1
|
Ohmura Y, Nagayasu K. Functional Diversity of Serotonin Neurons in the Dorsal and Median Raphe Nuclei in Emotional Responses. Neuropsychopharmacol Rep 2025; 45:e70015. [PMID: 40254954 PMCID: PMC12010045 DOI: 10.1002/npr2.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025] Open
Abstract
Of serotonergic nuclei in the central nervous system, mainly the dorsal raphe nucleus (DRN) and median raphe nucleus (MRN) project to the forebrain and midbrain; therefore, these nuclei are involved in emotional/cognitive functions and psychiatric disorders. Researchers have often generalized findings from the DRN to represent the functions of the entire serotonergic system, primarily due to the fact that the DRN is the largest serotonergic nucleus and due to the assumption that the serotonergic system operates as a single, cohesive unit. However, recent evidence is challenging this perspective and necessitating a reevaluation. In this brief review, we summarize recent studies demonstrating the functional diversity of the DRN alongside the functional unity of the MRN. These findings suggest that different subpopulations within the serotonergic system may exert opposing effects on emotional functions. Furthermore, this diversity-aware approach will help settle ongoing debates regarding the serotonin hypothesis of depression, which stems from the difficulty in the application of this approach in humans. We advocate for increased efforts to identify factors associated with these functional subgroups, which could lead to more targeted and effective interventions.
Collapse
Affiliation(s)
- Yu Ohmura
- Chinese Institute for Brain Research, Beijing (CIBR)BeijingChina
| | - Kazuki Nagayasu
- Laboratory of Molecular NeuropharmacologyGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- Project for Neural NetworksGraduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| |
Collapse
|
2
|
Harkin EF, Grossman CD, Cohen JY, Béïque JC, Naud R. A prospective code for value in the serotonin system. Nature 2025:10.1038/s41586-025-08731-7. [PMID: 40140568 DOI: 10.1038/s41586-025-08731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
The in vivo responses of dorsal raphe nucleus serotonin neurons to emotionally salient stimuli are a puzzle1. Existing theories centring on reward2, surprise3, salience4 and uncertainty5 individually account for some aspects of serotonergic activity but not others. Merging ideas from reinforcement learning theory6 with recent insights into the filtering properties of the dorsal raphe nucleus7, here we find a unifying perspective in a prospective code for value. This biological code for near-future reward explains why serotonin neurons are activated by both rewards and punishments3,4,8-13, and why these neurons are more strongly activated by surprising rewards but have no such surprise preference for punishments3,9-observations that previous theories have failed to reconcile. Finally, our model quantitatively predicts in vivo population activity better than previous theories. By reconciling previous theories and establishing a precise connection with reinforcement learning, our work represents an important step towards understanding the role of serotonin in learning and behaviour.
Collapse
Affiliation(s)
- Emerson F Harkin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | - Jeremiah Y Cohen
- Allen Institute for Neural Dynamics, Seattle, WA, USA
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| | - Richard Naud
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and AI, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa's Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Dominiquini-Moraes B, Bernardes-Ribeiro M, Patrone LGA, Fonseca EM, Frias AT, Silva KSC, Araujo-Lopes R, Szawka RE, Bícego KC, Zangrossi H, Gargaglioni LH. Impact of the estrous cycle on brain monoamines and behavioral and respiratory responses to CO 2 in mice. Pflugers Arch 2025; 477:349-369. [PMID: 39601888 DOI: 10.1007/s00424-024-03040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/28/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
The prevalence of panic disorder is two to four times higher in women compared to that in men, and hormonal changes during the menstrual cycle play a role in the occurrence of panic attacks. Here, we investigated the effect of the estrous cycle on the ventilatory and behavioral responses to CO2 in mice. Female mice in proestrus, estrus, metestrus, or diestrus were exposed to 20% CO2, and their escape behaviors, brain monoamines, and plasma levels of 17β-estradiol (E2) and progesterone (P4) were measured. Pulmonary ventilation (V̇E), oxygen consumption (V̇O2), and body core temperature (TB) were also measured during normocapnia followed by CO2. Females exposed to 20% CO2 exhibited an escape behavior, but the estrous cycle did not affect this response. Females in all phases of the estrous cycle showed higher V̇E and lower TB during hypercapnia. In diestrus, there was an attenuation of CO2-induced hyperventilation with no change in V̇O2, whereas in estrus, this response was accompanied by a reduction in V̇O2. Hypercapnia also increased the concentration of plasma P4 and central DOPAC, the main dopamine metabolite, in all females. There was an estrous cycle effect on brainstem serotonin, with females in estrus showing a higher concentration than females in the metestrus and diestrus phases. Therefore, our data suggest that hypercapnia induces panic-related behaviors and ventilatory changes that lead to an increase in P4 secretion in female mice, likely originating from the adrenals. The estrous cycle does not affect the behavioral response but interferes in the ventilatory and metabolic responses to CO2 in mice.
Collapse
Affiliation(s)
- Beatriz Dominiquini-Moraes
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Mariana Bernardes-Ribeiro
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Kaoma S Costa Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberta Araujo-Lopes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Rod. Prof. Paulo Donato Castellane S/N, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
4
|
Azarfarin M, Shahla MM, Mohaddes G, Dadkhah M. Non-pharmacological therapeutic paradigms in stress-induced depression: from novel therapeutic perspective with focus on cell-based strategies. Acta Neuropsychiatr 2025; 37:e10. [PMID: 39973753 DOI: 10.1017/neu.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Major depressive disorder (MDD) is considered a psychiatric disorder and have a relationship with stressful events. Although the common therapeutic approaches against MDD are diverse, a large number of patients do not present an adequate response to antidepressant treatments. On the other hand, effective non-pharmacological treatments for MDD and their tolerability are addressed. Several affective treatments for MDD are used but non-pharmacological strategies for decreasing the common depression-related drugs side effects have been focused recently. However, the potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs), microRNAs (miRNAs) as cell-based therapeutic paradigms, besides other non-pharmacological strategies including mitochondrial transfer, plasma, transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and exercise therapy needs to further study. This review explores the therapeutic potential of cell-based therapeutic non-pharmacological paradigms for MDD treatment. In addition, plasma therapy, mitotherapy, and exercise therapy in several in vitro and in vivo conditions in experimental disease models along with tDCS and TMS will be discussed as novel non-pharmacological promising therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Neuroscience Research center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Neuroscience, Faculty of Advanced Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Gisou Mohaddes
- Neuroscience Research center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, College of Osteopathic Medicine, California Health Sciences University, Clovis, CA, USA
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Neuroscience Research Group, Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Almeida-Souza TH, Silva RS, Franco HS, Santos LM, Melo JEC, Oliveira E Silva AMD, Menezes ECD, Santos JRD, Teixeira-Silva F, Goes TC, Marchioro M. Involvement of the serotonergic, GABAergic and glutamatergic systems of the rostral anterior cingulate cortex in the trait and state anxiety of adult male Wistar rats. Behav Brain Res 2025; 477:115298. [PMID: 39433219 DOI: 10.1016/j.bbr.2024.115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Despite significant advancements to understand of the neural circuitry involved in anxiety, the neurobiology of trait anxiety remains unclear. The rostral anterior cingulate cortex (rACC) and various pathways have been implicated in its regulation, making it a key to trait anxiety. The present study aimed to investigate the role of these neurotransmitter systems in the rACC in trait anxiety. Since trait anxiety is known to modulate state anxiety, we further investigated this relationship. Specifically, in Experiment I, we used animals with high trait anxiety; in Experiment II, we used animals with low trait anxiety; and in Experiment III, we used animals with medium trait anxiety. Before each behavioral assessment, drugs that either increased or decreased serotonergic (Fluoxetine or WAY-100635), GABAergic (Muscimol or Bicuculline), and glutamatergic (NMDA or Ketamine) neurotransmission in the rACC were administered, along with their respective controls. Additionally, in Experiment IV, all animals from the previous experiments were subjected to the Elevated Plus Maze (EPM) and Hole board (HB) test and evaluated without taking into account their trait anxiety levels. The results of the present study showed that, in Exp I, the modulation of the serotonergic, GABAergic and glutamatergic systems in the rACC decreased trait anxiety in highly anxious rats, while by submitting the animals to HB, the administration of fluoxetine increased state anxiety. In Exp II, the modulation of all systems increased trait anxiety in rats with low trait anxiety, whereas, in HB, state anxiety levels were increased with the administration of NMDA. In Exp III, only the modulation of the glutamatergic system, with NMDA, increased both trait and state anxiety levels. However, none of the evaluated neurotransmitter systems altered the state anxiety modeled in the EPM. Overall, the results of the present study provide new insights into the role of the neurotransmitter systems in the rACC in the regulation of trait anxiety and state anxiety.
