1
|
Xu F, Hu J, Li X, Yang L, Jiang S, Jiang T, Cheng B, Du H, Wang R, Deng Y, Gao W, Li Y, Zhu Y. Inhibition of platelet activation alleviates diabetes-associated cognitive dysfunction via attenuating blood-brain barrier injury. Brain Res Bull 2025; 221:111211. [PMID: 39828041 DOI: 10.1016/j.brainresbull.2025.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Cognitive dysfunction has become the second leading cause of death among the diabetic patients. In pre-diabetic stage, blood-brain barrier (BBB) injury occurs and induced the microvascular complications of diabetes, especially, diabetes-associated cognitive dysfunction (DACD). Endothelial cells are the major component of BBB, on which the increased expression of CD40 could mediate BBB dysfunction in diabetics. Since platelets play an important role in regulating endothelial cell barrier function and over 95 % of the circulating soluble CD40 ligand (sCD40L) is derived from activated platelets, we speculated that the release of CD40L from activated platelets induced by diabetes was the key mechanism that aggravated BBB injury and leaded to DACD. We performed inhibition of platelet activation on diabetic and non-diabetic mice, with or without cilostazol treatment, and then compared cognitive function, platelet activation, BBB structure and permeability. In vitro, mouse brain microvascular endothelial cell line (b.End3) were exposed to CD40L for 24 h at 5.5 mM or 30 mM glucose media after silencing CD40 and HIF1α or not to investigate the effects of CD40 on BBB disruption and the underlying molecular pathways. Inhibition of platelet activation improved cognitive behaviors in diabetic mice, accompanied with reduced BBB permeability, increased tight junction proteins, balanced Aβ transporters, as well as attenuated Aβ deposition and hippocampal neurons damage. In vitro, CD40L increased HIF1α, diminished tight junction proteins and dysregulated Aβ transporters in b.End3 cells, which could be restored by CD40 siRNA and HIF1α siRNA. Hence, inhibition of platelet activation ameliorates DACD via alleviating BBB injury, which involving the regulation of CD40L-CD40-HIF1α signaling pathway. Our study may demonstrate a potential therapeutic target for the treatment of DACD.
Collapse
Affiliation(s)
- Fuxing Xu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, China.
| | - Juan Hu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712021, China.
| | - Xuying Li
- Department of Anesthesiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China.
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Tao Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Bo Cheng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Hailiang Du
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Ruiduo Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China.
| | - Yingying Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yaomin Zhu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Hu D, Yan C, Xie H, Wen X, He K, Ding Y, Zhao Y, Meng H, Li K, Yang Z. Perihematomal Neurovascular Protection: Blocking HSP90 Reduces Blood Infiltration Associated with Inflammatory Effects Following Intracerebral Hemorrhage in Rates. Transl Stroke Res 2024:10.1007/s12975-024-01289-y. [PMID: 39230786 DOI: 10.1007/s12975-024-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
The active hemorrhage surrounding the hematoma is caused by the infiltration of blood into the cerebral parenchyma through the ruptured vessel, including the compromised blood-brain barrier (BBB). This process is thought to be mainly driven by inflammation and serves as a significant pathological characteristic that contributes to the neurological deterioration observed in individuals with intracerebral hemorrhage (ICH). Heat shock protein 90 (HSP90) exhibits abnormally high expression levels in various diseases and is closely associated with the onset of inflammation. Here, we found that blocking HSP90 effectively alleviates the inflammatory damage to BBB and subsequent bleeding around the hematoma. We have observed increased HSP90 levels in the serum of patients with ICH and the perihematoma region in ICH rats. Treatment with anti-HSP90 drugs (Geldanamycin and radicicol) effectively reduced HSP90 levels, resulting in enhanced neurological outcomes, decreased hematoma volume, and prevented peripheral immune cells from adhering to the BBB and infiltrating the brain parenchyma surrounding the hematoma in ICH rats. Mechanistically, anti-HSP90 therapy alleviated BBB injury caused by ICH-induced inflammation by suppressing TLR4 signaling. The study highlights the potential of anti-HSP90 therapy in mitigating BBB disruption and hemorrhage surrounding the hematoma, providing new insights into the management of ICH by targeting HSP90.
Collapse
Affiliation(s)
- Di Hu
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Chao Yan
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Hesong Xie
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Xueyi Wen
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Kejing He
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Yan Ding
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Ying Zhao
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China
| | - Heng Meng
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| | - Keshen Li
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| | - Zhenguo Yang
- Department of Neurology and Stroke Center, Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Al-Khazali HM, Christensen RH, Chaudhry BA, Melchior AG, Ashina M, Burstein R, Ashina H. Effects of PDE-3 inhibition in persistent post-traumatic headache: evidence of cAMP-dependent signaling. J Headache Pain 2024; 25:56. [PMID: 38627631 PMCID: PMC11022386 DOI: 10.1186/s10194-024-01762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Phosphodiesterase 3 (PDE-3) inhibition have been implicated in the neurobiologic underpinnings of migraine. Considering the clinical similarities between migraine and persistent post-traumatic headache (PPTH), we aimed to ascertain whether PDE-3 inhibition can elicit migraine-like headache in persons with PPTH. METHODS We tested cilostazol, which inhibits PDE-3, in a randomized, double-blind, placebo-controlled, two-way crossover study involving persons with PPTH attributed to mild traumatic brain injury. The randomized participants were allocated to receive oral administration of either 200-mg cilostazol or placebo (calcium tablet) on two separate experiment days. The primary end point was the incidence of migraine-like headache during a 12-hour observation window post-ingestion. The secondary endpoint was the area under the curve (AUC) for reported headache intensity scores during the same observation window. RESULTS Twenty-one persons underwent randomization and completed both experiment days. The mean participants' age was 41.4 years, and most (n = 17) were females. During the 12-hour observation window, 14 (67%) of 21 participants developed migraine-like headache post-cilostazol, in contrast to three (14%) participants after placebo (P =.003). The headache intensity scores were higher post-cilostazol than after placebo (P <.001). CONCLUSIONS Our results provide novel evidence showing that PDE-3 inhibition can elicit migraine-like headache in persons with PPTH. Given that PDE-3 inhibition increases intracellular cAMP levels, our findings allude to the potential therapeutic value of targeting cAMP-dependent signaling pathways in the management of PPTH. Further investigations are imperative to substantiate these insights and delineate the importance of cAMP-dependent signaling pathways in the neurobiologic mechanisms underlying PPTH. CLINICALTRIALS GOV IDENTIFIER NCT05595993.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune H Christensen
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna G Melchior
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Håkan Ashina
- Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Valdemar Hansens, Vej 5, Entrance 1A, 2600, Glostrup, Denmark.
| |
Collapse
|
4
|
Tian Y, Wang M, Pan Y, Meng X, Zhao X, Liu L, Wang Y, Wang Y. In patients who had a stroke or TIA, enlarged perivascular spaces in basal ganglia may cause future haemorrhagic strokes. Stroke Vasc Neurol 2024; 9:8-17. [PMID: 37188388 PMCID: PMC10956113 DOI: 10.1136/svn-2022-002157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION It remains unclear whether enlarged perivascular spaces (EPVS) predict poor clinical outcomes in patients with acute ischaemic stroke (AIS) or transient ischaemic attack (TIA). METHOD Data were obtained from the Third China National Stroke Registry study. We estimated EPVS in basal ganglia (BG) and centrum semiovale (CSO) using a semiquantified scale (Grade from 0 to 4). Using Cox and logistic regression analyses, the associations of EPVS with 3-month and 1-year adverse outcomes (including recurrent stroke, ischaemic stroke, haemorrhagic stroke, combined vascular event, disability and mortality) were explored. Sensitivity analyses of any association of cerebral small vessel disease at baseline and development of a small arterial occlusion (SAO) were conducted. RESULT Among 12 603 patients with AIS/TIA, median age was 61.7±11.6 years, and 68.2% were men. After adjusting for all potential confounders, frequent-to-severe BG-EPVS was associated with a decreased risk of recurrent ischaemic stroke (HR 0.71, 95% CI 0.55 to 0.92, p=0.01) but an increased risk of haemorrhagic stroke (HR 1.99, 95% CI 1.11 to 3.58, p=0.02) at 1 year after AIS/TIA, compared with none-to-mild BG-EPVS. Patients with frequent-to-severe CSO-EPVS had a decreased risk of disability (OR 0.76, 95% CI 0.62 to 0.92, p=0.004) and all-cause death (HR 0.55, 95% CI 0.31 to 0.98, p=0.04) within 3-month but not 1-year follow-ups, compared with those with none-to-mild BG-EPVS. Sensitivity analyses showed that both BG-EPVS (HR 0.43, 95% CI 0.21 to 0.87, p=0.02) and CSO-EPVS (HR 0.58, 95% CI 0.35 to 0.95, p=0.03) were associated with a decreased risk of subsequent ischaemic stroke in patients with SAO during 1-year follow-up. CONCLUSION BG-EPVS increased the risk of haemorrhagic stroke in patients already with AIS/TIA within 1 year. Therefore, caution is recommended when selecting antithrombotic agents for secondary stroke prevention in patients with AIS/TIA and more severe BG-EPVS.
