1
|
Wu D, Li Y, Zhang S, Chen Q, Fang J, Cho J, Wang Y, Yan S, Zhu W, Lin J, Wang Z, Zhang Y. Trajectories and sex differences of brain structure, oxygenation and perfusion functions in normal aging. Neuroimage 2024; 302:120903. [PMID: 39461605 DOI: 10.1016/j.neuroimage.2024.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Brain structure, oxygenation and perfusion are important factors in aging. Coupling between regional cerebral oxygen consumption and perfusion also reflects functions of neurovascular unit (NVU). Their trajectories and sex differences during normal aging important for clinical interpretation are still not well defined. In this study, we aim to investigate the relationship between brain structure, functions and age, and exam the sex disparities. METHOD A total of 137 healthy subjects between 20∼69 years old were enrolled with conventional MRI, structural three-dimensional T1-weighted imaging (3D-T1WI), 3D multi-echo gradient echo sequence (3D-mGRE), and 3D pseudo-continuous arterial spin labeling (3D-pCASL). Oxygen extraction fraction (OEF) and cerebral blood flow (CBF) were respectively reconstructed from 3D-mGRE and 3D-pCASL images. Cerebral metabolic rate of oxygen (CMRO2) were calculated as follows: CMRO2=CBF·OEF·[H]a, [H]a=7.377 μmol/mL. Brains were segmented into global gray matter (GM), global white matter (WM), and 148 cortical subregions. OEF, CBF, CMRO2, and volumes of GM/WM relative to intracranial volumes (rel_GM/rel_WM) were compared between males and females. Generalized additive models were used to evaluate the aging trajectories of brain structure and functions. The coupling between OEF and CBF was analyzed by correlation analysis. P or PFDR < 0.05 was considered statistically significant. RESULTS Females had larger rel_GM, higher CMRO2 and CBF of GM/WM than males (P < 0.05). With control of sex, CBF of GM significantly declined between 20 and 32 years, CMRO2 of GM declined subsequently from 33 to 41 years and rel_GM decreased significantly at all ages (R2 = 0.27, P < 0.001; R2 = 0.17, P < 0.001; R2 = 0.52, P < 0.001). In subregion analysis, CBF declined dispersedly while CMRO2 declined widely across most subregions of the cortex during aging. Robust negative coupling between OEF and CBF was found in most of the subregions (r range = -0.12∼-0.48, PFDR < 0.05). CONCLUSION The sex disparities, age trajectories of brain structure and functions as well as the coupling of NVU in healthy individuals provide insights into normal aging which are potential targets for study of pathological conditions.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayu Fang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Lin
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhenxiong Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
2
|
Sawan H, Li C, Buch S, Bernitsas E, Haacke EM, Ge Y, Chen Y. Reduced oxygen extraction fraction in deep cerebral veins associated with cognitive impairment in multiple sclerosis. J Cereb Blood Flow Metab 2024; 44:1298-1305. [PMID: 38820447 PMCID: PMC11342723 DOI: 10.1177/0271678x241259551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89% vs 72.4 ± 2.23%) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.508, p = 0.031) and the SvO2 (r = -0.498, p = 0.036) exhibited a moderate correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS. .
Collapse
Affiliation(s)
- Hasan Sawan
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chenyang Li
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Shi W, Jiang D, Hu Z, Yedavalli V, Ge Y, Moghekar A, Lu H. VICTR: Venous transit time imaging by changes in T 1 relaxation. Magn Reson Med 2024; 92:158-172. [PMID: 38411277 PMCID: PMC11055660 DOI: 10.1002/mrm.30051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Abnormalities in cerebral veins are a common finding in many neurological diseases, yet there is a scarcity of MRI techniques to assess venous hemodynamic function. The present study aims to develop a noncontrast technique to measure a novel blood flow circulatory measure, venous transit time (VTT), which denotes the time it takes for water to travel from capillary to major veins. METHODS The proposed sequence, venous transit time imaging by changes in T1 relaxation (VICTR), is based on the notion that as water molecules transition from the tissue into the veins, they undergo a change in T1 relaxation time. The validity of the measured VTT was tested by studying the VTT along the anatomically known flow trajectory of venous vessels as well as using a physiological vasoconstrictive challenge of caffeine ingestion. Finally, we compared the VTT measured with VICTR MRI to a bolus-tracking method using gadolinium-based contrast agent. RESULTS VTT was measured to be 3116.3 ± 326.0 ms in the posterior superior sagittal sinus (SSS), which was significantly longer than 2865.0 ± 390.8 ms at the anterior superior sagittal sinus (p = 0.004). The test-retest assessment showed an interclass correlation coefficient of 0.964. VTT was significantly increased by 513.8 ± 239.3 ms after caffeine ingestion (p < 0.001). VTT measured with VICTR MRI revealed a strong correlation (R = 0.84, p = 0.002) with that measured with the contrast-based approach. VTT was found inversely correlated to cerebral blood flow and venous oxygenation across individuals. CONCLUSION A noncontrast MRI technique, VICTR MRI, was developed to measure the VTT of the brain.