Collapse
Affiliation(s)
- Thiago Henrique Almeida-Souza
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Department of Nutrition, Federal University of Sergipe, São Cristovão, Sergipe, Brazil; Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.
| | - Rodolfo Santos Silva
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Heitor Santos Franco
- Department of Biosciences, Federal University of Sergipe, Itabaiana, Sergipe, Brazil
| | | | | | | | - Edênia Cunha de Menezes
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Child and Adolescent Psychiatry at NYU Grossman School of Medicine, New York University, New York, United States
| | | | - Flavia Teixeira-Silva
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| | - Tiago Costa Goes
- Department of Health Education, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Murilo Marchioro
- Department of Physiology, Federal University of Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|
6
|
Marraudino M, Nasini S, Porte C, Bonaldo B, Macchi E, Ponti G, Keller M, Gotti S. Infant mice fed soy-based formulas exhibit alterations in anxiety-like behaviours and the 5-HT system. Toxicology 2025; 511:154035. [PMID: 39708922 DOI: 10.1016/j.tox.2024.154035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Genistein (GEN) is a phytoestrogen with oestrogen-like activity found in many plants. Classified as an endocrine disruptor, GEN is potentially hazardous, particularly during developmental stages. It induces alterations in anxious behaviour, fertility, and energy metabolism, alongside modifications in specific brain circuits. As the serotonin (5-HT) system is critically involved in many of these behaviours, we hypothesised that some of GEN's behavioural effects might results from disruptions in the development of the 5-HT system. To test this, we examined the impact of early postnatal exposure to GEN at a dose of 50 mg/kg body weight, mimicking the exposure level of infants consuming soy-based formulas, on anxiety-related behaviours and 5-HT neuronal populations in the raphe nucleus. Male and female CD1 mice were treated orally with GEN or a vehicle during the first 8 days of life. On postnatal day 60, one cohort underwent anxiety behaviour testing, while another was euthanised for immunohistochemical analysis. Behavioural testing revealed that male control mice exhibited higher anxiety levels than females, whereas GEN exposure produced sex-specific effects: anxiolytic in males and anxiogenic in females. Immunohistochemical analysis of the raphe nuclei demonstrated significant alterations in 5-HT neuronal numbers in GEN-treated animals. Specifically, GEN exposure affected dorsal and median raphe 5-HT neuronal populations in a sexually dimorphic manner, with females showing a reduction and males an increase in 5-HT neurones compared to controls. These findings indicate that the regulation of anxiety-related behaviours and the 5-HT system are key targets of early phytoestrogen exposure at levels comparable to those in soy-based infant formulas.
Collapse
Affiliation(s)
- M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy
| | - S Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, Padua, PD 35131, Italy
| | - C Porte
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - B Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - E Macchi
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Torino, Italy
| | - G Ponti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy
| | - M Keller
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy.
| |
Collapse
|
7
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2025; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Falconi-Sobrinho LL, Fonseca-Rodrigues D, da Silva ML, Coimbra NC, Pinto-Ribeiro F. Neuroanatomical and neurochemical substrates mediating fear-induced antinociception: A systematic review of rodent preclinical studies. Neurosci Biobehav Rev 2025; 168:105959. [PMID: 39613200 DOI: 10.1016/j.neubiorev.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fear-induced antinociception (FIA), an instinctive defensive response producing pain suppression in stressful and/or dangerous situations, has been the subject of extensive research to elucidate the mechanisms involved in triggering and controlling pain during emotional disorders. In this systematic review, we synthesized pre-clinical studies that demonstrated the neural hodology and the neurochemical bases of FIA in laboratory animals. The literature search in PubMed, Web of Science, Science Direct, and Scopus, from inception up to July 2022, retrieved 797 articles from which 50 studies were included in this review. This review highlights key encephalic regions implicated in the modulation of FIA, such as the prefrontal cortex, the amygdaloid complex, the hippocampus, the hypothalamus, the corpora quadrigemina, the periaqueductal gray matter, and some reticular formation nuclei. FIA-related neural pathways, neurotransmitters and neuromodulators such as glutamatergic, serotonergic, norepinephrine, GABAergic, nitrergic, opioidergic and endocannabinoid connections across these encephalic regions were also addressed. Understanding these neural circuits and molecular neural mediation sheds light on the complex interplay between fear, anxiety, and pain modulation, offering potential avenues for therapeutic interventions targeting pain management in the context of heightened emotional states.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal
| | - Marcelo Lourenço da Silva
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal.
| |
Collapse
|
9
|
Schwartz PJ. Freud's 1926 conjecture is confirmed: evidence from the dorsal periaqueductal gray in mice that human psychological defense against internal instinctual threat evolved from animal motor defense against external predatory threat. Front Psychol 2024; 15:1427816. [PMID: 39380762 PMCID: PMC11458385 DOI: 10.3389/fpsyg.2024.1427816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
In 1926, Freud famously conjectured that the human ego defense of repression against an internal instinctual threat evolved from the animal motor defense of flight from an external predatory threat. Studies over the past 50 years mainly in rodents have investigated the neurobiology of the fight-or-flight reflex to external threats, which activates the emergency alarm system in the dorsal periaqueductal gray (dPAG), the malfunction of which appears likely in panic and post-traumatic stress disorders, but perhaps also in some "non-emergent" conditions like social anxiety and "hysterical" conversion disorder. Computational neuroscience studies in mice by Reis and colleagues have revealed unprecedented insights into the dPAG-related neural mechanisms underlying these evolutionarily honed emergency vertebrate defensive functions (e.g., explore, risk assessment, escape, freeze). A psychoanalytic interpretation of the Reis studies demonstrates that Freud's 1926 conjecture is confirmed, and that internal instinctual threats alone can also set off the dPAG emergency alarm system, which is regulated by 5-HT1A and CRF-1 receptors. Consistent with current psychoanalytic and neurobiologic theories of panic, several other of the primitive components of the dPAG alarm system may also have relevance for understanding of the unconscious determinants of impaired object relationships (e.g., avoidance distance). These dPAG findings reveal (1) a process of "evolution in situ," whereby a more sophisticated dPAG ego defense is seen evolving out of a more primitive dPAG motor defense, (2) a dPAG location for the phylogenetically ancient kernel of Freud's Ego and Id, and (3) a Conscious Id theory that has been conclusively invalidated.
Collapse
Affiliation(s)
- Paul J. Schwartz
- Section on Ego Mechanics, Cincinnati Psychoanalytic Institute, Cincinnati, OH, United States
| |
Collapse
|
10
|
Ramkumar R, Edge-Partington M, Terstege DJ, Adigun K, Ren Y, Khan NS, Rouhi N, Jamani NF, Tsutsui M, Epp JR, Sargin D. Long-Term Impact of Early-Life Stress on Serotonin Connectivity. Biol Psychiatry 2024; 96:287-299. [PMID: 38316332 DOI: 10.1016/j.biopsych.2024.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Chronic childhood stress is a prominent risk factor for developing affective disorders, yet mechanisms underlying this association remain unclear. Maintenance of optimal serotonin (5-HT) levels during early postnatal development is critical for the maturation of brain circuits. Understanding the long-lasting effects of early-life stress (ELS) on serotonin-modulated brain connectivity is crucial to develop treatments for affective disorders arising from childhood stress. METHODS Using a mouse model of chronic developmental stress, we determined the long-lasting consequences of ELS on 5-HT circuits and behavior in females and males. Using FosTRAP mice, we cross-correlated regional c-Fos density to determine brain-wide functional connectivity of the raphe nucleus. We next performed in vivo fiber photometry to establish ELS-induced deficits in 5-HT dynamics and optogenetics to stimulate 5-HT release to improve behavior. RESULTS Adult female and male mice exposed to ELS showed heightened anxiety-like behavior. ELS further enhanced susceptibility to acute stress by disrupting the brain-wide functional connectivity of the raphe nucleus and the activity of 5-HT neuron population, in conjunction with increased orbitofrontal cortex (OFC) activity and disrupted 5-HT release in medial OFC. Optogenetic stimulation of 5-HT terminals in the medial OFC elicited an anxiolytic effect in ELS mice in a sex-dependent manner. CONCLUSIONS These findings suggest a significant disruption in 5-HT-modulated brain connectivity in response to ELS, with implications for sex-dependent vulnerability. The anxiolytic effect of the raphe-medial OFC circuit stimulation has potential implications for developing targeted stimulation-based treatments for affective disorders that arise from early life adversities.
Collapse
Affiliation(s)
- Raksha Ramkumar
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Moriah Edge-Partington
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dylan J Terstege
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kabirat Adigun
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi Ren
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nazmus S Khan
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nahid Rouhi
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Naila F Jamani
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mio Tsutsui
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan R Epp
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada; Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derya Sargin
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Tan W, Ikoma Y, Takahashi Y, Konno A, Hirai H, Hirase H, Matsui K. Anxiety control by astrocytes in the lateral habenula. Neurosci Res 2024; 205:1-15. [PMID: 38311032 DOI: 10.1016/j.neures.2024.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments. Electrical stimulation of LHb at theta-band frequency promoted anxiety-like behavior. Calcium (Ca2+) levels and pH in the cytosol of astrocytes and local brain blood volume changes were studied in mice expressing either a Ca2+ or a pH sensor protein specifically in astrocytes and mScarlet fluorescent protein in the blood plasma using fiber photometry. An acidification response to anxiety was observed. Photoactivation of archaerhopsin-T (ArchT), an optogenetic tool that acts as an outward proton pump, results in intracellular alkalinization. Photostimulation of LHb in astrocyte-specific ArchT-expressing mice resulted in dissipation of theta-band LFP oscillation in an anxiogenic environment and suppression of anxiety-like behavior. These findings provide evidence that LHb astrocytes modulate anxiety and may offer a new target for treatment of anxiety disorders.