Collapse
Affiliation(s)
- Yu Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
Sohn M, Lim S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int J Mol Sci 2024; 25:2593. [PMID: 38473840 DOI: 10.3390/ijms25052593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) stands as the leading global cause of mortality. Addressing this vital and pervasive condition requires a multifaceted approach, in which antiplatelet intervention plays a pivotal role, together with antihypertensive, antidiabetic, and lipid-lowering therapies. Among the antiplatelet agents available currently, cilostazol, a phosphodiesterase-3 inhibitor, offers a spectrum of pharmacological effects. These encompass vasodilation, the impediment of platelet activation and aggregation, thrombosis inhibition, limb blood flow augmentation, lipid profile enhancement through triglyceride reduction and high-density lipoprotein cholesterol elevation, and the suppression of vascular smooth muscle cell proliferation. However, the role of cilostazol has not been clearly documented in many guidelines for ASCVD. We comprehensively reviewed the cardiovascular effects of cilostazol within randomized clinical trials that compared it to control or active agents and involved individuals with previous coronary artery disease or stroke, as well as those with no previous history of such conditions. Our approach demonstrated that the administration of cilostazol effectively reduced adverse cardiovascular events, although there was less evidence regarding its impact on myocardial infarction. Most studies have consistently reported its favorable effects in reducing intermittent claudication and enhancing ambulatory capacity in patients with peripheral arterial disease. Furthermore, cilostazol has shown promise in mitigating restenosis following coronary stent implantation in patients with acute coronary syndrome. While research from more diverse regions is still needed, our findings shed light on the broader implications of cilostazol in the context of atherosclerosis and vascular biology, particularly for individuals at high risk of ASCVD.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| |
Collapse
|
6
|
Sunakawa H, Mizoi K, Takahashi R, Takahashi S, Ogihara T. Impact of P-Glycoprotein-Mediated Drug-Endogenous Substrate Interactions on Androgen and Blood-Brain Barrier Permeability. J Pharm Sci 2024; 113:228-234. [PMID: 37898165 DOI: 10.1016/j.xphs.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
This report focuses on pharmacokinetic drug-endogenous substrate interactions (DEIs). We hypothesized that P-glycoprotein (P-gp)-mediated DEI might affect androgen kinetics, especially its blood-brain barrier (BBB) permeability. The intracellular accumulation of the endogenous substrates of P-gp, testosterone (TES) and androstenedione (ADO) was increased by several tested drugs in uptake studies using P-gp overexpressing cells, indicating that these drugs inhibit P-gp-mediated efflux of TES of ADO from the cells. In a transport study using rat BBB kit, we found that the BBB limited the penetration of TES and ADO into the central nervous system. In addition, tested drugs that cause DEI were found to increase BBB permeability of TES and ADO via P-gp inhibition. In short, this study provides new findings regarding the possibility that DEI may affect the kinetics of endogenous substrates of P-gp.
Collapse
Affiliation(s)
- Hiroki Sunakawa
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare.
| | - Kenta Mizoi
- School of Pharmacy, International University of Heath and Welfare
| | - Reiko Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Saori Takahashi
- Faculty of Pharmacy, Takasaki University of Health and Welfare
| | - Takuo Ogihara
- Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare; Faculty of Pharmacy, Takasaki University of Health and Welfare
| |
Collapse
|
7
|
Whitehead B, Karelina K, Weil ZM. Pericyte dysfunction is a key mediator of the risk of cerebral ischemia. J Neurosci Res 2023; 101:1840-1848. [PMID: 37724604 DOI: 10.1002/jnr.25245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Pericytes are critical yet understudied cells that are a central component of the neurovascular unit. They are connected to the cerebrovascular endothelium and help control vascular contractility and maintain the blood-brain barrier. Pericyte dysfunction has the potential to mediate many of the deleterious vascular consequences of ischemic stroke. Current therapeutics are designed to be administered after stroke onset and limit damage, but there are few options to target vascular risk factors pre-ischemia which likely contribute to stroke outcomes. Here, we focus on the role of pericytes in health and disease, and discuss how pericyte dysfunction can increase the risk of ischemic injury. Additionally, we note that despite the importance of pericytes in cerebrovascular disease, there are relatively few current therapeutic options that target pericyte function.
Collapse
Affiliation(s)
- Bailey Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary M Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
8
|
Zhang X, Zhou Y, Liu Q, Wang F, Fu L, Wei Y, Ye Y, Guo Y. The therapeutic value of adipose-derived pericyte transplantation after intracerebral hemorrhage in rats. J Mol Histol 2023; 54:499-508. [PMID: 37498471 DOI: 10.1007/s10735-023-10140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating cerebrovascular associated with inflammation and BBB disruption. Pericytes plays a critical role in neurological diseases, while whether pericytes could be utilized to treat ICH remains to be elucidated. Here, we isolated CD146+CD34- pericytes from rat adipose tissues (ADPs). Fluorescence-activated cells maintained their cell morphology and differentiation potential and expressed pericytes markers (CD146, NG2, and PDGFRβ) but not endothelial markers (CD31, CD34, and CD45). ADPs transplantation improved the neuro-behavioral functions in ICH rats and resulted in decreased hematoma volume and neuron loss after ICH. Besides, ADPs graft restrained the infiltration of neutrophils and reactive microgliosis after ICH injury around the peri-hematoma area of rats, as evidenced by increased Iba1- and MPO immunoreactivity. The transplanted pericytes were covered on endothelial cells, and promoted angiogenesis and vascular basement membrane formation in the peri-hematoma area of ICH rats, as shown by double staining of PDGFRβ and CD31/CollagenIV. The decreased brain water content and Evans Blue leakage proved the protective role of ADPs graft on BBB permeability. Finally, transplanted ADPs increased the expression of VE-cadherin, ZO-1, and claudin-5, leading to stable endothelial cell-cell adhesion and tight junction. In conclusion, the transplantation of APDs improved neuronal after ICH, which involved different mechanisms including neuroinflammation regulation and BBB dysfunction recovery. Our results supported that ADPs might be the ideal cell type for ICH therapy and provided insights into the potential cell therapy for further ICH treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China
- Guangxi Health Commission Key Laboratory of Clinical Biotechnology, Liuzhou People's Hospital affiliated Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
- Guangxi Postdoctoral Innovation Practice Base, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Ying Zhou
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Qiongxia Liu
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Fang Wang
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Lin Fu
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Yizhi Wei
- Department of Neurology, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Yuanliang Ye
- Department of Neurosurgery, Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou, Guangxi, 545006, People's Republic of China
| | - Yujie Guo
- Department of Geriatrics, Liuzhou People's Hospital affiliated to Guangxi Medical University, No. 8, Wenchang Road, Liuzhou, Guangxi, 545006, People's Republic of China.
| |
Collapse
|
9
|
Wu CK, Lin CH, Yar N, Kao ZK, Yang YB, Chen YY. Long-Term Effectiveness of Cilostazol in Patients with Hemodialysis with Peripheral Artery Disease. J Atheroscler Thromb 2023; 30:943-955. [PMID: 36216573 PMCID: PMC10406651 DOI: 10.5551/jat.63404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 08/25/2022] [Indexed: 08/04/2023] Open
Abstract
AIM The aim of this study was to investigate the effects of continuous cilostazol use on emergency department (ED) visits, hospitalizations, and vascular outcomes in patients with hemodialysis (HD) with peripheral artery disease (PAD). METHODS This retrospective cohort study recruited 558 adult patients, who had received chronic HD for at least 90 days between January 1, 2008 and December 31, 2012, from the National Health Insurance Research Database. Eligible patients were divided into two groups based on continuing or discontinuing cilostazol treatment. Outcome measures were ED visits, hospitalizations, mortality, and vascular outcomes such as percutaneous transluminal angioplasty, surgical bypass, lower leg amputation, ischemic stroke, hemorrhagic stroke, and cardiovascular events. RESULTS Patients with continuous cilostazol use had significantly higher prevalence of stroke, cancer, vintage, and the use of angiotensin receptor blocker and β-blocker, but significantly lower incidence of ischemic stroke and cardiovascular events, as well as lower mortality, than those without continuous cilostazol use (all p<.05). Continuous cilostazol use was independently associated with lower risk of ED visits, hemorrhagic stroke, and cardiovascular events (adjusted hazard ratios: 0.79, 0.29, and 0.67; 95% confidence intervals: 0.62-0.98, 0.10-0.84, and 0.48-0.96, respectively; all p<.05). Continuous cilostazol use was significantly associated with higher ED visit-free and cardiovascular event-free rates (log-rank test; p<.05). CONCLUSION Continuous treatment of cilostazol in patients with HD with PAD significantly decreases the risk of ED visits, hemorrhagic stroke, and cardiovascular events and improves ED visit-free and cardiovascular event-free rates during long-term follow-up.