Collapse
Affiliation(s)
- Wen Shi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhiyi Hu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yulin Ge
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Xie J, Zhang Z. Recent Advances and Therapeutic Implications of 2-Oxoglutarate-Dependent Dioxygenases in Ischemic Stroke. Mol Neurobiol 2024; 61:3949-3975. [PMID: 38041714 DOI: 10.1007/s12035-023-03790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Ischemic stroke is a common disease with a high disability rate and mortality, which brings heavy pressure on families and medical insurance. Nowadays, the golden treatments for ischemic stroke in the acute phase mainly include endovascular therapy and intravenous thrombolysis. Some drugs are used to alleviate brain injury in patients with ischemic stroke, such as edaravone and 3-n-butylphthalide. However, no effective neuroprotective drug for ischemic stroke has been acknowledged. 2-Oxoglutarate-dependent dioxygenases (2OGDDs) are conserved and common dioxygenases whose activities depend on O2, Fe2+, and 2OG. Most 2OGDDs are expressed in the brain and are essential for the development and functions of the brain. Therefore, 2OGDDs likely play essential roles in ischemic brain injury. In this review, we briefly elucidate the functions of most 2OGDDs, particularly the effects of regulations of 2OGDDs on various cells in different phases after ischemic stroke. It would also provide promising potential therapeutic targets and directions of drug development for protecting the brain against ischemic injury and improving outcomes of ischemic stroke.
Collapse
Affiliation(s)
- Jian Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
5
|
Li C, Buch S, Sun Z, Muccio M, Jiang L, Chen Y, Haacke EM, Zhang J, Wisniewski TM, Ge Y. In vivo mapping of hippocampal venous vasculature and oxygenation using susceptibility imaging at 7T. Neuroimage 2024; 291:120597. [PMID: 38554779 PMCID: PMC11115460 DOI: 10.1016/j.neuroimage.2024.120597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhe Sun
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA; Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - E Mark Haacke
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Berkowitz BA, Paruchuri A, Stanek J, Podolsky RH, Childers KL, Roberts R. Acetazolamide Challenge Changes Outer Retina Bioenergy-Linked and Anatomical OCT Biomarkers Depending on Mouse Strain. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38488413 PMCID: PMC10946704 DOI: 10.1167/iovs.65.3.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Purpose The purpose of this study was to test the hypothesis that optical coherence tomography (OCT) bioenergy-linked and anatomical biomarkers are responsive to an acetazolamide (ACZ) provocation. Methods C57BL/6J mice (B6J, a strain with relatively inefficient mitochondria) and 129S6/ev mice (S6, a strain with relatively efficient mitochondria) were given a single IP injection of ACZ (carbonic anhydrase inhibitor) or vehicle. In each mouse, the Mitochondrial Configuration within Photoreceptors based on the profile shape Aspect Ratio (MCP/AR) index was determined from the hyper-reflective band immediately posterior to the external limiting membrane (ELM). In addition, we tested for ACZ-induced acidification by measuring contraction of the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness; the hyporeflective band (HB) signal intensity at the photoreceptor tips was also examined. Finally, the nuclear layer thickness was measured. Results In response to ACZ, MCP/AR was greater-than-vehicle in B6J mice and lower-than-vehicle in S6 mice. ACZ-treated B6J and S6 mice both showed ELM-RPE contraction compared to vehicle-treated mice, consistent with dehydration in response to subretinal space acidification. The HB intensity at the photoreceptor tips and the outer nuclear layer thickness (B6J and S6), as well as the inner nuclear layer thickness of B6J mice, were all lower than vehicle following ACZ. Conclusions Photoreceptor respiratory efficacy can be evaluated in vivo based on distinct rod mitochondria responses to subretinal space acidification measured with OCT biomarkers and an ACZ challenge, supporting and extending our previous findings measured with light-dark conditions.
Collapse
Affiliation(s)
- Bruce A. Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anuhya Paruchuri
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Josh Stanek
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Robert H. Podolsky
- Biostatistics and Study Methodology, Children's National Hospital, Silver Spring, Maryland, United States
| | - Karen Lins Childers
- Beaumont Research Institute, Beaumont Health, Royal Oak, Michigan, United States
| | - Robin Roberts
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
7
|
Sawan H, Li C, Buch S, Bernitsas E, Haacke EM, Ge Y, Chen Y. Reduced Oxygen Extraction Fraction in Deep Cerebral Veins Associated with Cognitive Impairment in Multiple Sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301049. [PMID: 38260542 PMCID: PMC10802653 DOI: 10.1101/2024.01.10.24301049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Studying the relationship between cerebral oxygen utilization and cognitive impairment is essential to understanding neuronal functional changes in the disease progression of multiple sclerosis (MS). This study explores the potential of using venous susceptibility in internal cerebral veins (ICVs) as an imaging biomarker for cognitive impairment in relapsing-remitting MS (RRMS) patients. Quantitative susceptibility mapping derived from fully flow-compensated MRI phase data was employed to directly measure venous blood oxygen saturation levels (SvO2) in the ICVs. Results revealed a significant reduction in the susceptibility of ICVs (212.4 ± 30.8 ppb vs 239.4 ± 25.9 ppb) and a significant increase of SvO2 (74.5 ± 1.89 % vs 72.4 ± 2.23 %) in patients with RRMS compared with age- and sex-matched healthy controls. Both the susceptibility of ICVs (r = 0.646, p = 0.004) and the SvO2 (r = -0.603, p = 0.008) exhibited a strong correlation with cognitive decline in these patients assessed by the Paced Auditory Serial Addition Test, while no significant correlation was observed with clinical disability measured by the Expanded Disability Status Scale. The findings suggest that venous susceptibility in ICVs has the potential to serve as a specific indicator of oxygen metabolism and cognitive function in RRMS.