Collapse
Affiliation(s)
- Wanqin Tan
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Yoko Ikoma
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan
| | - Yusuke Takahashi
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan; Systems Bioinformatics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; Viral Vector Core, Gunma University Initiative for Advanced Research, Maebashi 371-8511, Gunma, Japan
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577 Japan.
| |
Collapse
|
12
|
Karpov G, Lin MH, Headley DB, Baker TE. Oscillatory correlates of threat imminence during virtual navigation. Psychophysiology 2024; 61:e14551. [PMID: 38516942 DOI: 10.1111/psyp.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/18/2024] [Accepted: 02/10/2024] [Indexed: 03/23/2024]
Abstract
The Predatory Imminence Continuum Theory proposes that defensive behaviors depend on the proximity of a threat. While the neural mechanisms underlying this proposal are well studied in animal models, it remains poorly understood in humans. To address this issue, we recorded EEG from 24 (15 female) young adults engaged in a first-person virtual reality Risk-Reward interaction task. On each trial, participants were placed in a virtual room and presented with either a threat or reward conditioned stimulus (CS) in the same room location (proximal) or different room location (distal). Behaviorally, all participants learned to avoid the threat-CS, with most using the optimal behavior to actively avoid the proximal threat-CS (88% accuracy) and passively avoid the distal threat-CS (69% accuracy). Similarly, participants learned to actively approach the distal reward-CS (82% accuracy) and to remain passive to the proximal reward-CS (72% accuracy). At an electrophysiological level, we observed a general increase in theta power (4-8 Hz) over the right posterior channel P8 across all conditions, with the proximal threat-CS evoking the largest theta response. By contrast, distal cues induced two bursts of gamma (30-60 Hz) power over midline-parietal channel Pz (200 msec post-cue) and right frontal channel Fp2 (300 msec post-cue). Interestingly, the first burst of gamma power was sensitive to the distal threat-CS and the second burst at channel Fp2 was sensitive to the distal reward-CS. Together, these findings demonstrate that oscillatory processes differentiate between the spatial proximity information during threat and reward encoding, likely optimizing the selection of the appropriate behavioral response.
Collapse
Affiliation(s)
- Galit Karpov
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Mei-Heng Lin
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| | - Travis E Baker
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey, USA
| |
Collapse
|
13
|
Ging-Jehli NR, Kuhn M, Blank JM, Chanthrakumar P, Steinberger DC, Yu Z, Herrington TM, Dillon DG, Pizzagalli DA, Frank MJ. Cognitive Signatures of Depressive and Anhedonic Symptoms and Affective States Using Computational Modeling and Neurocognitive Testing. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:726-736. [PMID: 38401881 PMCID: PMC11227402 DOI: 10.1016/j.bpsc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Deeper phenotyping may improve our understanding of depression. Because depression is heterogeneous, extracting cognitive signatures associated with severity of depressive symptoms, anhedonia, and affective states is a promising approach. METHODS Sequential sampling models decomposed behavior from an adaptive approach-avoidance conflict task into computational parameters quantifying latent cognitive signatures. Fifty unselected participants completed clinical scales and the approach-avoidance conflict task by either approaching or avoiding trials offering monetary rewards and electric shocks. RESULTS Decision dynamics were best captured by a sequential sampling model with linear collapsing boundaries varying by net offer values, and with drift rates varying by trial-specific reward and aversion, reflecting net evidence accumulation toward approach or avoidance. Unlike conventional behavioral measures, these computational parameters revealed distinct associations with self-reported symptoms. Specifically, passive avoidance tendencies, indexed by starting point biases, were associated with greater severity of depressive symptoms (R = 0.34, p = .019) and anhedonia (R = 0.49, p = .001). Depressive symptoms were also associated with slower encoding and response execution, indexed by nondecision time (R = 0.37, p = .011). Higher reward sensitivity for offers with negative net values, indexed by drift rates, was linked to more sadness (R = 0.29, p = .042) and lower positive affect (R = -0.33, p = .022). Conversely, higher aversion sensitivity was associated with more tension (R = 0.33, p = .025). Finally, less cautious response patterns, indexed by boundary separation, were linked to more negative affect (R = -0.40, p = .005). CONCLUSIONS We demonstrated the utility of multidimensional computational phenotyping, which could be applied to clinical samples to improve characterization and treatment selection.
Collapse
Affiliation(s)
- Nadja R Ging-Jehli
- Carney Institute for Brain Science, Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, Rhode Island.
| | - Manuel Kuhn
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jacob M Blank
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Pranavan Chanthrakumar
- Carney Institute for Brain Science, Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, Rhode Island; Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - David C Steinberger
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Zeyang Yu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Michael J Frank
- Carney Institute for Brain Science, Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, Rhode Island
| |
Collapse
|
14
|
Graeff FG, Joca S, Zangrossi H. Bradykinin actions in the central nervous system: historical overview and psychiatric implications. Acta Neuropsychiatr 2024; 36:129-138. [PMID: 38178717 DOI: 10.1017/neu.2023.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK's role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.
Collapse
Affiliation(s)
- Frederico Guilherme Graeff
- Behavioural Neurosciences Institute (INeC), Ribeirão Preto, SP, Brazil
- Department of Psychology, FFCLRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Helio Zangrossi
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
15
|
Gullino LS, Fuller C, Dunn P, Collins HM, El Mestikawy S, Sharp T. Evidence for a Role of 5-HT-glutamate Co-releasing Neurons in Acute Stress Mechanisms. ACS Chem Neurosci 2024; 15:1185-1196. [PMID: 38377469 PMCID: PMC10958520 DOI: 10.1021/acschemneuro.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.
Collapse
Affiliation(s)
- L. Sophie Gullino
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Cara Fuller
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Poppy Dunn
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Helen M. Collins
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Salah El Mestikawy
- Douglas
Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC H4H
1R3, Canada
- Sorbonne
Université, INSERM, CNRS, Neuroscience Paris Seine –
Institut de Biologie Paris Seine (NPS – IBPS), 75005 Paris, France
| | - Trevor Sharp
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
16
|
Bonaldo B, Casile A, Ostuni MT, Bettarelli M, Nasini S, Marraudino M, Panzica G, Gotti S. Perinatal exposure to bisphenol A or S: Effects on anxiety-related behaviors and serotonergic system. CHEMOSPHERE 2024; 349:140827. [PMID: 38042429 DOI: 10.1016/j.chemosphere.2023.140827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action. Exposure to BPs can lead to a wide range of effects, and it is especially dangerous if it occurs during specific critical periods of life. Focusing on the perinatal exposure to BPA or its largely used substitute BPS, we investigated the effects on anxiety-related behaviors and the serotonergic system, which is highly involved in controlling these behaviors, in adult mice. We treated C57BL/6J dams orally with a dose of 4 μg/kg body weight/day (i.e., EFSA TDI) of BPA or BPS dissolved in corn oil or with vehicle alone, at the onset of mating and continued treatment until the offspring were weaned. Adult offspring of both sexes performed the elevated plus maze and the open field tests. Then, we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei by immunohistochemical techniques. Behavioral tests highlighted alterations in BPA- and BPS-treated mice, suggesting different effects of the bisphenols exposure on anxiety-related behavior in males (anxiolytic) and females (anxiogenic). The analysis of the serotonergic system highlighted a sex dimorphism in the DR only, with control females showing higher values of serotonin immunoreactivity (5-HT-ir) than control males. BPA-treated males displayed a significant increase of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR only. In females, both bisphenols-treated groups showed a significant increase of 5-HT-ir in dorsal DR compared to the controls, and BPA-treated females also showed a significant increase in MnR.These results provide evidence that exposure during the early phases of life to BPA or BPS alters anxiety and the raphe serotonergic neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy.
| | - Antonino Casile
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy; School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, 9, Camerino, 62032, Italy
| | - Marialaura Teresa Ostuni
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Martina Bettarelli
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, 35131, Padua, PD, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| | - Stefano Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10-10043 Orbassano, Turin, Italy; Department of Neuroscience "Rita Levi-Montalcini", University of Turin, Via Cherasco 15, 10126, Turin, Italy
| |
Collapse
|
17
|
Kang SJ, Kim JH, Kim DI, Roberts BZ, Han S. A pontomesencephalic PACAPergic pathway underlying panic-like behavioral and somatic symptoms in mice. Nat Neurosci 2024; 27:90-101. [PMID: 38177337 PMCID: PMC11195305 DOI: 10.1038/s41593-023-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2023] [Indexed: 01/06/2024]
Abstract
Panic disorder is characterized by uncontrollable fear accompanied by somatic symptoms that distinguish it from other anxiety disorders. Neural mechanisms underlying these unique symptoms are not completely understood. Here, we report that the pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons in the lateral parabrachial nucleus projecting to the dorsal raphe are crucial for panic-like behavioral and physiological alterations. These neurons are activated by panicogenic stimuli but inhibited in conditioned fear and anxiogenic conditions. Activating these neurons elicits strong defensive behaviors and rapid cardiorespiratory increase without creating aversive memory, whereas inhibiting them attenuates panic-associated symptoms. Chemogenetic or pharmacological inhibition of downstream PACAP receptor-expressing dorsal raphe neurons abolishes panic-like symptoms. The pontomesencephalic PACAPergic pathway is therefore a likely mediator of panicogenesis, and may be a promising therapeutic target for treating panic disorder.