Collapse
Affiliation(s)
- Chung-Kuan Wu
- Division of Nephrology, Department of Internal Medicine, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Chia-Hsun Lin
- School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Noi Yar
- College of Management, School of Health Care Administration, Taipei Medical University, Taipei, Taiwan
| | - Zih-Kai Kao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Bei Yang
- Division of Cardiovascular Surgery, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yun-Yi Chen
- Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Research, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, Taipei, Taiwan
| |
Collapse
|
10
|
Yanai S, Tago T, Toyohara J, Arasaki T, Endo S. Reversal of spatial memory impairment by phosphodiesterase 3 inhibitor cilostazol is associated with reduced neuroinflammation and increased cerebral glucose uptake in aged male mice. Front Pharmacol 2022; 13:1031637. [PMID: 36618932 PMCID: PMC9810637 DOI: 10.3389/fphar.2022.1031637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The nucleotide second messenger 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) mediate fundamental functions of the brain, including learning and memory. Phosphodiesterase 3 (PDE3) can hydrolyze both cAMP and cGMP and appears to be involved in the regulation of their contents in cells. We previously demonstrated that long-term administration of cilostazol, a PDE3 inhibitor, maintained good memory performance in aging mice. Here, we report on studies aimed at determining whether cilostazol also reverses already-impaired memory in aged male mice. One month of oral 1.5% cilostazol administration in 22-month-old mice reversed age-related declines in hippocampus-dependent memory tasks, including the object recognition and the Morris water maze. Furthermore, cilostazol reduced neuroinflammation, as evidenced by immunohistochemical staining, and increased glucose uptake in the brain, as evidence by positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). These results suggest that already-expressed memory impairment in aged male mice that depend on cyclic nucleotide signaling can be reversed by inhibition of PDE3. The reversal of age-related memory impairments may occur in the central nervous system, either through cilostazol-enhanced recall or strengthening of weak memories that otherwise may be resistant to recall.
Collapse
Affiliation(s)
- Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomoko Arasaki
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan,*Correspondence: Shogo Endo,
| |
Collapse
|
11
|
Yabuki M, Kubo Y, Kitakami K, Oomori D, Fujiwara S, Yoshida K, Kobayashi M, Ogasawara K. Development of cerebral microbleeds and its impact on cognitive function in adult patients receiving medical management alone for ischemic moyamoya disease: supplementary analysis of a 5-year prospective cohort. Neurol Res 2022; 44:1104-1112. [PMID: 35975947 DOI: 10.1080/01616412.2022.2112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE De novo cerebral microbleeds (CMBs) on T2*-weighted magnetic resonance imaging (MRI) develop over time in adult moyamoya disease (MMD) and are generally associated with a decline in global cognitive function. The present supplementary analysis of a 5-year prospective cohort aimed to elucidate the incidence of an interval increase in CMBs in adult patients receiving medical management alone for ischemic MMD and its impact on cognitive function. METHODS Sixty-four patients without misery perfusion in the symptomatic cerebral hemispheres at inclusion who did not experience any further ischemic symptoms or new hemorrhagic events during a 5-year follow-up period underwent T2*-weighted MRI and five kinds of neuropsychologic tests at inclusion and the end of the 5-year follow-up. RESULTS When T2*-weighted MRI was compared between inclusion and the end of the 5-year follow-up, 10 patients (15%) had an interval increase in CMBs in the symptomatic cerebral hemisphere at inclusion. The scores from two kinds of neuropsychologic tests significantly deteriorated at the end of the 5-year follow-up compared with those at inclusion in patients with an interval increase in CMBs, whereas the scores of four kinds of neuropsychologic tests significantly improved at the end of the 5-year follow-up compared with those at inclusion in patients without interval increases in CMBs, asymptomatic ischemic lesions, or angiographic disease progression. CONCLUSIONS The incidence of an interval increase in CMBs was 15% per 5 years in adult patients receiving medical management alone for ischemic MMD, and this increase was associated with a decline in cognitive decline.
Collapse
Affiliation(s)
- Masahiro Yabuki
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yoshitaka Kubo
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kei Kitakami
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daisuke Oomori
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Shunrou Fujiwara
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kenji Yoshida
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Masakazu Kobayashi
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kuniaki Ogasawara
- Department of Neurosurgery, School of Medicine, Iwate Medical University, Morioka, Japan
| |
Collapse
|
12
|
Guo H, Zhang W, Wang Z, Li Z, Zhou J, Yang Z. Dexmedetomidine post-conditioning protects blood-brain barrier integrity by modulating microglia/macrophage polarization via inhibiting NF-κB signaling pathway in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:977941. [PMID: 36172260 PMCID: PMC9512049 DOI: 10.3389/fnmol.2022.977941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most devastating forms of stroke. Dexmedetomidine (DEX) has shown certain neuroprotective roles in ICH. Nevertheless, the details concerning the underlying molecular mechanism of DEX’s protective effects still need further elucidation. Herein, a model of ICH was established. The rats were randomly divided into the sham group, the ICH group, and the ICH + DEX group. Neurological outcomes, neuronal injury, and apoptosis were evaluated. Brain water content, Evans blue extravasation, and the expression of tight junction-associated proteins were also detected to assess the blood-brain barrier (BBB) integrity. Subsequently, the microglia/macrophage polarization state and inflammatory cytokine levels were observed. To further explore the underlying mechanism, NF-κB signaling pathway-associated proteins were detected. The results showed that DEX exerted neuroprotective effects against ICH-induced neurological deficits. DEX significantly increased the numbers of the surviving neurons and ameliorated neuronal cell loss and apoptosis in ICH. The rats that received the DEX displayed a lower level of brain water content and EB extravasation, moreover, ZO-1, occludin, and claudin-5 were markedly increased by DEX. Additionally, DEX facilitated M2 microglia/macrophage polarization, the M1-associated markers were reduced by DEX, while the M2-associated identification significantly increased. We found that DEX dramatically diminished pro-inflammatory cytokines expression, simultaneously promoting anti-inflammatory cytokines expression. DEX inhibited nuclear translocation of NF-κB in ICH rats. Our data suggest that DEX post-conditioning protects BBB integrity by modulating microglia/macrophage polarization via inhibiting the NF-κB signaling pathway in ICH.
Collapse
Affiliation(s)
- Hao Guo
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China.,The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Weiwei Zhang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Zhi Wang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Zhishan Li
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Jing Zhou
- Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Institute of Integrative Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Yao X, Song Y, Wang Z, Bai S, Yu H, Wang Y, Guan Y. Proteinase-activated receptor-1 antagonist attenuates brain injury via regulation of FGL2 and TLR4 after intracerebral hemorrhage in mice. Neuroscience 2022; 490:193-205. [PMID: 35182700 DOI: 10.1016/j.neuroscience.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and BBB integrity in ICH mice via activating JNK/ERK/p38 MAPK signaling pathway at 24h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated JNK, ERK and p38 MAPK expression. Suppression of FGL2 and TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH; while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were inhibited. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yishu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
14
|
Kuramoto Y, Fujita M, Takagi T, Takeda Y, Doe N, Yamahara K, Yoshimura S. Early-phase administration of human amnion-derived stem cells ameliorates neurobehavioral deficits of intracerebral hemorrhage by suppressing local inflammation and apoptosis. J Neuroinflammation 2022; 19:48. [PMID: 35151317 PMCID: PMC8840774 DOI: 10.1186/s12974-022-02411-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 02/05/2022] [Indexed: 12/27/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a significant cause of death and disabilities. Recently, cell therapies using mesenchymal stem cells have been shown to improve ICH-induced neurobehavioral deficits. Based on these findings, we designed this study to evaluate the therapeutic efficacy and underlying mechanisms by which human amnion-derived stem cells (hAMSCs) would ameliorate neurobehavioral deficits of ICH-bearing hosts. Methods hAMSCs were induced from amnia obtained by cesarean section and administered intravenously to ICH-bearing mice during the acute phase. The mice were then subject to multitask neurobehavioral tests at the subacute phase. We attempted to optimize the dosage and timing of the hAMSC administrations. In parallel with the hAMSCs, a tenfold higher dose of human adipose-derived stem cells (ADSCs) were used as an experimental control. Specimens were obtained from the ICH lesions to conduct immunostaining, flow cytometry, and Western blotting to elucidate the underlying mechanisms of the hAMSC treatment. Results The intravenous administration of hAMSCs to the ICH-bearing mice effectively improved their neurobehavioral deficits, particularly when the treatment was initiated at Day 1 after the ICH induction. Of note, the hAMSCs promoted clinical efficacy equivalent to or better than that of hADSCs at 1/10 the cell number. The systemically administered hAMSCs were found in the ICH lesions along with the local accumulation of macrophages/microglia. In detail, the hAMSC treatment decreased the number of CD11b+CD45+ and Ly6G+ cells in the ICH lesions, while splenocytes were not affected. Moreover, the hAMSC treatment decreased the number of apoptotic cells in the ICH lesions. These results were associated with suppression of the protein expression levels of macrophage-related factors iNOS and TNFα. Conclusions Intravenous hAMSC administration during the acute phase would improve ICH-induced neurobehavioral disorders. The underlying mechanism was suggested to be the suppression of subacute inflammation and apoptosis by suppressing macrophage/microglia cell numbers and macrophage functions (such as TNFα and iNOS). From a clinical point of view, hAMSC-based treatment may be a novel strategy for the treatment of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02411-3.