Collapse
Affiliation(s)
- Hasan Sawan
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chenyang Li
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yulin Ge
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
8
|
Stella C, Hachlouf A, Calabrò L, Cavalli I, Schuind S, Gouvea Bogossian E, Taccone FS. The Effects of Acetazolamide on Cerebral Hemodynamics in Adult Patients with an Acute Brain Injury: A Systematic Review. Brain Sci 2023; 13:1678. [PMID: 38137126 PMCID: PMC10741868 DOI: 10.3390/brainsci13121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Acetazolamide is a non-competitive inhibitor of carbonic anhydrase, an enzyme expressed in different cells of the central nervous system (CNS) and involved in the regulation of cerebral blood flow (CBF). The aim of this review was to understand the effects of acetazolamide on CBF, intracranial pressure (ICP) and brain tissue oxygenation (PbtO2) after an acute brain injury (ABI). METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA), we performed a comprehensive, computer-based, literature research on the PubMed platform to identify studies that have reported the effects on CBF, ICP, or PbtO2 of acetazolamide administered either for therapeutic or diagnostic purposes in patients with subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and hypoxic-ischemic encephalopathy. RESULTS From the initial search, 3430 records were identified and, through data selection, 11 of them were included for the qualitative analysis. No data on the effect of acetazolamide on ICP or PbtO2 were found. Cerebral vasomotor reactivity (VMR-i.e., the changing in vascular tone due to a vasoactive substance) to acetazolamide tends to change during the evolution of ABI, with the nadir occurring during the subacute stage. Moreover, VMR reduction was correlated with clinical outcome. CONCLUSIONS This systematic review showed that the available studies on the effects of acetazolamide on brain hemodynamics in patients with ABI are scarce. Further research is required to better understand the potential role of this drug in ABI patients.
Collapse
Affiliation(s)
- Claudia Stella
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
- Department of Anesthesia and Intensive Care, Policlinico Universitario Gemelli, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Anas Hachlouf
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Lorenzo Calabrò
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Irene Cavalli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Sophie Schuind
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| |
Collapse
|
9
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
10
|
Le LNN, Wheeler GJ, Holy EN, Donnay CA, Blockley NP, Yee AH, Ng KL, Fan AP. Cortical oxygen extraction fraction using quantitative BOLD MRI and cerebral blood flow during vasodilation. Front Physiol 2023; 14:1231793. [PMID: 37869717 PMCID: PMC10588655 DOI: 10.3389/fphys.2023.1231793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: We aimed to demonstrate non-invasive measurements of regional oxygen extraction fraction (OEF) from quantitative BOLD MRI modeling at baseline and after pharmacological vasodilation. We hypothesized that OEF decreases in response to vasodilation with acetazolamide (ACZ) in healthy conditions, reflecting compensation in regions with increased cerebral blood flow (CBF), while cerebral metabolic rate of oxygen (CMRO2) remained unchanged. We also aimed to assess the relationship between OEF and perfusion in the default mode network (DMN) regions that have shown associations with vascular risk factors and cerebrovascular reactivity in different neurological conditions. Material and methods: Eight healthy subjects (47 ± 13 years, 6 female) were scanned on a 3 T scanner with a 32-channel head coil before and after administration of 15 mg/kg ACZ as a pharmacological vasodilator. The MR imaging acquisition protocols included: 1) A Gradient Echo Slice Excitation Profile Imaging Asymmetric Spin Echo scan to quantify OEF, deoxygenated blood volume, and reversible transverse relaxation rate (R2 ') and 2) a multi-post labeling delay arterial spin labeling scan to measure CBF. To assess changes in each parameter due to vasodilation, two-way t-tests were performed for all pairs (baseline versus vasodilation) in the DMN brain regions with Bonferroni correction for multiple comparisons. The relationships between CBF versus OEF and CBF versus R2' were analyzed and compared across DMN regions using linear, mixed-effect models. Results: During vasodilation, CBF significantly increased in the medial frontal cortex (P = 0.004 ), posterior cingulate gyrus (pCG) (P = 0.004 ), precuneus cortex (PCun) (P = 0.004 ), and occipital pole (P = 0.001 ). Concurrently, a significant decrease in OEF was observed only in the pCG (8.8%, P = 0.003 ) and PCun (8.7 % , P = 0.001 ). CMRO2 showed a trend of increased values after vasodilation, but these differences were not significant after correction for multiple comparisons. Although R2' showed a slightly decreasing trend, no statistically significant changes were found in any regions in response to ACZ. The CBF response to ACZ exhibited a stronger negative correlation with OEF (β = - 0.104 ± 0.027 ; t = - 3.852 , P < 0.001 ), than with R2' (β = - 0.016 ± 0.006 ; t = - 2.692 , P = 0.008 ). Conclusion: Quantitative BOLD modeling can reliably measure OEF across multiple physiological conditions and captures vascular changes with higher sensitivity than R2' values. The inverse correlation between OEF and CBF across regions in DMN, suggests that these two measurements, in response to ACZ vasodilation, are reliable indicators of tissue health in this healthy cohort.
Collapse
Affiliation(s)
- Linh N. N. Le
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Gregory J. Wheeler
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Emily N. Holy
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Corinne A. Donnay
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Nicholas P. Blockley
- School of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alan H. Yee
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Kwan L. Ng
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Audrey P. Fan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Aframian K, Yousef Yengej D, Nwaobi S, Raman S, Faas GC, Charles A. Effects of chronic caffeine on patterns of brain blood flow and behavior throughout the sleep-wake cycle in freely behaving mice. PNAS NEXUS 2023; 2:pgad303. [PMID: 37780231 PMCID: PMC10538474 DOI: 10.1093/pnasnexus/pgad303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Caffeine has significant effects on neurovascular activity and behavior throughout the sleep-wake cycle. We used a minimally invasive microchip/video system to continuously record effects of caffeine in the drinking water of freely behaving mice. Chronic caffeine shifted both rest and active phases by up to 2 h relative to the light-dark cycle in a dose-dependent fashion. There was a particular delay in the onset of rapid eye movement (REM) sleep as compared with non-REM sleep during the rest phase. Chronic caffeine increased wakefulness during the active phase and consolidated sleep during the rest phase; overall, there was no net change in the amount of time spent in the wake, sleep, or REM sleep states during caffeine administration. Despite these effects on wakefulness and sleep, chronic caffeine decreased mean cerebral blood volume (CBV) during the active phase and increased mean CBV during the rest phase. Chronic caffeine also increased heart rate variability in both the sleep and wake states. These results provide new insight into the effects of caffeine on the biology of the sleep-wake cycle. Increased blood flow during sleep caused by chronic caffeine may have implications for its potential neuroprotective effects through vascular mechanisms of brain waste clearance.