Collapse
Affiliation(s)
- Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Hyun Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Z Roberts
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
18
|
Carvalheiro J, Philiastides MG. Distinct spatiotemporal brainstem pathways of outcome valence during reward- and punishment-based learning. Cell Rep 2023; 42:113589. [PMID: 38100353 DOI: 10.1016/j.celrep.2023.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Learning to seek rewards and avoid punishments, based on positive and negative choice outcomes, is essential for human survival. Yet, the neural underpinnings of outcome valence in the human brainstem and the extent to which they differ in reward and punishment learning contexts remain largely elusive. Here, using simultaneously acquired electroencephalography and functional magnetic resonance imaging data, we show that during reward learning the substantia nigra (SN)/ventral tegmental area (VTA) and locus coeruleus are initially activated following negative outcomes, while the VTA subsequently re-engages exhibiting greater responses for positive than negative outcomes, consistent with an early arousal/avoidance response and a later value-updating process, respectively. During punishment learning, we show that distinct raphe nucleus and SN subregions are activated only by negative outcomes with a sustained post-outcome activity across time, supporting the involvement of these brainstem subregions in avoidance behavior. Finally, we demonstrate that the coupling of these brainstem structures with other subcortical and cortical areas helps to shape participants' serial choice behavior in each context.
Collapse
Affiliation(s)
- Joana Carvalheiro
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| | - Marios G Philiastides
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QB, UK; Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
19
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Bîlc MI, Iacob A, Szekely-Copîndean RD, Kiss B, Ștefan MG, Mureșan RC, Pop CF, Pițur S, Szentágotai-Tătar A, Vulturar R, MacLeod C, Miu AC. Serotonin and emotion regulation: the impact of tryptophan depletion on emotional experience, neural and autonomic activity. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1414-1427. [PMID: 37430145 DOI: 10.3758/s13415-023-01116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
The involvement of serotonin in emotion and psychopathology has been extensively examined. Studies using acute tryptophan depletion (ATD) have found limited effects on mood and aggression, and one of the explanations suggests that serotonin may be involved in higher-order functions, such as emotion regulation. However, there is very limited evidence for this hypothesis. The present study investigated the impact of ATD on emotion regulation in a double-blind, placebo-controlled, crossover design. A sample of psychiatrically healthy men (N = 28) completed a cognitive task assessing reappraisal ability (i.e., the success of using reappraisal, an emotion regulation strategy, to modulate emotional responses), following ATD and placebo. EEG frontal activity and asymmetry, as well as heart-rate variability (HRV), also were assessed in the reappraisal task. Both frequentist and Bayesian methods were employed for statistical analysis. Results indicated that ATD reduced plasma tryptophan, and reappraisal was effective in modulating emotional experience in the emotion regulation task. However, ATD had no significant effect on reappraisal ability, frontal activity, and HRV. These results offer direct and compelling evidence that decreasing serotonin synthesis through ATD does not alter an emotion regulation ability that is considered crucial in mood and aggression and has been linked with transdiagnostic risk of psychopathology.
Collapse
Affiliation(s)
- Mirela I Bîlc
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Alexandra Iacob
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Raluca D Szekely-Copîndean
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Department of Social and Human Research, Romanian Academy, Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Claudia Felicia Pop
- Nursing Discipline, Department Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simina Pițur
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Aurora Szentágotai-Tătar
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Romana Vulturar
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
- Department of Molecular Sciences, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Colin MacLeod
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Andrei C Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
21
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540716. [PMID: 37645786 PMCID: PMC10461921 DOI: 10.1101/2023.05.14.540716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and serotonin neural activity in females is poorly understood. Here, we investigated dorsal raphe serotonin neural activity in females during sexual behavior. We found that serotonin neural activity in mating females peaked specifically upon male ejaculation, and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis erectile enlargement ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit serotonin neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L. Troconis
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Melissa R. Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
- Lead Contact
| |
Collapse
|
22
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
23
|
Kim HJ, Bang M, Park CI, Lee SH. Altered DNA Methylation of the Serotonin Transporter Gene Associated with Early Life Stress and White Matter Microalterations in Korean Patients with Panic Disorder. Neuropsychobiology 2023; 82:210-219. [PMID: 37231896 DOI: 10.1159/000530313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Changes in the DNA methylation of 5-HTTLPR are associated with the pathophysiology of panic disorder (PD). This study was conducted to investigate the association between stressful life events and the level of 5-HTTLPR methylation in patients with PD. We also examined whether these factors were associated with white matter alterations in psychological trauma-related regions. METHODS The participants comprised 232 patients with PD and 93 healthy adults of Korean descent. DNA methylation levels of five cytosine-phosphate-guanine (CpG) sites in the 5-HTTLPR region were analyzed. Voxel-wise statistical analysis of diffusion tensor imaging data was performed within the trauma-related regions. RESULTS PD patients showed significantly lower levels of the DNA methylation at 5-HTTLPR 5 CpG sites than healthy controls. In patients with PD, the DNA methylation levels at 5-HTTLPR 5 CpG sites showed significant negative association with the parental separation-related psychological distress, and positive correlations with the fractional anisotropy values of the superior longitudinal fasciculus (SLF) which might be related to trait anxiety. CONCLUSION Early life stress was significantly associated with DNA methylation levels at 5-HTTLPR related to the decreased white matter integrity in the SLF region in PD. Decreased white matter connectivity in the SLF might be related to trait anxiety and is vital to the pathophysiology of PD.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Minji Bang
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Chun Il Park
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
24
|
Vázquez-León P, Miranda-Páez A, Valencia-Flores K, Sánchez-Castillo H. Defensive and Emotional Behavior Modulation by Serotonin in the Periaqueductal Gray. Cell Mol Neurobiol 2023; 43:1453-1468. [PMID: 35902460 PMCID: PMC11412428 DOI: 10.1007/s10571-022-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Serotonin 5-hydroxytryptamine (5-HT) is a key neurotransmitter for the modulation and/or regulation of numerous physiological processes and psychiatric disorders (e.g., behaviors related to anxiety, pain, aggressiveness, etc.). The periaqueductal gray matter (PAG) is considered an integrating center for active and passive defensive behaviors, and electrical stimulation of this area has been shown to evoke behavioral responses of panic, fight-flight, freezing, among others. The serotonergic activity in PAG is influenced by the activation of other brain areas such as the medial hypothalamus, paraventricular nucleus of the hypothalamus, amygdala, dorsal raphe nucleus, and ventrolateral orbital cortex. In addition, activation of other receptors within PAG (i.e., CB1, Oxytocin, µ-opioid receptor (MOR), and γ-aminobutyric acid (GABAA)) promotes serotonin release. Therefore, this review aims to document evidence suggesting that the PAG-evoked behavioral responses of anxiety, panic, fear, analgesia, and aggression are influenced by the activation of 5-HT1A and 5-HT2A/C receptors and their participation in the treatment of various mental disorders.
Collapse
Affiliation(s)
- Priscila Vázquez-León
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Abraham Miranda-Páez
- Department of Physiology, National School of Biological Sciences, National Polytechnic Institute, Wilfrido Massieu esq. Manuel Stampa S/N Col. Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City, CP:07738, Mexico
| | - Kenji Valencia-Flores
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico
| | - Hugo Sánchez-Castillo
- Neuropsychopharmacology Laboratory, Psychology School. 1er Piso Edif. B. Cub B001, National Autonomous University of Mexico, Avenida Universidad 3000, Colonia Copilco Universidad. Alcaldía de Coyoacan, Mexico City, Mexico.
- Research Unit of Psychobiology and Neurosciences (UIPyN), Psychology School, UNAM, CDMX Mexico, CP 04510, Mexico.
| |
Collapse
|
25
|
Lemes JA, Silva MSCF, Gonçalves BSM, Céspedes IC, Viana MB. Deep Brain Stimulation of the dorsal raphe induces anxiolytic and panicolytic-like effects and alters serotonin immunoreactivity. Behav Brain Res 2023; 449:114462. [PMID: 37121276 DOI: 10.1016/j.bbr.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Previously we showed that Deep Brain Stimulation (DBS) of the dorsal region (DRD) and of the lateral wings of the dorsal raphe (lwDR) respectively decreases anxiety and panic-like responses in the elevated T-maze (ETM). This study investigates neurobiological alterations which might respond for these behavioral effects. Male Wistar rats were submitted to high-frequency stimulation (100µA, 100Hz) of the DRD or of the lwDR for 1h, and subsequently tested in the avoidance or escape tasks of the ETM. Since serotonin (5-HT) reuptake inhibitors are first line pharmacological treatment for anxiety disorders, we also tested the effects of chronic fluoxetine administration (10mg/kg, IP, 21 days) on a separate group of rats. An open field was used for locomotor activity assessment. Additionally, we evaluated c-Fos immunoreactivity (Fos-ir) in serotonergic cells of the dorsal raphe (DR). Results showed that DBS of the DRD decreases avoidance reactions, an anxiolytic-like effect, without altering escape or locomotor activity. Both fluoxetine and DBS of the lwDR decreased escape responses in the ETM, a panicolytic-like effect, without altering avoidance measurements or locomotor activity. While DBS of the DRD decreased double immunostaining in the DRD, DBS of the lwDR increased Fos-ir and double immunostaining in the DRD and lwDR. Fluoxetine also increased double immunostaining in the lwDR and in the DRV but decreased it in the DRD. These results suggest that both the anxiolytic and panicolytic-like effects of DBS and fluoxetine are related to 5-HT modulation in different subnuclei of the DR.