Collapse
|
15
|
Tsai HH, Hsieh YC, Lin JS, Kuo ZT, Ho CY, Chen CH, Chang CF. Functional Investigation of Meningeal Lymphatic System in Experimental Intracerebral Hemorrhage. Stroke 2022; 53:987-998. [DOI: 10.1161/strokeaha.121.037834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
Promotion of hematoma resolution in a timely manner reduces intracerebral hemorrhage (ICH) brain injury induced by toxic blood components and subsequent neuroinflammation. The meningeal lymphatic system is responsible for clearance of macromolecules and pathogenic substances from the central nervous system; however, its role in intraparenchymal hematoma clearance and ICH outcomes is unknown. In the present study, we aimed to understand the contribution of the meningeal lymphatic system to ICH pathologies and to test whether pharmacological enhancement of meningeal lymphatic function promotes hematoma resolution and brain recovery after ICH.
Methods:
Immunofluorescence of whole-mount meninges was used to measure complexity and coverage level of meningeal lymphatic vasculature following ICH induction. Fluorescent microbeads and PKH-26-labeled erythrocytes were used to evaluate drainage function of the meningeal lymphatic system. Visudyne treatment, deep cervical lymph node ligation, and VEGF (vascular endothelial growth factor)-C injection were performed to manipulate meningeal lymphatic function. Neurobehavioral performance and hematoma volume were assayed by the cylinder test and histological measurements. Iron deposition, residual erythrocytes, neuronal loss, and astrogliosis were assessed by immunohistochemistry and antibody-based fluorescence staining.
Results:
Meningeal lymphangiogenesis and enhanced lymphatic drainage occurred during the late phase of ICH. Ablation and blockage of meningeal lymphatic vessels impeded hematoma clearance, whereas pharmacological enhancement of their function reduced hematoma volume, improved behavioral performance, and reduced brain residual erythrocytes, iron deposition, neuronal loss, and astroglial activation.
Conclusions:
Early enhancement of meningeal lymphatic function is beneficial for ICH recovery. Targeting the meningeal lymphatic system is therefore a potential therapeutic approach for treating ICH.
Collapse
Affiliation(s)
- Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei (H.-H.T.)
- Department of Neurology, National Taiwan University Hospital, Taipei (H.-H.T.)
| | - Yung-Chia Hsieh
- School of Medicine, National Taiwan University College of Medicine, Taipei. (Y.-C.H.)
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Jhih Syuan Lin
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Zi-Ting Kuo
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Chi-Ying Ho
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Chih-Hung Chen
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| | - Che-Feng Chang
- Department and Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei. (Y.-C.H., J.S.L., Z.-T.K., C.-Y.H., C.-H.C., C.-F.C.)
| |
Collapse
|
16
|
Yoshida H, Itoh S, Ferdousi F, Isoda H. Post-stroke treatment with K-134, a phosphodiesterase 3 inhibitor, improves stroke outcomes in the stroke-prone spontaneously hypertensive rat model-A comparative evaluation of antiplatelet drugs. J Pharmacol Sci 2022; 148:229-237. [PMID: 35063138 DOI: 10.1016/j.jphs.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Post-stroke antiplatelet therapy has been proved to reduce the risk of recurrent stroke; however, it may also increase the incidence of intracranial hemorrhage that could offset any benefits. Therefore, the balance between the benefits and risks of antiplatelet drugs is a critical issue to consider. In the present study, we have compared the effects of post-stroke administration of antiplatelet agents on functional outcomes in the stroke-prone spontaneously hypertensive rat (SHRSP), an established animal model that mimics human lacunar stroke and cerebral small vessel disease. We confirmed that a potent phosphodiesterase 3 (PDE3) inhibitor, K-134, significantly improved post-stroke survival rate and survival time, attenuated stroke-induced neurological deficits, and decreased the incidence of cerebral lesion caused by intracerebral hemorrhage and softening. Similarly, cilostazol showed beneficial effects, though to a lower extent with respect to the survival outcome and neurological symptoms. On the other hand, a P2Y12 inhibitor, clopidogrel significantly improved survival outcomes at the higher dose but caused massive bleeding in the brain at both low and high doses. In contrast, no hemorrhagic lesion was observed in K-134-treated SHRSPs despite its antiplatelet activity. Our findings indicate that K-134 may have a superior post-stroke therapeutic outcome in comparison to other antiplatelet drugs.
Collapse
Affiliation(s)
- Hideo Yoshida
- Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan; Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Shinsuke Itoh
- Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
17
|
Fujiwara Y, Kitano H, Yamamoto T, Kokubun S, Hidai C. Activation peptide of coagulation factor IX improves the prognosis after traumatic brain injury. Biochem Biophys Res Commun 2021; 569:35-40. [PMID: 34225078 DOI: 10.1016/j.bbrc.2021.06.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/27/2021] [Indexed: 11/26/2022]
Abstract
Recently, coagulation factor IX and its activation peptide have been reported to suppress the permeability of vascular endothelial cells. In this study, the therapeutic effects of a synthesized activation peptide is investigated in traumatic brain injury model rats. In cerebral contusion, dysfunction of the blood brain barrier with increasing vascular permeability promotes the progression of neuropathy after injury. The model rats were generated by controlled cortical impact. Then, rats were intravenously injected with 350 μg/kg of the synthesized activation peptide or PBS as a control, every day for a month. Behavioral studies were conducted during a month of observation. For morphological analysis, macro- and microscopic observation were performed. Water content of brain tissue was used to assess edema. To assess the function of blood brain barrier, Evans Blue method was employed. In the neurological examinations and beam-walking, the treated rats performed significantly better than control rats. Measurements of cerebral defect volume showed that the treatment significantly reduced it by 82%. Nissl stain showed that neural cells adjacent to impacts were lost in control rats, but saved in treated rats. The treatment significantly reduced brain edema and extravascular leakage of Evans blue. Intravenous injection with a synthesized activation peptide significantly reduced damage to neural tissue and improved neural functioning in the model rats.
Collapse
Affiliation(s)
- Yuusuke Fujiwara
- Division of Dental Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| | - Hisataka Kitano
- Division of Dental Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| | - Takamitsu Yamamoto
- Department of Neurological Surgery, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| | - Shinichiro Kokubun
- Division of Physiology, Department of Biomedical Science, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| | - Chiaki Hidai
- Medical Education Center, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| |
Collapse
|
18
|
Nishinaka A, Nakamura S, Tanaka M, Masuda T, Inoue Y, Yamamoto T, Imai T, Hidaka Y, Shimazawa M, Hara H. Excess adiponectin in eyes with progressive ocular vascular diseases. FASEB J 2021; 35:e21313. [PMID: 33484194 DOI: 10.1096/fj.202001740rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/11/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapies are now the first-line treatment for many ocular diseases, but some patients are non-responders to these therapies. The purpose of this study was to determine whether the level of adiponectin increased the pathogenesis of retinal edema and neovascularization in the retina of progressive ocular vascular diseases. We examined the role played by adiponectin in two types of cells and animal models which are retinal vein occlusion (RVO) and oxygen-induced retinopathy (OIR) mice. Our results showed that an injection of anti-adiponectin antibody ameliorated the retinal edema and ischemia through the depression of the expression level of VEGF-related factors and tight junction-related proteins in the retina of RVO mice. The intravitreal injection of anti-adiponectin antibody also decreased the degree of retinal neovascularization in an OIR mice. In addition, exposure of human retinal microvascular endothelial cells and human brain microvascular pericytes in culture to adiponectin increased both the vascular permeability and neovascularization through the increase of inflammatory factor and the dropout of the pericytes. These findings indicate that adiponectin plays a critical role in retinal edema and neovascularization, and adiponectin is a potential therapeutic target for the treatment of diabetic macular edema, proliferative diabetic retinopathy, and RVO.
Collapse
Affiliation(s)
- Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Miruto Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomomi Masuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuki Inoue
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takumi Yamamoto
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Yae Hidaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
19
|
Kherallah RY, Khawaja M, Olson M, Angiolillo D, Birnbaum Y. Cilostazol: a Review of Basic Mechanisms and Clinical Uses. Cardiovasc Drugs Ther 2021; 36:777-792. [PMID: 33860901 DOI: 10.1007/s10557-021-07187-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/24/2022]
Abstract
Primarily used in the treatment of intermittent claudication, cilostazol is a 2-oxyquinolone derivative that works through the inhibition of phosphodiesterase III and related increases in cyclic adenosine monophosphate (cAMP) levels. However, cilostazol has been implicated in a number of other basic pathways including the inhibition of adenosine reuptake, the inhibition of multidrug resistance protein 4, among others. It has been observed to exhibit antiplatelet, antiproliferative, vasodilatory, and ischemic-reperfusion protective properties. As such, cilostazol has been investigated for clinical use in a variety of settings including intermittent claudication, as an adjunctive for reduction of restenosis after coronary and peripheral endovascular interventions, and in the prevention of secondary stroke, although its widespread implementation for indications other than intermittent claudication has been limited by relatively modest effect sizes and lack of studies in western populations. In this review, we highlight the pleiotropic effects of cilostazol and the evidence for its clinical use.