Collapse
Affiliation(s)
- Kimiya Aframian
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Dmitri Yousef Yengej
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Sinifunanya Nwaobi
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Shrayes Raman
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Guido C Faas
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles Young Drive, Los Angeles, CA 90095, USA
| |
Collapse
|
12
|
Lin Z, Jiang D, Liu P, Ge Y, Moghekar A, Lu H. Blood-brain barrier permeability in response to caffeine challenge. Magn Reson Med 2022; 88:2259-2266. [PMID: 35754146 PMCID: PMC9420773 DOI: 10.1002/mrm.29355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023]
Abstract
PURPOSE Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a non-contrast MRI technique. METHODS Ten young healthy volunteers who were not regular coffee drinkers were studied. The experiment began with a pre-caffeine measurement, followed by four measurements at the post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI was used to assess the time dependence of BBB permeability to water following the ingestion of 200 mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), venous oxygenation (Yv ), and cerebral metabolic rate of oxygen (CMRO2 ) were also examined. The relationships between cerebral physiological parameters and time were studied with mixed-effect models. RESULTS It was found that, after caffeine ingestion, CBF and Yv showed a time-dependent decrease (p < 0.001), while CMRO2 did not change significantly. The fraction of arterial water crossing the BBB (E) showed a significant increase (p < 0.001). In contrast, the permeability-surface-area product (PS), i.e., BBB permeability to water, remained constant (p = 0.94). Additionally, it was observed that changes in physiological parameters were non-linear with regard to time and occurred at as early as 9 min after caffeine tablet ingestion. CONCLUSION These results suggest an unchanged BBB permeability despite alterations in perfusion during a vasoconstrictive caffeine challenge.
Collapse
Affiliation(s)
- Zixuan Lin
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yulin Ge
- Department of Radiology, New York University, NY, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Cao F, Wang M, Fan S, Han S, Guo Y, Zaman A, Guo J, Luo Y, Kang Y. Cerebral Venous Oxygen Saturation in Hypoperfusion Regions May Become a New Imaging Indicator to Predict the Clinical Outcome of Stroke. Life (Basel) 2022; 12:life12091312. [PMID: 36143349 PMCID: PMC9504954 DOI: 10.3390/life12091312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
To automatically and quantitatively evaluate the venous oxygen saturation (SvO2) in cerebral ischemic tissues and explore its value in predicting prognosis. A retrospective study was conducted on 48 AIS patients hospitalized in our hospital from 2015−2018. Based on quantitative susceptibility mapping and perfusion-weighted imaging, this paper measured the cerebral SvO2 in hypoperfusion tissues and its change after intraarterial rt-PA treatment. The cerebral SvO2 in different hypoperfusion regions between the favorable and unfavorable clinical outcome groups was analyzed using an independent t-test. Relationships between cerebral SvO2 and clinical scores were determined using the Pearson correlation coefficient. The receiver operating characteristic process was conducted to evaluate the accuracy of cerebral SvO2 in predicting unfavorable clinical outcomes. Cerebral SvO2 in hypoperfusion (Tmax > 4 and 6 s) was significantly different between the two groups at follow-up (p < 0.05). Cerebral SvO2 and its changes before and after treatment were negatively correlated with clinical scores. The positive predictive value, negative predictive value, accuracy, and area under the curve of the cerebral SvO2 were higher than those predicted by the ischemic core. Therefore, the cerebral SvO2 of hypoperfusion regions was a stronger imaging predictor of unfavorable clinical outcomes after stroke.
Collapse
Affiliation(s)
- Fengqiu Cao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingming Wang
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Shengyu Fan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Shanhua Han
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
| | - Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Asim Zaman
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY 10027, USA
- Correspondence: (J.G.); (Y.L.); (Y.K.); Tel.: +86-139-4047-2926 (Y.K.)
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China
- Correspondence: (J.G.); (Y.L.); (Y.K.); Tel.: +86-139-4047-2926 (Y.K.)
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- Correspondence: (J.G.); (Y.L.); (Y.K.); Tel.: +86-139-4047-2926 (Y.K.)
| |
Collapse
|
14
|
Cao F, Wang M, Han S, Fan S, Guo Y, Yang Y, Luo Y, Guo J, Kang Y. Quantitative Distribution of Cerebral Venous Oxygen Saturation and Its Prognostic Value in Patients with Acute Ischemic Stroke. Brain Sci 2022; 12:brainsci12081109. [PMID: 36009171 PMCID: PMC9406002 DOI: 10.3390/brainsci12081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the quantitative distribution of cerebral venous oxygen saturation (SvO2) based on quantitative sensitivity mapping (QSM) and determined its prognostic value in patients with acute ischemic stroke (AIS). A retrospective study was conducted on 39 hospitalized patients. Reconstructed QSM was used to calculate the cerebral SvO2 of each region of interest (ROI) in the ischemic hemisphere. The intraclass correlation coefficient (ICC) and Bland−Altman analysis were conducted to define the best resolution of the distribution map. The correlation between the cerebral SvO2 in hypoxic regions (SvO2ROI < 0.7) and clinical scores was obtained by Spearman and power analysis. The associations between cerebral SvO2 and unfavorable prognosis were analyzed using multivariate logistic regression. Excellent agreement was found between the cerebral SvO2 in hypoxic regions with a resolution of 7.18 × 7.18 × 1.6 mm3 and asymmetrically prominent cortical veins regions (ICC: 0.879 (admission), ICC: 0.906 (discharge)). The cerebral SvO2 was significantly negative with clinical scores (all |r| > 0.3). The cerebral SvO2 and its changes at discharge were significantly associated with an unfavorable prognosis (OR: 0.812 and 0.866). Therefore, the cerebral SvO2 in hypoxic regions measured by the quantitative distribution map can be used as an indicator for evaluating the early prognosis of AIS.