Collapse
Affiliation(s)
- J A Lemes
- Departamento de Biociências, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - M S C F Silva
- Departamento de Biociências, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - B S M Gonçalves
- Departamento de Biociências, Federal University of São Paulo (UNIFESP), Santos, Brazil
| | - I C Céspedes
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - M B Viana
- Departamento de Biociências, Federal University of São Paulo (UNIFESP), Santos, Brazil.
| |
Collapse
|
26
|
Blanchard DC. Are cognitive aspects of defense a core feature of anxiety and depression? Neurosci Biobehav Rev 2023; 144:104947. [PMID: 36343691 DOI: 10.1016/j.neubiorev.2022.104947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Anxiety and depression are highly prevalent behavior disorders, particularly in women. Recent preclinical work using animal models has been suboptimal in predicting the efficacy of drugs targeted at these conditions, suggesting a potential discrepancy between such models and the human disorders. Notably female animals tend to be equal to, or less responsive than, males in these tasks. A number of analyses suggest that mammalian defense patterns are complex: In addition to relatively discrete and immediate fight, flight, and freezing responses, a risk assessment pattern may occur in response to threat stimuli or situations with ambiguous elements. This pattern combines defensiveness with a number of cognition-linked behaviors such as sensory attention and orientation, approach, contact, and investigation of the potential threat. Studies measuring elements of this pattern suggest that female rats, and perhaps female mice, show higher levels than equivalent males. Higher female involvement may also occur in tasks involving learning/generalization/extinction of defensiveness to conditioned stimuli. Such findings are consonant with recent analyses of "female survival strategies" based on differential adaptiveness of cognitive components of defensiveness in females, due to the necessity of female care of offspring until they are independent. These data suggest the value of additional behavioral and functional analyses of cognitive aspects of defensive behavior; contributing to both an understanding of their underlying mechanisms, and providing more sensitive measures of drug responsivity for use with animal models.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, Manoa, Honolulu, HI, USA; Institute of Biomedical Sciences at the University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
27
|
Salvan P, Fonseca M, Winkler AM, Beauchamp A, Lerch JP, Johansen-Berg H. Serotonin regulation of behavior via large-scale neuromodulation of serotonin receptor networks. Nat Neurosci 2023; 26:53-63. [PMID: 36522497 PMCID: PMC9829536 DOI: 10.1038/s41593-022-01213-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/24/2022] [Indexed: 12/23/2022]
Abstract
Although we understand how serotonin receptors function at the single-cell level, what role different serotonin receptors play in regulating brain-wide activity and, in turn, human behavior, remains unknown. Here, we developed transcriptomic-neuroimaging mapping to characterize brain-wide functional signatures associated with specific serotonin receptors: serotonin receptor networks (SRNs). Probing SRNs with optogenetics-functional magnetic resonance imaging (MRI) and pharmacology in mice, we show that activation of dorsal raphe serotonin neurons differentially modulates the amplitude and functional connectivity of different SRNs, showing that receptors' spatial distributions can confer specificity not only at the local, but also at the brain-wide, network level. In humans, using resting-state functional MRI, SRNs replicate established divisions of serotonin effects on impulsivity and negative biases. These results provide compelling evidence that heterogeneous brain-wide distributions of different serotonin receptor types may underpin behaviorally distinct modes of serotonin regulation. This suggests that serotonin neurons may regulate multiple aspects of human behavior via modulation of large-scale receptor networks.
Collapse
Affiliation(s)
- Piergiorgio Salvan
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Madalena Fonseca
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anderson M Winkler
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Heidi Johansen-Berg
- Wellcome Centre For Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Next generation genetically encoded fluorescent sensors for serotonin. Nat Commun 2022; 13:7525. [PMID: 36473867 PMCID: PMC9726753 DOI: 10.1038/s41467-022-35200-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
We developed a family of genetically encoded serotonin (5-HT) sensors (sDarken) on the basis of the native 5-HT1A receptor and circularly permuted GFP. sDarken 5-HT sensors are bright in the unbound state and diminish their fluorescence upon binding of 5-HT. Sensor variants with different affinities for serotonin were engineered to increase the versatility in imaging of serotonin dynamics. Experiments in vitro and in vivo showed the feasibility of imaging serotonin dynamics with high temporal and spatial resolution. As demonstrated here, the designed sensors show excellent membrane expression, have high specificity and a superior signal-to-noise ratio, detect the endogenous release of serotonin and are suitable for two-photon in vivo imaging.
Collapse
|
29
|
de Figueiredo RM, Falconi-Sobrinho LL, Leite-Panissi CRA, Huston JP, Mattern C, de Carvalho MC, Coimbra NC. D 2-like receptor activation by intranasal dopamine attenuates fear responses induced by electrical stimulation of the dorsal periaqueductal grey matter, but fails to reduce aversion to pit vipers and T-maze performance. J Psychopharmacol 2022; 36:1257-1272. [PMID: 36239034 DOI: 10.1177/02698811221128018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Panic-like reactions elicited by electrical stimulation of the dorsal periaqueductal grey matter (ES-dPAG) seem to be regulated by dopamine (DA). We showed that DA applied intranasally (IN) increased escape-behaviour thresholds induced by ES-dPAG of rats, indicating a panicolytic-like effect. AIMS We investigated whether IN-DA increases escape-response thresholds induced by ES-dPAG by acting on D2-like receptors, and whether IN-DA affects escape responses elicited by the presence of a potential predator and by open space and height of the elevated T-maze (ETM) as well as motor performance in the open field (OF) test. METHODS Wistar rats exposed to ES-dPAG were treated with Sulpiride (SUL, 40 mg/kg, D2-like receptor antagonist) previously IN-DA (2 mg/kg). Independent groups of rats treated with IN-DA were submitted to prey versus snake paradigm (PSP), ETM and OF. RESULTS Anti-aversive effects of the IN-DA were reduced by SUL pretreatment in the ES-dPAG test. IN-DA did not affect the escape number in the PSP nor the escape latencies in the ETM as well as motor performance in the OF. CONCLUSIONS/INTERPRETATION The IN-DA effects in reducing unconditioned fear responses elicited by ES-dPAG seem to be mediated by D2-like receptors. The lack of effects on panic-related responses in the ETM and PSP may be related to the possibility of avoiding the danger inherent to these models, a defence strategy not available during ES-dPAG. These findings cannot be attributed to motor performance. The decision-making responses to avoid dangerous situations can be orchestrated by supra-mesencephalic structures connected by non-dopaminergic inputs.
Collapse
Affiliation(s)
- Rebeca Machado de Figueiredo
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Luiz Luciano Falconi-Sobrinho
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology, Ribeirão Preto School of Philosophy, Science and Literature of the University of São Paulo, Ribeirão Preto, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Joseph P Huston
- Centre for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University of Düsseldorf, Germany
| | - Claudia Mattern
- MetP Pharma AG, Emmetten, Switzerland, and Oceanographic Centre, Nova Southeastern University, Fl, USA
| | - Milene Cristina de Carvalho
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.,Institute for Neuroscience and Behaviour (INeC), Ribeirão Preto, Brazil
| |
Collapse
|
30
|
Steele JD, Farnan T, Semple DM, Bai S. Fronto-medial electrode placement for electroconvulsive treatment of depression. Front Neurosci 2022; 16:1029683. [PMID: 36340770 PMCID: PMC9631818 DOI: 10.3389/fnins.2022.1029683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for severe treatment-resistant depression but concern about cognitive side-effects, particularly memory loss, limits its use. Recent observational studies on large groups of patients who have received ECT report that cognitive side-effects were associated with electric field (EF) induced increases in hippocampal volume, whereas therapeutic efficacy was associated with EF induced increases in sagittal brain structures. The aim in the present study was to determine whether a novel fronto-medial (FM) ECT electrode placement would minimize electric fields in bilateral hippocampi (HIP) whilst maximizing electric fields in dorsal sagittal cortical regions. An anatomically detailed computational head model was used with finite element analysis, to calculate ECT-induced electric fields in specific brain regions identified by translational neuroimaging studies of treatment-resistant depressive illness, for a range of electrode placements. As hypothesized, compared to traditional bitemporal (BT) electrode placement, a specific FM electrode placement reduced bilateral hippocampal electric fields two-to-three-fold, whilst the electric fields in the dorsal anterior cingulate (dAC) were increased by approximately the same amount. We highlight the clinical relevance of this specific FM electrode placement for ECT, which may significantly reduce cognitive and non-cognitive side-effects and suggest a clinical trial is indicated.
Collapse
Affiliation(s)
- J. Douglas Steele
- School of Medicine, University of Dundee, Dundee, United Kingdom
- *Correspondence: J. Douglas Steele,
| | - Tom Farnan
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - David M. Semple
- University Hospital Hairmyres, NHS Lanarkshire, Glasgow, United Kingdom
| | - Siwei Bai
- Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
| |
Collapse
|
31
|
Skandali N, Majuri J, Joutsa J, Baek K, Arponen E, Forsback S, Kaasinen V, Voon V. The neural substrates of risky rewards and losses in healthy volunteers and patient groups: a PET imaging study. Psychol Med 2022; 52:3280-3288. [PMID: 33568248 PMCID: PMC9693671 DOI: 10.1017/s0033291720005450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Risk is an essential trait of most daily decisions. Our behaviour when faced with risks involves evaluation of many factors including the outcome probabilities, the valence (gains or losses) and past experiences. Several psychiatric disorders belonging to distinct diagnostic categories, including pathological gambling and addiction, show pathological risk-taking and implicate abnormal dopaminergic, opioidergic and serotonergic neurotransmission. In this study, we adopted a transdiagnostic approach to delineate the neurochemical substrates of decision making under risk. METHODS We recruited 39 participants, including 17 healthy controls, 15 patients with pathological gambling and seven binge eating disorder patients, who completed an anticipatory risk-taking task. Separately, participants underwent positron emission tomography (PET) imaging with three ligands, [18F]fluorodopa (FDOPA), [11C]MADAM and [11C]carfentanil to assess presynaptic dopamine synthesis capacity and serotonin transporter and mu-opioid receptor binding respectively. RESULTS Risk-taking behaviour when faced with gains positively correlated with dorsal cingulate [11C]carfentanil binding and risk-taking to losses positively correlated with [11C]MADAM binding in the caudate and putamen across all subjects. CONCLUSIONS We show distinct neurochemical substrates underlying risk-taking with the dorsal cingulate cortex mu-opioid receptor binding associated with rewards and dorsal striatal serotonin transporter binding associated with losses. Risk-taking and goal-directed control appear to dissociate between dorsal and ventral fronto-striatal systems. Our findings thus highlight the potential role of pharmacological agents or neuromodulation on modifying valence-specific risk-taking biases.