Collapse
Affiliation(s)
- Riyad Y Kherallah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Muzamil Khawaja
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael Olson
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, Houston, TX, USA.
| |
Collapse
|
20
|
Park HK, Lee JS, Kim BJ, Park JH, Kim YJ, Yu S, Hwang YH, Rha JH, Heo SH, Ahn SH, Seo WK, Park JM, Lee JH, Kwon JH, Sohn SI, Jung JM, Kwon SU, Hong KS. Cilostazol versus aspirin in ischemic stroke with cerebral microbleeds versus prior intracerebral hemorrhage. Int J Stroke 2020; 16:1019-1030. [PMID: 32664827 DOI: 10.1177/1747493020941273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND In PreventIon of CArdiovascular Events in Ischaemic Stroke Patients with High Risk of Cerebral HaemOrrhage (PICASSO), cilostazol versus aspirin was comparable for the end points of cerebral hemorrhage and major vascular events. However, underlying hemorrhage-prone lesions could modify the treatment effect. AIMS We explored whether the safety and efficacy of cilostazol versus aspirin would differ between hemorrhage-prone lesions (multiple cerebral microbleeds vs. prior intracerebral hemorrhage). METHODS In this post hoc analysis of PICASSO, we divided patients into the cerebral microbleeds and prior intracerebral hemorrhage subgroups. The primary safety end point was the first occurrence of cerebral hemorrhage. The primary efficacy end point was the composite of stroke, myocardial infarction, or vascular death. RESULTS Of 1512 patients, 903 (59.7%) had multiple cerebral microbleeds and 609 (40.3%) had prior intracerebral hemorrhage. The cerebral hemorrhage risk was lower with cilostazol versus aspirin (0.12%/year vs. 1.49%/year; hazard ratio, 0.08 [95% confidence interval 0.01-0.60]; p = 0.015) in the cerebral microbleeds subgroup, but was not different (1.26%/year vs. 0.79%/year; hazards ratio 1.60 [0.52-4.90]; p = 0.408) in the prior intracerebral hemorrhage subgroup. The interaction of treatment-by-subgroup was significant (pinteraction = 0.011). For the composite of major vascular events, there was a trend toward a lower risk with cilostazol versus aspirin (3.56%/year vs. 5.53%/year; hazards ratio 0.64 [0.41-1.01]; p = 0.056) in the cerebral microbleeds subgroup, but was comparable (5.21%/year vs. 5.05%/year; hazards ratio 1.03 [0.63-1.67]; p = 0.913) in the prior intracerebral hemorrhage subgroup without a significant treatment-by-subgroup interaction (pinteraction = 0.165). CONCLUSIONS Cilostazol versus aspirin might be a better option in ischemic stroke with multiple cerebral microbleeds, but confirmatory trials are needed. CLINICAL TRIAL REGISTRATION URL:http://www.clinicaltrials.gov. NCT01013532.
Collapse
Affiliation(s)
- Hong-Kyun Park
- Department of Neurology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Ji Sung Lee
- Clinical Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bum Joon Kim
- Department of Neurology, Kyung Hee University Medical Center, Seoul, Korea
| | - Jong-Ho Park
- Department of Neurology, Myungji Hospital, Hanyang University College of Medicine, Goyang, Korea
| | - Yong-Jae Kim
- Department of Neurology, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Sungwook Yu
- Department of Neurology, Anam Hospital, Korea University, Seoul, Korea
| | - Yang-Ha Hwang
- Department of Neurology, Kyungpook National University Hospital, Daegu, Korea
| | - Joung-Ho Rha
- Department of Neurology, Inha University Hospital, Incheon, Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University Medical Center, Seoul, Korea
| | - Seong Hwan Ahn
- Department of Neurology, Chosun University School of Medicine and Hospital, Gwangju, Korea
| | - Woo-Keun Seo
- Department of Neurology, Samsung Medical Center, Sunkyunkwan University, Seoul, Korea
| | - Jong-Moo Park
- Department of Neurology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Ju-Hun Lee
- Department of Neurology, Kangdong Sacred Heart Hospital, Hallym University, Seoul, Korea
| | - Jee-Hyun Kwon
- Department of Neurology, Ulsan University Hospital, Ulsan University, Ulsan, Korea
| | - Sung-Il Sohn
- Department of Neurology, Dongsan Medical Center, Keimyung University, Daegu, Korea
| | - Jin-Man Jung
- Department of Neurology, Ansan Hospital, Korea University, Seoul, Korea
| | - Sun U Kwon
- Department of Neurology, Asan Medical Center, Ulsan University, Seoul, Korea
| | - Keun-Sik Hong
- Department of Neurology, Inje University Ilsan Paik Hospital, Goyang, Korea
| | | |
Collapse
|
21
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Levetiracetam, an Antiepileptic Drug has Neuroprotective Effects on Intracranial Hemorrhage Injury. Neuroscience 2020; 431:25-33. [DOI: 10.1016/j.neuroscience.2020.01.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
|
23
|
Low-Dose Phosphodiesterase III Inhibitor Reduces the Vascular Amyloid Burden in Amyloid-β Protein Precursor Transgenic Mice. Int J Mol Sci 2020; 21:ijms21072295. [PMID: 32225099 PMCID: PMC7177305 DOI: 10.3390/ijms21072295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/13/2023] Open
Abstract
A previous study reported that relatively high-dose cilostazol (0.3%) promoted the drainage of cerebrovascular amyloid-β (Aβ) protein in Aβ Precursor Protein (APP) transgenic mice overexpressing vasculotropic Aβ. We investigated whether lower-dose cilostazol can decrease micro-hemorrhages and Aβ deposition in the brain using APP transgenic mice. At baseline, 14-month-old female Tg2576 mice were randomly assigned to a control group (vehicle), aspirin group (0.01% aspirin), or cilostazol group (0.01% cilostazol). The severity of cerebral micro-hemorrhages (i.e., number), area of senile plaque, and severity of vascular amyloid burden (quantified with cerebral amyloid angiopathy (CAA) score (=number of Aβ-positive vessels × severity of amyloid burden of Aβ-positive vessels) were evaluated in the brain of mice aged 15 and 21–23 months. At 15 months, no differences were shown in each pathological change among the three groups. At 21–23 months, there were no differences in the severity of cerebral micro-hemorrhages or area of senile plaque among the three groups. However, the CAA score was significantly lower in the cilostazol compared to the control group (p = 0.046, Mann–Whitney U test), although no difference was seen between the control and aspirin group. Our study showed that lower-dose cilostazol could reduce the vascular amyloid burden without increasing cerebral micro-hemorrhages in APP transgenic mice.
Collapse
|
24
|
Ogata A, Wakamiya T, Nishihara M, Tanaka T, Mizokami T, Masuoka J, Momozaki N, Sakata S, Irie H, Abe T. Association between Pericytes in Intraplaque Neovessels and Magnetic Resonance Angiography Findings. Int J Mol Sci 2020; 21:ijms21061980. [PMID: 32183204 PMCID: PMC7139898 DOI: 10.3390/ijms21061980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Pericytes are involved in intraplaque neovascularization of advanced and complicated atherosclerotic lesions. However, the role of pericytes in human carotid plaques is unclear. An unstable carotid plaque that shows high-intensity signals on time-of-flight (TOF) magnetic resonance angiography (MRA) is often a cause of ischemic stroke. The aim of the present study is to examine the relationship between the pericytes in intraplaque neovessels and MRA findings. (2) Methods: A total of 46 patients with 49 carotid artery stenoses who underwent carotid endarterectomy at our hospitals were enrolled. The patients with carotid plaques that were histopathologically evaluated were retrospectively analyzed. Intraplaque hemorrhage was evaluated using glycophorin A staining, and intraplaque neovessels were evaluated using CD34 (Cluster of differentiation) stain as an endothelial cell marker or NG2 (Neuron-glial antigen 2) and CD146 stains as pericyte markers. Additionally, the relationships between the TOF-MRA findings and the carotid plaque pathologies were evaluated. (3) Results: Of the 49 stenoses, 28 had high-intensity signals (TOF-HIS group) and 21 had iso-intensity signals (TOF-IIS group) on TOF-MRA. The density of the CD34-positive neovessels was equivalent in both groups. However, the NG2- and CD146-positive neovessels had significantly higher densities in the TOF-HIS group than in the TOF-IIS group. (4) Conclusion: The presence of a high-intensity signal on TOF-MRA in carotid plaques was associated with intraplaque hemorrhage and few pericytes in intraplaque neovessels. These findings may contribute to the development of new therapeutic strategies focusing on pericytes.
Collapse
Affiliation(s)
- Atsushi Ogata
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (T.W.); (T.T.); (T.M.); (J.M.); (T.A.)
- Correspondence:
| | - Tomihiro Wakamiya
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (T.W.); (T.T.); (T.M.); (J.M.); (T.A.)
| | - Masashi Nishihara
- Department of Radiology, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (M.N.); (H.I.)
| | - Tatsuya Tanaka
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (T.W.); (T.T.); (T.M.); (J.M.); (T.A.)