Collapse
Affiliation(s)
- Fengqiu Cao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Mingming Wang
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shanhua Han
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Shengyu Fan
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Yingwei Guo
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yingjian Yang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yu Luo
- Department of Radiology, School of Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University, Shanghai 200434, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY 10027, USA
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| | - Yan Kang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
- Engineering Research Centre of Medical Imaging and Intelligent Analysis, Ministry of Education, Shenyang 110169, China
- School of Applied Technology, Shenzhen University, Shenzhen 518060, China
- Correspondence: (Y.L.); (J.G.); (Y.K.); Tel.: +86-13-9404-72926 (Y.K.)
| |
Collapse
|
15
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Lu X, Luo Y, Fawaz M, Zhu C, Chai C, Wu G, Wang H, Liu J, Zou Y, Gong Y, Haacke EM, Xia S. Dynamic Changes of Asymmetric Cortical Veins Relate to Neurologic Prognosis in Acute Ischemic Stroke. Radiology 2021; 301:672-681. [PMID: 34581624 DOI: 10.1148/radiol.2021210201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Cerebral oxygenation is closely related to neural function in acute ischemic stroke (AIS) and can be measured noninvasively from asymmetrically prominent cortical veins (APCVs) using quantitative susceptibility mapping (QSM). Purpose To quantify venous oxygen saturation (SvO2) using brain MRI with QSM in patients with AIS, to analyze its change at 2-week follow-up, and to assess the influence of SvO2 in clinical prognosis. Materials and Methods Between 2016 and 2020, consecutive patients with AIS who underwent brain MRI within 24 hours from symptom onset and 2 weeks after treatment were retrospectively enrolled. The SvO2 of APCVs was quantified using QSM. The independent sample t test was used to compare the SvO2 between patients with and patients without APCVs. The paired sample t test was used to assess the dynamic change in SvO2. Pearson and Spearman correlation analysis was used to explore the relationship among dynamic change in SvO2 and hypoperfusion, National Institutes of Health Stroke Scale (NIHSS) score change, and 90-day modified Rankin Scale (mRS) score. The independent sample t test was used to compare the dynamic change in SvO2 between different clinical prognoses and outcome subgroups. Results APCVs were detected in 39 of 73 patients (mean age, 70 years ± 10 [standard deviation]; 49 men) at admission and disappeared in 35 patients at 2-week follow-up MRI. The mean SvO2 increased from 35.0% ± 5.8 to 64.5% ± 10.0 (P < .001) in 39 patients. For the 35 patients with APCVs that disappeared, the dynamic change in SvO2 negatively correlated with change in NIHSS score (r = -0.37, R2 = 0.19, P = .03) and 90-day mRS score (r = -0.54, R2 = 0.27, P = .001), and the dynamic change in SvO2 in the subgroup with good 90-day outcomes (n = 19) was greater than that in the subgroup with poor 90-day outcomes (n = 16) (mean, 34.5% ± 5.8 vs 29.7% ± 6.3; 95% CI: 0.6, 8.9; P = .03). Conclusion Improved oxygen saturation of asymmetric cortical veins detected using brain MRI with quantitative susceptibility mapping corresponded with better acute ischemic stroke outcomes for patients with asymmetrically prominent cortical veins that disappeared at 2-week follow-up MRI. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Xiudi Lu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Yu Luo
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Miller Fawaz
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Chengcheng Zhu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Chao Chai
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Gemuer Wu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Huiying Wang
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Jihua Liu
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Ying Zou
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Yan Gong
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - E Mark Haacke
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| | - Shuang Xia
- From the Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China (X.L., J.L., Y.Z.); Department of Radiology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China (Y.L.); Department of Radiology, Wayne State University, Detroit, Mich (M.F., E.M.H.); Department of Radiology, University of Washington, Seattle, Wash (C.Z.); Department of Radiology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Nankai District, Tianjin 300192, China (C.C., S.X.); School of Medicine, Nankai University, Tianjin, China (G.W., H.W.); and Department of Radiology, Tianjin Medical University Nankai Hospital, Tianjin, China (Y.G.)
| |
Collapse
|
17
|
The Frequency and Associated Factors of Asymmetrical Prominent Veins: A Predictor of Unfavorable Outcomes in Patients with Acute Ischemic Stroke. Neural Plast 2021; 2021:9733926. [PMID: 34567108 PMCID: PMC8463180 DOI: 10.1155/2021/9733926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Objectives The present study is aimed at investigating the frequency and associated factors of asymmetrical prominent veins (APV) in patients with acute ischemic stroke (AIS). Methods Consecutive patients with AIS admitted to the Comprehensive Stroke Center of Shanghai Fourth People's Hospital between January 2013 and December 2017 were enrolled. MRI including diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and susceptibility-weighted imaging (SWI) was performed within 12 hours of symptom onset. The volume of asymmetrical prominent veins (APV) was evaluated using the Signal Processing In nuclear magnetic resonance software (SPIN, Detroit, Michigan, USA). Multivariate analysis was used to assess relationships between APV findings and medical history, clinical variables as well as cardio-metabolic indices. Results Seventy-six patients met the inclusion criteria. The frequency of APV ≥ 10 mL was 46.05% (35/76). Multivariate analyses showed that proximal artery stenosis or occlusion (≥50%) (P < 0.001, adjusted odds ratio (OR) = 660.0, 95%CI = 57.28-7604.88) and history of atrial fibrillation (P < 0.001, adjusted OR = 10.48, 95%CI = 1.78-61.68) were independent factors associated with high APV (≥10 mL). Conclusion Our findings suggest that the frequency of APV ≥ 10 mL is high in patients with AIS within 12 hours of symptom onset. History of atrial fibrillation and severe proximal artery stenosis or occlusion are strong predictors of high APV as calculated by SPIN on the SWI map.