Collapse
Affiliation(s)
- Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Joonas Majuri
- Department of Neurology and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Neurology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Juho Joutsa
- Department of Neurology and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Kwangyeol Baek
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | | | - Valtteri Kaasinen
- Department of Neurology and Turku Brain and Mind Center, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Turku, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- NIHR Biomedical Research Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
33
|
Silva C, Young CK, McNaughton N. Prefrontal and hippocampal theta rhythm show anxiolytic-like changes during periaqueductal-elicited "panic" in rats. Hippocampus 2022; 32:679-694. [PMID: 35916172 PMCID: PMC9540356 DOI: 10.1002/hipo.23459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/24/2022]
Abstract
Anxiety and panic are both elicited by threat and co-occur clinically. But, at the neural level, anxiety appears to inhibit the generation of panic; and vice versa. Anxiety and panic are thought to engage more anterior (a) and mid-posterior (m) parts of the periaqueductal gray (PAG), respectively. Anxiety also engages the hippocampus and medial prefrontal cortex. Here, we tested if mPAG but not aPAG stimulation would suppress prefrontal and hippocampal theta rhythm as do anxiolytic drugs. Twelve male rats with implanted electrodes were stimulated alternately (30 s interval) in the left PAG or right reticular formation (reticularis pontis oralis [RPO]-as a positive control) with recording in the left prelimbic cortex and left and right hippocampus. PAG stimulation was set to produce freezing and RPO to produce 7-8 Hz theta rhythm before tests lasting 10 min on each of 5 days. mPAG stimulation decreased, and aPAG increased, theta power at all sites during elicited freezing. mPAG, but not aPAG, stimulation decreased prefrontal theta frequency. Stimulation did not substantially change circuit dynamics (pairwise phase consistency and partial directed coherence). Together with previous reports, our data suggest that panic- and anxiety-control systems are mutually inhibitory, and neural separation of anxiety and panic extends down to the aPAG and mPAG, respectively. Our findings are consistent with recent proposals that fear and anxiety are controlled by parallel neural hierarchies extending from PAG to the prefrontal cortex.
Collapse
Affiliation(s)
- Carlos Silva
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Calvin K Young
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
34
|
De Giorgi R, Quinton AMG, Waters S, Cowen PJ, Harmer CJ. An experimental medicine study of the effects of simvastatin on emotional processing, reward learning, verbal memory, and inflammation in healthy volunteers. Psychopharmacology (Berl) 2022; 239:2635-2645. [PMID: 35511258 PMCID: PMC9069418 DOI: 10.1007/s00213-022-06156-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/22/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Clinical studies suggest that the highly lipophilic, anti-inflammatory molecule, simvastatin, might be an ideal candidate for drug repurposing in the treatment of depression. The neuropsychological effects of simvastatin are not known, but their ascertainment would have significant translational value about simvastatin's influence on mood and cognition. OBJECTIVES We aimed to investigate the effects of simvastatin on a battery of psychological tests and inflammatory markers in healthy volunteers. METHODS Fifty-three healthy subjects were randomly assigned to 7 days of either simvastatin (N = 27) or sucrose-based placebo (N = 26) given in a double-blind fashion. Then, participants were administered questionnaires measuring subjective rates of mood and anxiety, and a battery of tasks assessing emotional processing, reward learning, and verbal memory. Blood samples for C-reactive protein were also collected. RESULTS Compared to placebo, participants on simvastatin showed a higher number of positively valenced intrusions in the emotional recall task (F1,51 = 4.99, p = 0.03), but also an increase in anxiety scores (F1,51 = 5.37, p = 0.02). An exploratory analysis of the females' subgroup (N = 27) showed lower number of misclassifications as sad facial expression in the simvastatin arm (F1,25 = 6.60, p = 0.02). No further statistically significant changes could be observed on any of the other outcomes measured. CONCLUSIONS We found limited evidence that 7-day simvastatin use in healthy volunteer induces a positive emotional bias while also being associated with an increase in anxiety, potentially reflecting the early effects of antidepressants in clinical practice. Such effect might be more evident in female subjects. Different drug dosages, treatment lengths, and sample selection need consideration in further experimental medicine and clinical studies. TRIAL REGISTRATION Clinicaltrials.gov: NCT04652089.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK.
| | - Alice M G Quinton
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK
| | - Shona Waters
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Warneford Lane, Oxford, OX3 7JX, Oxfordshire, UK
| |
Collapse
|
35
|
Lan DCL, Browning M. What Can Reinforcement Learning Models of Dopamine and Serotonin Tell Us about the Action of Antidepressants? COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2022; 6:166-188. [PMID: 38774776 PMCID: PMC11104395 DOI: 10.5334/cpsy.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/29/2022] [Indexed: 11/20/2022]
Abstract
Although evidence suggests that antidepressants are effective at treating depression, the mechanisms behind antidepressant action remain unclear, especially at the cognitive/computational level. In recent years, reinforcement learning (RL) models have increasingly been used to characterise the roles of neurotransmitters and to probe the computations that might be altered in psychiatric disorders like depression. Hence, RL models might present an opportunity for us to better understand the computational mechanisms underlying antidepressant effects. Moreover, RL models may also help us shed light on how these computations may be implemented in the brain (e.g., in midbrain, striatal, and prefrontal regions) and how these neural mechanisms may be altered in depression and remediated by antidepressant treatments. In this paper, we evaluate the ability of RL models to help us understand the processes underlying antidepressant action. To do this, we review the preclinical literature on the roles of dopamine and serotonin in RL, draw links between these findings and clinical work investigating computations altered in depression, and appraise the evidence linking modification of RL processes to antidepressant function. Overall, while there is no shortage of promising ideas about the computational mechanisms underlying antidepressant effects, there is insufficient evidence directly implicating these mechanisms in the response of depressed patients to antidepressant treatment. Consequently, future studies should investigate these mechanisms in samples of depressed patients and assess whether modifications in RL processes mediate the clinical effect of antidepressant treatments.
Collapse
Affiliation(s)
- Denis C. L. Lan
- Department of Experimental Psychology, University of Oxford, Oxford, GB
| | | |
Collapse
|
36
|
Rosa DS, Frias AT, Vilela-Costa HH, Junior AS, Sant’Ana AB, Fusse EJ, Suchecki D, Campos AC, Lovick TA, Zangrossi H. Neonatal maternal deprivation facilitates the expression of a panic-like escape behavior in adult rats. Behav Brain Res 2022; 434:114031. [DOI: 10.1016/j.bbr.2022.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
|
37
|
Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat Rev Neurosci 2022; 23:568-580. [PMID: 35760906 DOI: 10.1038/s41583-022-00608-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/16/2022]
Abstract
Animals have sophisticated mechanisms for coping with danger. Freezing is a unique state that, upon threat detection, allows evidence to be gathered, response possibilities to be previsioned and preparations to be made for worst-case fight or flight. We propose that - rather than reflecting a passive fear state - the particular somatic and cognitive characteristics of freezing help to conceal overt responses, while optimizing sensory processing and action preparation. Critical for these functions are the neurotransmitters noradrenaline and acetylcholine, which modulate neural information processing and also control the sympathetic and parasympathetic branches of the autonomic nervous system. However, the interactions between autonomic systems and the brain during freezing, and the way in which they jointly coordinate responses, remain incompletely explored. We review the joint actions of these systems and offer a novel computational framework to describe their temporally harmonized integration. This reconceptualization of freezing has implications for its role in decision-making under threat and for psychopathology.
Collapse
|
38
|
Jepma M, Roy M, Ramlakhan K, van Velzen M, Dahan A. Different brain systems support learning from received and avoided pain during human pain-avoidance learning. eLife 2022; 11:74149. [PMID: 35731646 PMCID: PMC9217130 DOI: 10.7554/elife.74149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
Both unexpected pain and unexpected pain absence can drive avoidance learning, but whether they do so via shared or separate neural and neurochemical systems is largely unknown. To address this issue, we combined an instrumental pain-avoidance learning task with computational modeling, functional magnetic resonance imaging (fMRI), and pharmacological manipulations of the dopaminergic (100 mg levodopa) and opioidergic (50 mg naltrexone) systems (N = 83). Computational modeling provided evidence that untreated participants learned more from received than avoided pain. Our dopamine and opioid manipulations negated this learning asymmetry by selectively increasing learning rates for avoided pain. Furthermore, our fMRI analyses revealed that pain prediction errors were encoded in subcortical and limbic brain regions, whereas no-pain prediction errors were encoded in frontal and parietal cortical regions. However, we found no effects of our pharmacological manipulations on the neural encoding of prediction errors. Together, our results suggest that human pain-avoidance learning is supported by separate threat- and safety-learning systems, and that dopamine and endogenous opioids specifically regulate learning from successfully avoided pain.