- Department of Neurosurgery, Imari Arita Kyoritsu Hospital, Imari 849-4193, Japan;
| | - Taichiro Mizokami
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (T.W.); (T.T.); (T.M.); (J.M.); (T.A.)
- Department of Neurosurgery, Saga Ken Medical Center Koseikan, Saga 840-8571, Japan;
| | - Jun Masuoka
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (T.W.); (T.T.); (T.M.); (J.M.); (T.A.)
| | - Nobuaki Momozaki
- Department of Neurosurgery, Imari Arita Kyoritsu Hospital, Imari 849-4193, Japan;
| | - Shuji Sakata
- Department of Neurosurgery, Saga Ken Medical Center Koseikan, Saga 840-8571, Japan;
| | - Hiroyuki Irie
- Department of Radiology, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (M.N.); (H.I.)
| | - Tatsuya Abe
- Department of Neurosurgery, Faculty of Medicine, Saga University, Saga 840-8501, Japan; (T.W.); (T.T.); (T.M.); (J.M.); (T.A.)
| |
Collapse
|
25
|
Wang S, Head BP. Caveolin-1 in Stroke Neuropathology and Neuroprotection: A Novel Molecular Therapeutic Target for Ischemic-Related Injury. Curr Vasc Pharmacol 2020; 17:41-49. [PMID: 29412114 DOI: 10.2174/1570161116666180206112215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/18/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease and associated cerebral stroke are a global epidemic attributed to genetic and epigenetic factors, such as diet, life style and an increasingly sedentary existence due to technological advances in both the developing and developed world. There are approximately 5.9 million stroke-related deaths worldwide annually. Current epidemiological data indicate that nearly 16.9 million people worldwide suffer a new or recurrent stroke yearly. In 2014 alone, 2.4% of adults in the United States (US) were estimated to experience stroke, which is the leading cause of adult disability and the fifth leading cause of death in the US There are 2 main types of stroke: Hemorrhagic (HS) and ischemic stroke (IS), with IS occurring more frequently. HS is caused by intra-cerebral hemorrhage mainly due to high blood pressure, while IS is caused by either embolic or thrombotic stroke. Both result in motor impairments, numbness or abnormal sensations, cognitive deficits, and mood disorders (e.g. depression). This review focuses on the 1) pathophysiology of stroke (neuronal cell loss, defective blood brain barrier, microglia activation, and inflammation), 2) the role of the membrane protein caveolin- 1 (Cav-1) in normal brain physiology and stroke-induced changes, and, 3) we briefly discussed the potential therapeutic role of Cav-1 in recovery following stroke.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
26
|
Zhao H, Li G, Zhang S, Li F, Wang R, Tao Z, Ma Q, Han Z, Yan F, Fan J, Li L, Ji X, Luo Y. Inhibition of histone deacetylase 3 by MiR-494 alleviates neuronal loss and improves neurological recovery in experimental stroke. J Cereb Blood Flow Metab 2019; 39:2392-2405. [PMID: 31510852 PMCID: PMC6893973 DOI: 10.1177/0271678x19875201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HDAC3 is an essential negative regulator of neuronal plasticity and memory formation. Although a chemical inhibitor has been invented, little is known about its endogenous modulators. We explored whether miR-494 affects HDAC3-mediated neuronal injury following acute ischemic stroke. A substantial increase in plasma miR-494 was detected in AIS patients and was positively associated with the mRS at one year after symptom onset. The miR-494 levels were transiently increased in the infarcted brain tissue of mice. In contrast, miR-494 levels were reduced in neurons but increased in the medium after OGD. Intracerebroventricular injection of miR-494 agomir reduced neuronal apoptosis and infarct volume at the acute stage of MCAO, promoted axonal plasticity and long-term outcomes at the recovery stage, suppressed neuronal ataxin-3 and HDAC3 expression and increased acetyl-H3K9 levels in the ipsilateral hemisphere. In vitro studies confirmed that miR-494 posttranslationally inhibited HDAC3 in neurons and prevented OGD-induced neuronal axonal injury. The HDAC3 inhibitor increased acetyl-H3K9 levels and reversed miR-494 antagomir-aggravated acute cerebral ischemic injury, as well as brain atrophy and long-term functional recovery. These results suggest that miR-494 may serve as a predictive biomarker of functional outcomes in AIS patients and a potential therapeutic target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Xunming Ji
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Moawad H, El Awdan SA, Sallam NA, El-Eraky WI, Alkhawlani MA. Gastroprotective effect of cilostazol against ethanol- and pylorus ligation–induced gastric lesions in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1605-1616. [PMID: 31372695 DOI: 10.1007/s00210-019-01699-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
|
28
|
Tanaka T, Ogata A, Masuoka J, Mizokami T, Wakamiya T, Nakahara Y, Inoue K, Shimokawa S, Yoshioka F, Momozaki N, Sakata S, Abe T. Possible involvement of pericytes in intraplaque hemorrhage of carotid artery stenosis. J Neurosurg 2019; 130:1971-1977. [PMID: 29957113 DOI: 10.3171/2018.1.jns171942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intraplaque hemorrhage (IPH) is most often caused by the rupture of neovessels; however, the factors of intraplaque neovessel vulnerability remain unclear. In this study, the authors focused on pericytes and aimed to investigate the relationship between IPH and pericytes. METHODS The authors retrospectively analyzed the medical records of all patients with carotid artery stenoses who had undergone carotid endarterectomy at their hospitals between August 2008 and March 2016. Patients with carotid plaques that could be evaluated histopathologically were eligible for study inclusion. Intraplaque hemorrhage was analyzed using glycophorin A staining, and patients were divided into the following 2 groups based on the extent of granular staining: high IPH (positive staining area > 10%) and low IPH (positive staining area ≤ 10%). In addition, intraplaque neovessels were immunohistochemically evaluated using antibodies to CD34 as an endothelial cell marker or antibodies to NG2 and CD146 as pericyte markers. The relationship between IPH and pathology for intraplaque neovessels was investigated. RESULTS Seventy of 126 consecutive carotid stenoses were excluded due to the lack of a specimen for histopathological evaluation; therefore, 53 patients with 56 carotid artery stenoses were eligible for study inclusion. Among the 56 stenoses, 37 lesions had high IPH and 19 had low IPH. The number of CD34-positive neovessels was equivalent between the two groups. However, the densities of NG2- and CD146-positive neovessels were significantly lower in the high IPH group than in the low IPH group (5.7 ± 0.5 vs. 17.1 ± 2.4, p < 0.0001; 6.6 ± 0.8 vs. 18.4 ± 2.5, p < 0.0001, respectively). CONCLUSIONS Plaques with high IPH are associated with fewer pericytes in the intraplaque neovessels. This finding may help in the development of novel therapeutic strategies targeting pericytes.
Collapse
Affiliation(s)
- Tatsuya Tanaka
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
- 2Department of Neurosurgery, Imari Arita Kyoritsu Hospital, Imari; and
| | - Atsushi Ogata
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| | - Jun Masuoka
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| | - Taichiro Mizokami
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
- 3Department of Neurosurgery, Saga Ken Medical Centre Koseikan, Saga, Japan
| | - Tomihiro Wakamiya
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| | - Yukiko Nakahara
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| | - Kohei Inoue
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| | - Shoko Shimokawa
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| | - Fumitaka Yoshioka
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| | - Nobuaki Momozaki
- 2Department of Neurosurgery, Imari Arita Kyoritsu Hospital, Imari; and
| | - Shuji Sakata
- 3Department of Neurosurgery, Saga Ken Medical Centre Koseikan, Saga, Japan
| | - Tatsuya Abe
- 1Department of Neurosurgery, Faculty of Medicine, Saga University, Saga
| |
Collapse
|
29
|
Ono K, Tsuji M. Pharmacological Potential of Cilostazol for Alzheimer's Disease. Front Pharmacol 2019; 10:559. [PMID: 31191308 PMCID: PMC6540873 DOI: 10.3389/fphar.2019.00559] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD), a slow progressive form of dementia, is clinically characterized by cognitive dysfunction and memory impairment and neuropathologically characterized by the accumulation of extracellular plaques containing amyloid β-protein (Aβ) and neurofibrillary tangles containing tau in the brain, with neuronal degeneration and high level of oxidative stress. The current treatments for AD, e.g., acetylcholinesterase inhibitors (AChEIs), have efficacies limited to symptom improvement. Although there are various approaches to the disease modifying therapies of AD, none of them can be used alone for actual treatment, and combination therapy may be needed for amelioration of the progression. There are reports that cilostazol (CSZ) suppressed cognitive decline progression in patients with mild cognitive impairment or stable AD receiving AChEIs. Previously, we showed that CSZ suppressed Aβ-induced neurotoxicity in SH-SY5Y cells via coincident inhibition of oxidative stress, as demonstrated by reduced activity of nicotinamide adenine dinucleotide phosphate oxidase, accumulation of reactive oxygen species, and signaling of mitogen-activated protein kinase. CSZ also rescued cognitive impairment and promoted soluble Aβ clearance in a mouse model of cerebral amyloid angiopathy. Mature Aβ fibrils have long been considered the primary neurodegenerative factors in AD; however, recent evidence indicates soluble oligomers to initiate the neuronal and synaptic dysfunction related to AD and other protein-misfolding diseases. Further underscoring the potential of CSZ for AD treatment, we recently described the inhibitory effects of CSZ on Aβ oligomerization and aggregation in vitro. In this review, we discuss the possibility of CSZ as a potential disease-modifying therapy for the prevention or delay of AD.