Collapse
|
18
|
Chai C, Wang H, Chu Z, Li J, Qian T, Mark Haacke E, Xia S, Shen W. Reduced regional cerebral venous oxygen saturation is a risk factor for the cognitive impairment in hemodialysis patients: a quantitative susceptibility mapping study. Brain Imaging Behav 2021; 14:1339-1349. [PMID: 30511117 DOI: 10.1007/s11682-018-9999-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to noninvasively evaluate the changes of regional cerebral venous oxygen saturation (rSvO2) in hemodialysis patients using quantitative susceptibility mapping (QSM) and investigate the relationship with clinical risk factors and neuropsychological testing. Fifty four (54) hemodialysis patients and 54 age, gender and education matched healthy controls (HCs) were recruited in this prospective study. QSM data were reconstructed from the original phase data of susceptibility weighted imaging to measure the susceptibility of cerebral regional major veins in all subjects and calculate their rSvO2. The differences in rSvO2 between hemodialysis patients and HCs were investigated using analysis of covariance adjusting for age and gender as covariates. Stepwise multiple regression and correlation analysis were performed between the cerebral rSvO2 and clinical factors including neuropsychological testing. The SvO2 of the bilateral cortical, thalamostriate, septal, cerebral internal and basal veins in hemodialysis patients was significantly lower than that in HCs (p < 0.001, Bonferroni corrected). The cerebral rSvO2 in all these veins was reduced by 1.67% to 2.30%. The hematocrit, iron, glucose, pre-and post-dialysis diastolic blood pressure (DBP) were independent predictive factors for the cerebral rSvO2 (all P < 0.05). The Mini-Mental State Examination and Montreal Cognitive Assessment (MoCA) scores were both lower in patients than those in HCs (both P < 0.05). The SvO2 of the left cerebral internal vein correlated with MoCA scores (r = 0.492; P = 0.02, FDR corrected). In conclusion, our study indicated that the cerebral rSvO2 was reduced in hemodialysis patients, which was the risk factor for neurocognitive impairment. The hematocrit, iron, glucose, pre-and post-dialysis DBP were independent risk factors for the cerebral rSvO2.
Collapse
Affiliation(s)
- Chao Chai
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Huiying Wang
- School of Graduates, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhiqiang Chu
- Department of Hemodialysis, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jinping Li
- Department of Hemodialysis, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Tianyi Qian
- MR collaboration, Siemens Healthcare, Northeast Asia, Beijing, 100102, China
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, 48202, USA
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
19
|
McFadden JJ, Matthews JC, Scott LA, Parker GJM, Lohézic M, Parkes LM. Optimization of quantitative susceptibility mapping for regional estimation of oxygen extraction fraction in the brain. Magn Reson Med 2021; 86:1314-1329. [PMID: 33780045 DOI: 10.1002/mrm.28789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
PURPOSE We sought to determine the degree to which oxygen extraction fraction (OEF) estimated using quantitative susceptibility mapping (QSM) depends on two critical acquisition parameters that have a significant impact on acquisition time: voxel size and final echo time. METHODS Four healthy volunteers were imaged using a range of isotropic voxel sizes and final echo times. The 0.7 mm data were downsampled at different stages of QSM processing by a factor of 2 (to 1.4 mm), 3 (2.1 mm), or 4 (2.8 mm) to determine the impact of voxel size on each analysis step. OEF was estimated from 11 veins of varying diameter. Inter- and intra-session repeatability were estimated for the optimal protocol by repeat scanning in 10 participants. RESULTS Final echo time was found to have no significant effect on OEF. The effect of voxel size was significant, with larger voxel sizes underestimating OEF, depending on the proximity of the vein to the superficial surface of the brain and on vein diameter. The last analysis step of estimating vein OEF values from susceptibility images had the largest dependency on voxel size. Inter-session coefficients of variation on OEF estimates of between 5.2% and 8.7% are reported, depending on the vein. CONCLUSION QSM acquisition times can be minimized by reducing the final echo time but an isotropic voxel size no larger than 1 mm is needed to accurately estimate OEF in most medium/large veins in the brain. Such acquisitions can be achieved in under 4 min.