Collapse
Affiliation(s)
- Marieke Jepma
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands.,Department of Psychology, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden, Netherlands
| | - Mathieu Roy
- Department of Psychology, McGill University, Montreal, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Kiran Ramlakhan
- Department of Psychology, Leiden University, Leiden, Netherlands.,Department of Research and Statistics, Municipality of Amsterdam, Amsterdam, Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
39
|
Kanen JW, Robbins TW, Trofimova IN. Harnessing temperament to elucidate the complexities of serotonin function. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Gregorio T, Lorenzon F, Niebisch F, Stolte RCK, Rafacho A, Dos Santos GJ, Lino de Oliveira C, Lima FB. Antidepressant-like activity of gestational administration of vitamin D is suppressed by prenatal overexposure to dexamethasone in female Wistar rats. Physiol Behav 2022; 249:113765. [PMID: 35227701 DOI: 10.1016/j.physbeh.2022.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Overexposure to glucocorticoids during gestation can lead to long-term mental disorders. Given the higher prevalence of depression in females, we investigated whether late gestational administration of dexamethasone could generate a depressive-like phenotype in the adult female offspring and if vitamin D could have a neuroprotective effect in this context. Pregnant rats received vitamin D (VitD, 500 IU/day) or vehicle (CTL) during gestation. Other pregnant rats received dexamethasone (Dex 0.1 mg/kg/ - 14th to the 19th gestational day) or dexamethasone + vitamin D (DexVitD). The offspring were tested for anhedonia (sucrose preference) and depressive-like behavior (forced swimming test) at postnatal months (PNM) 3, 6 and 12. Components of the serotonergic system, as well as glucocorticoids' receptors, were evaluated in the dorsal raphe nucleus at PNM 6 and 12. Prenatal vitamin D and dexamethasone increased sucrose preference at PNM 12. Prenatal vitamin D had an antidepressant-like effect at PNM 3 in rats overexposed to dexamethasone. However, at PNM 12, this effect was blunted in the DexVitD group. Prenatal dexamethasone reduced the protein content of SERT, TPH, and 5-HT1A receptors in the dorsal raphe nucleus at 6 but not at 12 PNM. The glucocorticoids' receptors expression was similar in all groups. We concluded that prenatal overexposure to dexamethasone does not change emotional behaviors in females, but it blunts the antidepressant-like effect of gestational vitamin D in an age-dependent manner. The antidepressant-like activity of vitamin D in the offspring was not related either to alterations of the serotonergic system or the glucocorticoids' receptors expression in the dorsal raphe nucleus.
Collapse
Affiliation(s)
- Tamires Gregorio
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Flaviano Lorenzon
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Fernanda Niebisch
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Rafaela Carla Kachel Stolte
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Alex Rafacho
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Gustavo Jorge Dos Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Fernanda Barbosa Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, SC, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Campus, Florianópolis, SC, Brazil.
| |
Collapse
|
41
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
42
|
Yee DM, Leng X, Shenhav A, Braver TS. Aversive motivation and cognitive control. Neurosci Biobehav Rev 2022; 133:104493. [PMID: 34910931 PMCID: PMC8792354 DOI: 10.1016/j.neubiorev.2021.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Aversive motivation plays a prominent role in driving individuals to exert cognitive control. However, the complexity of behavioral responses attributed to aversive incentives creates significant challenges for developing a clear understanding of the neural mechanisms of this motivation-control interaction. We review the animal learning, systems neuroscience, and computational literatures to highlight the importance of experimental paradigms that incorporate both motivational context manipulations and mixed motivational components (e.g., bundling of appetitive and aversive incentives). Specifically, we postulate that to understand aversive incentive effects on cognitive control allocation, a critical contextual factor is whether such incentives are associated with negative reinforcement or punishment. We further illustrate how the inclusion of mixed motivational components in experimental paradigms enables increased precision in the measurement of aversive influences on cognitive control. A sharpened experimental and theoretical focus regarding the manipulation and assessment of distinct motivational dimensions promises to advance understanding of the neural, monoaminergic, and computational mechanisms that underlie the interaction of motivation and cognitive control.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA; Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA.
| | - Xiamin Leng
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Amitai Shenhav
- Cognitive, Linguistic, and Psychological Sciences, Brown University, USA; Carney Institute for Brain Science, Brown University, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, USA
| |
Collapse
|
43
|
Lopes LT, Canto-de-Souza L, Baptista-de-Souza D, de Souza RR, Nunes-de-Souza RL, Canto-de-Souza A. The interplay between 5-HT 2C and 5-HT 3A receptors in the dorsal periaqueductal gray mediates anxiety-like behavior in mice. Behav Brain Res 2022; 417:113588. [PMID: 34547341 DOI: 10.1016/j.bbr.2021.113588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/17/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
The monoamine neurotransmitter serotonin (5-HT) modulates anxiety by its activity on 5-HT2C receptors (5-HT2CR) expressed in the dorsal periaqueductal gray (dPAG). Here, we investigated the presence of 5-HT3A receptors (5-HT3AR) in the dPAG, and the interplay between 5-HT2CR and 5-HT3AR in the dPAG in mediating anxiety-like behavior in mice. We found that 5-HT3AR is expressed in the dPAG and the blockade of these receptors using intra-dPAG infusion of ondansetron (5-HT3AR antagonist; 3.0 nmol) induced an anxiogenic-like effect. The activation of 5-HT3ABR by the infusion of mCPBG [1-(m-Chlorophenyl)-biguanide; 5-HT3R agonist] did not alter anxiety-like behaviors. In addition, blockade of 5-HT3AR (1.0 nmol) prevented the anxiolytic-like effect induced by the infusion of the 5-HT2CR agonist mCPP (1-(3-chlorophenyl) piperazine; 0.03 nmol). None of the treatment effects on anxiety-like behaviors altered the locomotor activity levels. The present results suggest that the anxiolytic-like effect exerted by serotonin activity on 5-HT2CR in the dPAG is modulated by 5-HT3AR expressed in same region.
Collapse
Affiliation(s)
- Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada.
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Daniela Baptista-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Rimenez Rodrigues de Souza
- The University of Texas at Dallas, School of Behavior and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Ricardo L Nunes-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista, UNESP, Araraquara, SP 14801-902, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
44
|
Trotter PD, Smith SA, Moore DJ, O’Sullivan N, McFarquhar MM, McGlone FP, Walker SC. Acute tryptophan depletion alters affective touch perception. Psychopharmacology (Berl) 2022; 239:2771-2785. [PMID: 35554625 PMCID: PMC9385795 DOI: 10.1007/s00213-022-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Affiliative tactile interactions help regulate physiological arousal and confer resilience to acute and chronic stress. C-tactile afferents (CTs) are a population of unmyelinated, low threshold mechanosensitive cutaneous nerve fibres which respond optimally to a low force stimulus, moving at between 1 and 10 cm/s. As CT firing frequencies correlate positively with subjective ratings of touch pleasantness, they are hypothesised to form the first stage of encoding affiliative tactile interactions. Serotonin is a key modulator of social responses with known effects on bonding. OBJECTIVES The aim of the present study was to determine the effect of acutely lowering central serotonin levels on perceptions of CT-targeted affective touch. METHODS In a double blind, placebo-controlled design, the effect of acute tryptophan depletion (ATD) on 25 female participants' ratings of directly and vicariously experienced touch was investigated. Psychophysical techniques were used to deliver dynamic tactile stimuli; some velocities were targeted to optimally activate CTs (1-10 cm/s), whereas other, faster and slower strokes fell outside the CT optimal range. Discriminative tactile function, cold pain threshold and tolerance were also measured. RESULTS ATD significantly increased pleasantness ratings of both directly and vicariously experienced affective touch, increasing discrimination of the specific hedonic value of CT targeted velocities. While ATD had no effect on either tactile or cold pain thresholds, there was a trend for reduced tolerance to cold pain. CONCLUSIONS These findings are consistent with previous reports that depletion of central serotonin levels modulates neural and behavioural responsiveness to appetitive sensory signals.
Collapse
Affiliation(s)
- Paula D. Trotter
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | - Sharon A. Smith
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | - David J. Moore
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| | | | - Martyn M. McFarquhar
- Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Francis P. McGlone
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK ,Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Susannah C. Walker
- Research Centre for Brain and Behaviour, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
45
|
A single oral dose of citalopram increases interoceptive insight in healthy volunteers. Psychopharmacology (Berl) 2022; 239:2289-2298. [PMID: 35325257 PMCID: PMC9205807 DOI: 10.1007/s00213-022-06115-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/06/2022] [Indexed: 12/17/2022]
Abstract
RATIONALE Interoception is the signalling, perception, and interpretation of internal physiological states. Many mental disorders associated with changes of interoception, including depressive and anxiety disorders, are treated with selective serotonin reuptake inhibitors (SSRIs). However, the causative link between SSRIs and interoception is not yet clear. OBJECTIVES To ascertain the causal effect of acute changes of serotonin levels on cardiac interoception. METHODS Using a within-participant placebo-controlled design, forty-seven healthy human volunteers (31 female, 16 male) were tested on and off a 20 mg oral dose of the commonly prescribed SSRI, citalopram. Participants made judgements on the synchrony between their heartbeat and auditory tones and then expressed confidence in each judgement. We measured three types of interoceptive cognition. RESULTS Citalopram increased cardiac interoceptive insight, measured as correspondence of self-reported confidence to the likelihood that interoceptive judgements were actually correct. This effect was driven by enhanced confidence for correct interoceptive judgements and was independent of measured cardiac and reported subjective effects of the drug. CONCLUSIONS An acute change of serotonin levels can increase insight into the reliability of inferences made from cardiac interoceptive sensations.