Collapse
Affiliation(s)
- Kenjiro Ono
- Division of Neurology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
30
|
Imai T, Iwata S, Hirayama T, Nagasawa H, Nakamura S, Shimazawa M, Hara H. Intracellular Fe 2+ accumulation in endothelial cells and pericytes induces blood-brain barrier dysfunction in secondary brain injury after brain hemorrhage. Sci Rep 2019; 9:6228. [PMID: 30996325 PMCID: PMC6470176 DOI: 10.1038/s41598-019-42370-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
After intracranial hemorrhage (ICH), iron is released from the hematoma and induces secondary brain injury. However, the detail effect of iron on blood-brain barrier (BBB) function is still unknown. We investigated whether hemoglobin (Hb), ferrous ammonium sulfate (FAS) or hemin which contains iron have the detrimental effect on both human brain microvascular endothelial cells and pericytes by cellular function analysis in vitro. We developed an iron (Fe2+)-detectable probe, Si-RhoNox-1, to investigate intracellular Fe2+ accumulation (Fe2+intra). After FAS treatment, there was the correlation between Fe2+intra and cell death. Moreover, Hb or hemin treatment induced cell death, increased reactive oxygen species and promoted Fe2+intra in both cells. These changes were inhibited by the Fe2+ chelator, 2,2′-bipyridil (BP). Furthermore, hemin induced endothelial barrier dysfunction via disruption of junction integrity. Based on in vitro studies, we used a hemin-injection ICH mice model in vivo. Hemin injection (10 mM/10 µL, i.c.) induced deleterious effects including BBB hyper-permeability, neuronal deficits, neuronal damage, altered proteins expression, and Fe2+intra in BBB composed cells. Lastly, BP (40 mg/kg, i.p.) administration attenuated neuronal deficits at 3 days after surgery. Collectively, Hb or hemin damaged BBB composed cells via Fe2+intra. Therefore, the regulation of the Fe2+ movement in BBB might be effective for treatment of ICH.
Collapse
Affiliation(s)
- Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Sena Iwata
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Tasuku Hirayama
- Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hideko Nagasawa
- Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
31
|
Effectiveness and feasibility of cilostazol in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurol 2019; 267:1577-1584. [PMID: 30739182 DOI: 10.1007/s00415-019-09198-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Delayed cerebral ischemia seriously affects the prognosis of patients surviving the initial aneurysmal subarachnoid hemorrhage. Application of cilostazol was reported to ameliorate vasospasm and improve outcomes in series and clinical trials. But the effectiveness and feasibility of cilostazol on aneurysmal subarachnoid hemorrhage remained controversial. We performed a systematic review to clarify this issue. METHODS PubMed, Ovid and Cochrane library database were systematically searched up to May 2018 for eligible publications in English. Quality assessment was conducted for included studies. Meta-analysis was conducted to evaluate the overall effect on events of interest. Subgroup analyses and sensitivity analyses were used to check whether the results were robust. Publication bias was evaluated with the funnel plot. RESULTS Pooled analyses found cilostazol significantly reduced incidences of severe angiographic vasospasm (p = 0.0001), symptomatic vasospasm (p < 0.00001), new cerebral infarction (p < 0.00001) and the poor outcome (p < 0.0001). Subgroup and sensitivity analyses achieved consistent results. There was no statistical difference between cilostazol and the control group in reducing mortality (p = 0.07). But sensitivity analysis changed the result after excluding one study. Under the prescribed dosage, complication was few and non-lethal. CONCLUSIONS Cilostazol was effective and safe to reduce incidences of severe angiographic vasospasm, symptomatic vasospasm, new cerebral infarction and poor outcome in patients after aneurysmal subarachnoid hemorrhage. However, its effect on mortality and the interactive effect with nimodipine warranted further research.
Collapse
|
32
|
Flores JJ, Klebe D, Tang J, Zhang JH. A comprehensive review of therapeutic targets that induce microglia/macrophage-mediated hematoma resolution after germinal matrix hemorrhage. J Neurosci Res 2019; 98:121-128. [PMID: 30667078 DOI: 10.1002/jnr.24388] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 01/03/2023]
Abstract
Currently, there is no effective treatment for germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH), a common and often fatal stroke subtype in premature infants. Secondary brain injury after GMH-IVH is known to involve blood clots that contribute to inflammation and neurological deficits. Furthermore, the subsequent blood clots disrupt normal cerebrospinal fluid circulation and absorption after GMH-IVH, contributing to posthemorrhagic hydrocephalus (PHH). Clinically, GMH-IVH severity is graded on a I to IV scale: Grade I is confined to the germinal matrix, grade II includes intraventricular hemorrhage, grade III includes intraventricular hemorrhage with extension into dilated ventricles, and grade IV includes intraventricular hemorrhage with extension into dilated ventricles as well as parenchymal hemorrhaging. GMH-IVH hematoma volume is the best prognostic indicator, where patients with higher grades have worsened outcomes. Various preclinical studies have shown that rapid hematoma resolution quickly ameliorates inflammation and improves neurological outcomes. Current experimental evidence identifies alternatively activated microglia as playing a pivotal role in hematoma clearance. In this review, we discuss the pathophysiology of GMH-IVH in the development of PHH, microglia/macrophage's role in the neonatal CNS, and established/potential therapeutic targets that enhance M2 microglia/macrophage phagocytosis of blood clots after GMH-IVH.
Collapse
Affiliation(s)
- Jerry J Flores
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Damon Klebe
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA.,Department of Anesthesiology and Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA
| |
Collapse
|
33
|
Kuramoto Y, Takagi T, Tatebayashi K, Beppu M, Doe N, Fujita M, Yoshimura S. Intravenous administration of human adipose-derived stem cells ameliorates motor and cognitive function for intracerebral hemorrhage mouse model. Brain Res 2019; 1711:58-67. [PMID: 30615889 DOI: 10.1016/j.brainres.2018.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 12/25/2022]
Abstract
Even today, intracerebral hemorrhage (ICH) is a major cause of death and disabilities. Rehabilitation is preferentially applied for functional recovery although its effect is limited. Recent studies have suggested that intravenous administration of mesenchymal stem cells would improve the post-ICH neurological deficits. Human adipose-derived stem cells (hADSCs) have been established in our laboratory. We aimed to evaluate the therapeutic efficacy of the hADSCs on the post-ICH neurological deficits using a clinical-relevant ICH mouse model. We also evaluated immune responses to clarify the underlying mechanisms. The hADSCs expressed MSC markers at high levels. The hADSCs administration into the ICH-bearing mice improved the neurological deficits during the subacute phases, which was shown by neurobehavioral experiments. Besides, the hADSC administration decreased the number of CD11+CD45+ cells and increased the proportion of CD86+ and Ly6C+ cells in the ICH lesions. In summary, intravenous administration of hADSCs during the acute phase improved ICH-induced neurological deficits during the subacute phase because of the suppression of acute inflammation mediated by CD11+CD45+ subpopulations. Our data suggest that hADSCs can be served as a novel strategy for ICH treatment.
Collapse
Affiliation(s)
- Yoji Kuramoto
- Department of Neurosurgery, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Kotaro Tatebayashi
- Department of Neurosurgery, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Mikiya Beppu
- Department of Neurosurgery, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Hyōgo College of Medicine, Hyogo 663-8501, Japan; General Education Center, Hyogo University of Health Science, Hyogo 650-8530, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University, Faculty of Medicine, Osaka 589-8511, Japan.
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, Hyogo 663-8501, Japan.
| |
Collapse
|
34
|
Abstract
INTRODUCTION Stroke not only causes critical disability and death but is also a cause of anxiety with the possibility of secondary cardiovascular events including secondary ischemic stroke. Indeed, patients with a history of previous stroke have a high rate of stroke recurrence, indicating the clinical importance of secondary stroke prevention. Area of covered: This review provides an overview of the pooled evidence for cilostazol's use in the management of secondary stroke prevention. Among the various antiplatelet agents that are available, aspirin is the most frequently used agent worldwide for the prevention of secondary stroke. Cilostazol, a selective phosphodiesterase (PDE) 3A inhibitor, is used worldwide for the treatment of patients with intermittent claudication. However, in Asia, cilostazol is recommended and used in practice for secondary stroke prevention. Expert opinion: The authors believe that cilostazol could be used for secondary stroke prevention not only in Asia but worldwide. However, further randomized trials on cilostazol are needed, especially in the US and Europe to better support its case.