Collapse
Affiliation(s)
- John J McFadden
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Julian C Matthews
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Lauren A Scott
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Geoff J M Parker
- Bioxydyn Limited, Manchester, United Kingdom.,Centre for Medical Image Computing, Department of Computer Science and Department of Neuroinflammation, University College London, London, United Kingdom
| | - Maélène Lohézic
- Applications & Workflow, GE Healthcare, Manchester, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
20
|
Yaghmaie N, Syeda WT, Wu C, Zhang Y, Zhang TD, Burrows EL, Brodtmann A, Moffat BA, Wright DK, Glarin R, Kolbe S, Johnston LA. QSMART: Quantitative susceptibility mapping artifact reduction technique. Neuroimage 2021; 231:117701. [PMID: 33484853 DOI: 10.1016/j.neuroimage.2020.117701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Quantitative susceptibility mapping (QSM) is a novel MR technique that allows mapping of tissue susceptibility values from MR phase images. QSM is an ill-conditioned inverse problem, and although several methods have been proposed in the field, in the presence of a wide range of susceptibility sources, streaking artifacts appear around high susceptibility regions and contaminate the whole QSM map. QSMART is a post-processing pipeline that uses two-stage parallel inversion to reduce the streaking artifacts and remove banding artifact at the cortical surface and around the vasculature. METHOD Tissue and vein susceptibility values were separately estimated by generating a mask of vasculature driven from the magnitude data using a Frangi filter. Spatially dependent filtering was used for the background field removal step and the two susceptibility estimates were combined in the final QSM map. QSMART was compared to RESHARP/iLSQR and V-SHARP/iLSQR inversion in a numerical phantom, 7T in vivo single and multiple-orientation scans, 9.4T ex vivo mouse data, and 4.7T in vivo rat brain with induced focal ischemia. RESULTS Spatially dependent filtering showed better suppression of phase artifacts near cortex compared to RESHARP and V-SHARP, while preserving voxels located within regions of interest without brain edge erosion. QSMART showed successful reduction of streaking artifacts as well as improved contrast between different brain tissues compared to the QSM maps obtained by RESHARP/iLSQR and V-SHARP/iLSQR. CONCLUSION QSMART can reduce QSM artifacts to enable more robust estimation of susceptibility values in vivo and ex vivo.
Collapse
Affiliation(s)
- Negin Yaghmaie
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Australia; Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Warda T Syeda
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Australia; Department of Medicine and Radiology, The University of Melbourne, Australia
| | - Chengchuan Wu
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Australia; Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Yicheng Zhang
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Australia; Department of Biomedical Engineering, The University of Melbourne, Australia
| | - Tracy D Zhang
- Florey Institute of Neuroscience and Mental Health, Australia
| | - Emma L Burrows
- Florey Institute of Neuroscience and Mental Health, Australia
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Australia; Department of Medicine and Radiology, The University of Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Rebecca Glarin
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Australia; Department of Radiology, Royal Melbourne Hospital, Australia
| | - Scott Kolbe
- Department of Medicine and Radiology, The University of Melbourne, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Department of Radiology, Alfred Hospital, Australia
| | - Leigh A Johnston
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Australia; Department of Biomedical Engineering, The University of Melbourne, Australia; Department of Medicine and Radiology, The University of Melbourne, Australia.
| |
Collapse
|
21
|
Ma Y, Mazerolle EL, Cho J, Sun H, Wang Y, Pike GB. Quantification of brain oxygen extraction fraction using QSM and a hyperoxic challenge. Magn Reson Med 2020; 84:3271-3285. [DOI: 10.1002/mrm.28390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Yuhan Ma
- Department of Biomedical Engineering and McConnell Brain Imaging Centre McGill University Montréal Quebec Canada
| | - Erin L. Mazerolle
- Department of Radiology and Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| | - Junghun Cho
- Department of Biomedical Engineering Cornell University Ithaca New York USA
| | - Hongfu Sun
- Department of Radiology and Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
- School of Information Technology and Electrical Engineering University of Queensland Brisbane Australia
| | - Yi Wang
- Department of Biomedical Engineering Cornell University Ithaca New York USA
- Department of Radiology Weill Cornell Medical College New York New York USA
| | - G. Bruce Pike
- Department of Biomedical Engineering and McConnell Brain Imaging Centre McGill University Montréal Quebec Canada
- Department of Radiology and Hotchkiss Brain Institute University of Calgary Calgary Alberta Canada
| |
Collapse
|
22
|
Yadav BK, Hernandez-Andrade E, Krishnamurthy U, Buch S, Jella P, Trifan A, Yeo L, Hassan SS, Haacke EM, Romero R, Neelavalli J. Dual-Imaging Modality Approach to Evaluate Cerebral Hemodynamics in Growth-Restricted Fetuses: Oxygenation and Perfusion. Fetal Diagn Ther 2019; 47:145-155. [PMID: 31434069 PMCID: PMC10853988 DOI: 10.1159/000500954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/14/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To evaluate a dual-imaging modality approach to obtain a combined estimation of venous blood oxygenation (SνO2) using susceptibility-weighted magnetic resonance imaging (SWI-MRI), and blood perfusion using power Dopp-ler ultrasound (PDU) and fractional moving blood volume (FMBV) in the brain of normal growth and growth-restricted fetuses. METHODS Normal growth (n = 33) and growth-restricted fetuses (n = 10) from singleton pregnancies between 20 and 40 weeks of gestation were evaluated. MRI was performed and SνO2 was calculated using SWI-MRI data obtained in the straight section of the superior sagittal sinus. Blood perfusion was estimated using PDU and FMBV from the frontal lobe in a mid-sagittal plane of the fetal brain. The association between fetal brain SνO2 and FMBV, and the distribution of SνO2 and FMBV values across gestation were calculated for both groups. RESULTS In growth-restricted fetuses, the brain SνO2 values were similar, and the FMBV values were higher across gestation as compared to normal growth fetuses. There was a significantly positive association between SνO2 and FMBV values (slope = 0.38 ± 0.12; r = 0.7; p = 0.02) in growth-restricted fetuses. In normal growth fetuses, SνO2 showed a mild decreasing trend (slope = -0.7 ± 0.4; p = 0.1), whereas FMBV showed a mild increasing trend (slope = 0.2 ± 0.2; p = 0.2) with advancing gestation, and a mild but significant negative association (slope = -0.78 ± 0.3; r = -0.4; p = 0.04) between these two estimates. CONCLUSION Combined MRI (SWI) and ultrasound (FMBV) techniques showed a significant association between cerebral blood oxygenation and blood perfusion in normal growth and growth-restricted fetuses. This dual-imaging approach could contribute to the early detection of fetal "brain sparing" and brain oxygen saturation changes in high-risk pregnancies.