Collapse
|
46
|
De Giorgi R, Martens M, Rizzo Pesci N, Cowen PJ, Harmer CJ. The effects of atorvastatin on emotional processing, reward learning, verbal memory and inflammation in healthy volunteers: An experimental medicine study. J Psychopharmacol 2021; 35:1479-1487. [PMID: 34872404 PMCID: PMC8652357 DOI: 10.1177/02698811211060307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Growing evidence from clinical trials and epidemiological studies suggests that statins can have clinically significant antidepressant effects, potentially related to anti-inflammatory action on several neurobiological structures. However, the underlying neuropsychological mechanisms of these effects remain unexplored. AIMS In this experimental medicine trial, we investigated the 7-day effects of the lipophilic statin, atorvastatin on a battery of neuropsychological tests and inflammation in healthy volunteers. METHODS Fifty healthy volunteers were randomised to either 7 days of atorvastatin 20 mg or placebo in a double-blind design. Participants were assessed with psychological questionnaires and a battery of well-validated behavioural tasks assessing emotional processing, which is sensitive to putative antidepressant effects, reward learning and verbal memory, as well as the inflammatory marker, C-reactive protein. RESULTS Compared to placebo, 7-day atorvastatin increased the recognition (p = 0.006), discriminability (p = 0.03) and misclassifications (p = 0.04) of fearful facial expression, independently from subjective states of mood and anxiety, and C-reactive protein levels. Otherwise, atorvastatin did not significantly affect any other psychological and behavioural measure, nor peripheral C-reactive protein. CONCLUSIONS Our results reveal for the first time the early influence of atorvastatin on emotional cognition by increasing the processing of anxiety-related stimuli (i.e. increased recognition, discriminability and misclassifications of fearful facial expression) in healthy volunteers, in the absence of more general effects on negative affective bias. Further studies exploring the effects of statins in depressed patients, especially with raised inflammatory markers, may clarify this finding and inform future clinical trials.
Collapse
Affiliation(s)
- Riccardo De Giorgi
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Marieke Martens
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Nicola Rizzo Pesci
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
- Warneford Hospital, Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
47
|
He Z, Jiang Y, Gu S, Wu D, Qin D, Feng G, Ma X, Huang JH, Wang F. The Aversion Function of the Limbic Dopaminergic Neurons and Their Roles in Functional Neurological Disorders. Front Cell Dev Biol 2021; 9:713762. [PMID: 34616730 PMCID: PMC8488171 DOI: 10.3389/fcell.2021.713762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
The Freudian theory of conversion suggested that the major symptoms of functional neurological disorders (FNDs) are due to internal conflicts at motivation, especially at the sex drive or libido. FND patients might behave properly at rewarding situations, but they do not know how to behave at aversive situations. Sex drive is the major source of dopamine (DA) release in the limbic area; however, the neural mechanism involved in FND is not clear. Dopaminergic (DAergic) neurons have been shown to play a key role in processing motivation-related information. Recently, DAergic neurons are found to be involved in reward-related prediction error, as well as the prediction of aversive information. Therefore, it is suggested that DA might change the rewarding reactions to aversive reactions at internal conflicts of FND. So DAergic neurons in the limbic areas might induce two major motivational functions: reward and aversion at internal conflicts. This article reviewed the recent advances on studies about DAergic neurons involved in aversive stimulus processing at internal conflicts and summarizes several neural pathways, including four limbic system brain regions, which are involved in the processing of aversion. Then the article discussed the vital function of these neural circuits in addictive behavior, depression treatment, and FNDs. In all, this review provided a prospect for future research on the aversion function of limbic system DA neurons and the therapy of FNDs.
Collapse
Affiliation(s)
- Zhengming He
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yao Jiang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Dandan Wu
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Duo Qin
- School of Foreign Languages, China University of Geosciences, Wuhan, China
| | - Guangkui Feng
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianjun Ma
- Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jason H Huang
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.,Department of Neurology, Lianyungang Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
48
|
Clark AE, Goodwin SR, Marks RM, Belcher AM, Heinlein E, Bennett ME, Roche DJ. A Narrative Literature Review of the Epidemiology, Etiology, and Treatment of Co-Occurring Panic Disorder and Opioid Use Disorder. J Dual Diagn 2021; 17:313-332. [PMID: 34582313 PMCID: PMC9487392 DOI: 10.1080/15504263.2021.1965407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Panic disorder is a debilitating psychiatric disorder that often co-occurs with substance use disorders. Given the current opioid epidemic, the high reported rates of comorbid panic disorder and opioid use disorder are particularly concerning. In this narrative review, we describe the literature on panic disorder and opioid use disorder co-occurrence. METHODS 86 studies, 26 reviews, 2 commentaries, and 5 guidelines pertaining to opioid use disorder, panic disorder, and their comorbidity were identified using all EBSCO databases, PubMed, and Google Scholar. RESULTS First, we review epidemiological literature on the prevalence of the comorbid condition above and beyond each disorder on its own. Additionally, we discuss the challenges that complicate the differential diagnosis of panic disorder and opioid use disorder and contribute to difficulties establishing rates of comorbidity. Second, we review three theoretical models that have been proposed to explain high rates of co-occurring panic disorder and opioid use disorder: the precipitation hypothesis, the self-medication hypothesis, and the shared vulnerability hypothesis. Third, we outline how co-occurring panic and opioid use disorder may impact treatment for each condition. CONCLUSION Based on findings in the field, we provide recommendations for future research as well as treatment considerations for co-occurring panic and opioid use disorders.
Collapse
Affiliation(s)
- Ashton E. Clark
- Department of Psychiatry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shelby R. Goodwin
- Department of Psychiatry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Russell M. Marks
- Department of Psychiatry, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Annabelle M. Belcher
- Department of Psychiatry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Emily Heinlein
- Department of Psychiatry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Melanie E. Bennett
- Department of Psychiatry, University of Maryland, Baltimore, Baltimore, MD, United States
- Department of Psychiatry, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Daniel J.O. Roche
- Department of Psychiatry, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
49
|
Enkhtaivan E, Nishimura J, Ly C, Cochran AL. A Competition of Critics in Human Decision-Making. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2021; 5:81-101. [PMID: 38773993 PMCID: PMC11104313 DOI: 10.5334/cpsy.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Recent experiments and theories of human decision-making suggest positive and negative errors are processed and encoded differently by serotonin and dopamine, with serotonin possibly serving to oppose dopamine and protect against risky decisions. We introduce a temporal difference (TD) model of human decision-making to account for these features. Our model involves two critics, an optimistic learning system and a pessimistic learning system, whose predictions are integrated in time to control how potential decisions compete to be selected. Our model predicts that human decision-making can be decomposed along two dimensions: the degree to which the individual is sensitive to (1) risk and (2) uncertainty. In addition, we demonstrate that the model can learn about the mean and standard deviation of rewards, and provide information about reaction time despite not modeling these variables directly. Lastly, we simulate a recent experiment to show how updates of the two learning systems could relate to dopamine and serotonin transients, thereby providing a mathematical formalism to serotonin's hypothesized role as an opponent to dopamine. This new model should be useful for future experiments on human decision-making.
Collapse
Affiliation(s)
| | - Joel Nishimura
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, US
| | - Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA, US
| | - Amy L. Cochran
- Department of Mathematics, University of Wisconsin, Madison, WI, US
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, US
| |
Collapse
|
50
|
Willadsen M, Uengoer M, Sługocka A, Schwarting RK, Homberg JR, Wöhr M. Fear Extinction and Predictive Trait-Like Inter-Individual Differences in Rats Lacking the Serotonin Transporter. Int J Mol Sci 2021; 22:ijms22137088. [PMID: 34209318 PMCID: PMC8268876 DOI: 10.3390/ijms22137088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Anxiety disorders are associated with a failure to sufficiently extinguish fear memories. The serotonergic system (5-hydroxytryptamine, 5-HT) with the 5-HT transporter (5-HTT, SERT) is strongly implicated in the regulation of anxiety and fear. In the present study, we examined the effects of SERT deficiency on fear extinction in a differential fear conditioning paradigm in male and female rats. Fear-related behavior displayed during acquisition, extinction, and recovery, was measured through quantification of immobility and alarm 22-kHz ultrasonic vocalizations (USV). Trait-like inter-individual differences in novelty-seeking, anxiety-related behavior, habituation learning, cognitive performance, and pain sensitivity were examined for their predictive value in forecasting fear extinction. Our results show that SERT deficiency strongly affected the emission of 22-kHz USV during differential fear conditioning. During acquisition, extinction, and recovery, SERT deficiency consistently led to a reduction in 22-kHz USV emission. While SERT deficiency did not affect immobility during acquisition, genotype differences started to emerge during extinction, and during recovery rats lacking SERT showed higher levels of immobility than wildtype littermate controls. Recovery was reflected in increased levels of immobility but not 22-kHz USV emission. Prominent sex differences were evident. Among several measures for trait-like inter-individual differences, anxiety-related behavior had the best predictive quality.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
| | - Metin Uengoer
- Associative Learning, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany;
| | - Anna Sługocka
- Department for Experimental Medicine, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 4, 40-752 Katowice, Poland;
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Rainer K.W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands;
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; (M.W.); (R.K.W.S.)
- Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
- KU Leuven, Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, B-3000 Leuven, Belgium
- KU Leuven, Leuven Brain Institute, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32–16–19–45–57
| |
Collapse
|