Collapse
Affiliation(s)
- Kensuke Noma
- a Department of Cardiovascular Regeneration and Medicine , Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima , Japan.,b Division of Regeneration and Medicine , Medical Center for Translational and Clinical Research, Hiroshima University Hospital , Hiroshima , Japan
| | - Yukihito Higashi
- a Department of Cardiovascular Regeneration and Medicine , Research Center for Radiation Genome Medicine, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University , Hiroshima , Japan.,b Division of Regeneration and Medicine , Medical Center for Translational and Clinical Research, Hiroshima University Hospital , Hiroshima , Japan
| |
Collapse
|
35
|
Effects of ripasudil, a ROCK inhibitor, on retinal edema and nonperfusion area in a retinal vein occlusion murine model. J Pharmacol Sci 2018; 137:129-136. [PMID: 29983234 DOI: 10.1016/j.jphs.2018.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/26/2018] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are used to treat glaucoma patients and have protective effects on ischemic states. However, it is poorly understood how the ROCK pathway affects the pathological signs of retinal vein occlusion (RVO). In this study, we evaluated the effects of ripasudil, a ROCK inhibitor, on a murine RVO model. In vivo, RVO was induced by retinal vein laser irradiation in mice, and evaluated with ripasudil. In vitro, the effects of ripasudil were examined on tight junction protein integrity in human retinal microvascular endothelial cells (HRMECs). Moreover, we investigated the expression level of the phosphorylated myosin phosphatase target protein (MYPT)-1 after administration of ripasudil. Ripasudil significantly prevented deterioration, such as retinal edema, reduced the size of the nonperfusion area, and improved retinal blood flow. Ripasudil treatment inhibited disintegration of ZO-1 in HRMECs. Administration of ripasudil suppressed retinal phosphorylation of MYPT-1 in a murine RVO model. These findings indicate that ripasudil might be as a possible therapeutic agent for RVO.
Collapse
|
36
|
The phosphodiesterase III inhibitor cilostazol protects the brain microvasculature from collagenase injury. Neuroreport 2018; 28:555-560. [PMID: 28574925 DOI: 10.1097/wnr.0000000000000793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A patient's prognosis, including mortality, after intracranial hemorrhage (ICH) is strongly related to the disruption of the blood-brain barrier caused by damage to vascular endothelial cells (ECs). We reported previously that cilostazol, a phosphodiesterase III inhibitor, ameliorated collagenase-induced ICH in a mouse model. We also reported that cilostazol protected cultured ECs in a blood-brain barrier model. However, the influence of cilostazol on vascular structure and cell morphology remains unclear. Therefore, we investigated whether cilostazol exerts protective effects on vascular structures, such as the extracellular matrix (ECM). A mouse model of collagenase-induced ICH was used to observe structures of the brain vasculature in a peri-hemorrhagic lesion using transmission electron microscopy. We then evaluated the morphology of the ECM and cytoskeleton in human brain microvasculature ECs by immunostaining. The brain vasculature was changed 24 h after induction of ICH. Cilostazol (30 mg/kg, orally) suppressed the thinning of the basement membrane, which is formed by the ECM components collagen IV and laminin. Moreover, this drug also suppressed the enlargement of ECs caused by ICH. Collagenase treatment (30 U/ml) of human brain microvasculature ECs caused a decrease in collagen IV expression and an increase in the number and size of the intercellular spaces, as indicated by β-actin immunostaining. Pretreatment of with 10 µM cilostazol suppressed these increases in the number and size of the intercellular spaces. These findings suggest that cilostazol protects the ECM of the brain microvasculature against ICH both in vivo and in vitro.
Collapse
|
37
|
Galyfos G, Sianou A. Cilostazol for Secondary Prevention of Stroke: Should the Guidelines Perhaps Be Extended? Vasc Specialist Int 2017; 33:89-92. [PMID: 28955697 PMCID: PMC5614376 DOI: 10.5758/vsi.2017.33.3.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022] Open
Abstract
Cilostazol belongs to the new generation antiplatelet agents that have been introduced and studied regarding a potential role in cardiovascular disease prevention or treatment. Although data on peripheral artery disease are sufficient, and the drug has been recommended as first line treatment for intermittent claudication, it has not been approved nor recommended as far as cerebrovascular events are concerned. However, a great volume of randomized as well as pooled data has been published during the last years. Therefore, this review aims to describe the basic mechanisms of cilostazol’s action as well as to present all recent clinical data in order to conclude on whether official guidelines should be extended.
Collapse
Affiliation(s)
- George Galyfos
- Division of Vascular Surgery, Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Argyri Sianou
- Department of Microbiology, University of Athens Medical School, Areteion Hospital, Athens, Greece
| |
Collapse
|
38
|
Abstract
Ticagrelor is a direct acting and reversibly binding P2Y12 antagonist approved for the prevention of thromboembolic events. Its potential benefits in ischemic stroke have not been investigated sufficiently. Mice were subjected to 2 hours of transient middle cerebral artery occlusion (MCAO). Mice were orally treated with ticagrelor (10 or 30 mg/kg), aspirin (60 mg/kg), or vehicle at 3 and 24 hours before MCAO and 0 and 6 hours after reperfusion. The infarct volume and neurological deficits 22 hours after reperfusion were evaluated. Cerebral blood flow (CBF) within 24 hours after MCAO was monitored. We performed western blotting and in vitro analysis using oxygen-glucose deprivation (OGD) stress in human brain microvessel endothelial cells (HBMVECs) to investigate the protective effects of ticagrelor. Ticagrelor (30 mg/kg) improved neurological deficits, reduced the infarct volume, and improved CBF. It promoted the phosphorylation of endothelial nitric oxide synthase (eNOS) and extracellular signal-regulated kinase 1/2 (ERK1/2) during the early phase after reperfusion. Increased phosphorylation of eNOS and ERK1/2 were also observed in HBMVECs after OGD stress. Ticagrelor attenuate ischemia reperfusion injury possibly via phosphorylation of eNOS and ERK1/2 in endothelial cells. This suggests that ticagrelor has neuroprotective effects via mechanisms other than its antiplatelet action.
Collapse
|
39
|
Sumbria RK, Vasilevko V, Grigoryan MM, Paganini-Hill A, Kim R, Cribbs DH, Fisher MJ. Effects of phosphodiesterase 3A modulation on murine cerebral microhemorrhages. J Neuroinflammation 2017; 14:114. [PMID: 28583195 PMCID: PMC5460510 DOI: 10.1186/s12974-017-0885-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebral microbleeds (CMB) are MRI-demonstrable cerebral microhemorrhages (CMH) which commonly coexist with ischemic stroke. This creates a challenging therapeutic milieu, and a strategy that simultaneously protects the vessel wall and provides anti-thrombotic activity is an attractive potential approach. Phosphodiesterase 3A (PDE3A) inhibition is known to provide cerebral vessel wall protection combined with anti-thrombotic effects. As an initial step in the development of a therapy that simultaneously treats CMB and ischemic stroke, we hypothesized that inhibition of the PDE3A pathway is protective against CMH development. METHODS The effect of PDE3A pathway inhibition was studied in the inflammation-induced and cerebral amyloid angiopathy (CAA)-associated mouse models of CMH. The PDE3A pathway was modulated using two approaches: genetic deletion of PDE3A and pharmacological inhibition of PDE3A by cilostazol. The effects of PDE3A pathway modulation on H&E- and Prussian blue (PB)-positive CMH development, BBB function (IgG, claudin-5, and fibrinogen), and neuroinflammation (ICAM-1, Iba-1, and GFAP) were investigated. RESULTS Robust development of CMH in the inflammation-induced and CAA-associated spontaneous mouse models was observed. Inflammation-induced CMH were associated with markers of BBB dysfunction and inflammation, and CAA-associated spontaneous CMH were associated primarily with markers of neuroinflammation. Genetic deletion of the PDE3A gene did not alter BBB function, microglial activation, or CMH development, but significantly reduced endothelial and astrocyte activation in the inflammation-induced CMH mouse model. In the CAA-associated CMH mouse model, PDE3A modulation via pharmacological inhibition by cilostazol did not alter BBB function, neuroinflammation, or CMH development. CONCLUSIONS Modulation of the PDE3A pathway, either by genetic deletion or pharmacological inhibition, does not alter CMH development in an inflammation-induced or in a CAA-associated mouse model of CMH. The role of microglial activation and BBB injury in CMH development warrants further investigation.
Collapse
Affiliation(s)
- Rachita K Sumbria
- Department of Biopharmaceutical Sciences, School of Pharmacy, Keck Graduate Institute, Claremont, CA, USA.,Department of Neurology, University of California, Irvine, CA, USA
| | - Vitaly Vasilevko
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | | | | | - Ronald Kim
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Mark J Fisher
- Department of Neurology, University of California, Irvine, CA, USA. .,Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA. .,Department of Anatomy & Neurobiology, University of California, Irvine, CA, USA. .,UC Irvine Medical Center, 101 The City Drive South, Shanbrom Hall, Room 121, Orange, CA, 92868, USA.
| |
Collapse
|
40
|
|
41
|
Stem Cells as a Promising Tool for the Restoration of Brain Neurovascular Unit and Angiogenic Orientation. Mol Neurobiol 2016; 54:7689-7705. [DOI: 10.1007/s12035-016-0286-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
|
42
|
Protective effects of cilostazol against hemorrhagic stroke: Current and future perspectives. J Pharmacol Sci 2016; 131:155-61. [DOI: 10.1016/j.jphs.2016.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
|