways to the paraventricular nucleus that is activated by the majority of stressors is the brainstem noradrenergic system. This review outlines key noradrenergic mechanisms that mediate hypothalamo-pituitary-adrenal axis responses to acute stress, and addresses aspects of their adaptation in pregnancy and lactation that can explain the stress hyporesponsiveness at that time. In summary, reduced noradrenaline release and adrenergic receptor expression in the paraventricular nucleus may lead to reduced sensitivity of the hypothalamo-pituitary-adrenal axis to adrenergic antagonists and agonists and its responses to stress. While there are subtle differences in these changes between pregnancy and lactation, it would appear that reduced effectiveness of the noradrenergic input can at least partly account for the reduced hypothalamo-pituitary-adrenal axis responses both pre- and post-natally.
Collapse
Affiliation(s)
- Alison J Douglas
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, SBCLS, College of Medicine and Veterinary Medicine, University of Edinburgh, Hugh Robson Building, George Square, UK.
| |
Collapse
|