Collapse
Affiliation(s)
- Brijesh Kumar Yadav
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Uday Krishnamurthy
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Sagar Buch
- The MRI Institute for Biomedical Research, Waterloo, ON, Canada
| | - Pavan Jella
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Anabela Trifan
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Jaladhar Neelavalli
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Philips Innovation Campus, Philips India Ltd., Bengaluru, India
| |
Collapse
|
23
|
Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage 2019; 187:3-16. [PMID: 29305164 PMCID: PMC6030511 DOI: 10.1016/j.neuroimage.2017.12.095] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 11/26/2022] Open
Abstract
This article aims to provide the reader with an overview of recent developments in Arterial Spin Labeling (ASL) MRI techniques. A great deal of progress has been made in recent years in terms of the SNR and acquisition speed. New strategies have been introduced to improve labeling efficiency, reduce artefacts, and estimate other relevant physiological parameters besides perfusion. As a result, ASL techniques has become a reliable workhorse for researchers as well as clinicians. After a brief overview of the technique's fundamentals, this article will review new trends and variants in ASL including vascular territory mapping and velocity selective ASL, as well as arterial blood volume imaging techniques. This article will also review recent processing techniques to reduce partial volume effects and physiological noise. Next the article will examine how ASL techniques can be leveraged to calculate additional physiological parameters beyond perfusion and finally, it will review a few recent applications of ASL in the literature.
Collapse
Affiliation(s)
| | - Anish Lahiri
- FMRI Laboratory, University of Michigan, United States
| | | |
Collapse
|
24
|
Cao R, Zhang C, Mitkin VV, Lankford MF, Li J, Zuo Z, Meyer CH, Goyne CP, Ahlers ST, Stone JR, Hu S. Comprehensive Characterization of Cerebrovascular Dysfunction in Blast Traumatic Brain Injury Using Photoacoustic Microscopy. J Neurotrauma 2019; 36:1526-1534. [PMID: 30501547 DOI: 10.1089/neu.2018.6062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blast traumatic brain injury (bTBI) is a leading contributor to combat-related injuries and death. Although substantial emphasis has been placed on blast-induced neuronal and axonal injuries, co-existing dysfunctions in the cerebral vasculature, particularly the microvasculature, remain poorly understood. Here, we studied blast-induced cerebrovascular dysfunctions in a rat model of bTBI (blast overpressure: 187.8 ± 18.3 kPa). Using photoacoustic microscopy (PAM), we quantified changes in cerebral hemodynamics and metabolism-including blood perfusion, oxygenation, flow, oxygen extraction fraction, and the metabolic rate of oxygen-4 h post-injury. Moreover, we assessed the effect of blast exposure on cerebrovascular reactivity (CVR) to vasodilatory stimulation. With vessel segmentation, we extracted these changes at the single-vessel level, revealing their dependence on vessel type (i.e., artery vs. vein) and diameter. We found that bTBI at this pressure level did not induce pronounced baseline changes in cerebrovascular diameter, blood perfusion, oxygenation, flow, oxygen extraction, and metabolism, except for a slight sO2 increase in small veins (<45 μm) and blood flow increase in large veins (≥45 μm). In contrast, this blast exposure almost abolished CVR, including arterial dilation, flow upregulation, and venous sO2 increase. This study is the most comprehensive assessment of cerebrovascular structure and physiology in response to blast exposure to date. The observed impairment in CVR can potentially cause cognitive decline due to the mismatch between cognitive metabolic demands and vessel's ability to dynamically respond to meet the demands. Also, the impaired CVR can lead to increased vulnerability of the brain to metabolic insults, including hypoxia and ischemia.
Collapse
Affiliation(s)
- Rui Cao
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Chenchu Zhang
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Vladimir V Mitkin
- 2 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia
| | - Miles F Lankford
- 3 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Jun Li
- 4 Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Zhiyi Zuo
- 4 Department of Anesthesiology, University of Virginia, Charlottesville, Virginia
| | - Craig H Meyer
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Christopher P Goyne
- 2 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia
| | - Stephen T Ahlers
- 5 Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland
| | - James R Stone
- 3 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - Song Hu
- 1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
25
|
Lin F, Prince MR, Spincemaille P, Wang Y. Patents on Quantitative Susceptibility Mapping (QSM) of Tissue Magnetism. Recent Pat Biotechnol 2018; 13:90-113. [PMID: 30556508 DOI: 10.2174/1872208313666181217112745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) depicts biodistributions of tissue magnetic susceptibility sources, including endogenous iron and calcifications, as well as exogenous paramagnetic contrast agents and probes. When comparing QSM with simple susceptibility weighted MRI, QSM eliminates blooming artifacts and shows reproducible tissue susceptibility maps independent of field strength and scanner manufacturer over a broad range of image acquisition parameters. For patient care, QSM promises to inform diagnosis, guide surgery, gauge medication, and monitor drug delivery. The Bayesian framework using MRI phase data and structural prior knowledge has made QSM sufficiently robust and accurate for routine clinical practice. OBJECTIVE To address the lack of a summary of US patents that is valuable for QSM product development and dissemination into the MRI community. METHOD We searched the USPTO Full-Text and Image Database for patents relevant to QSM technology innovation. We analyzed the claims of each patent to characterize the main invented method and we investigated data on clinical utility. RESULTS We identified 17 QSM patents; 13 were implemented clinically, covering various aspects of QSM technology, including the Bayesian framework, background field removal, numerical optimization solver, zero filling, and zero-TE phase. CONCLUSION Our patent search identified patents that enable QSM technology for imaging the brain and other tissues. QSM can be applied to study a wide range of diseases including neurological diseases, liver iron disorders, tissue ischemia, and osteoporosis. MRI manufacturers can develop QSM products for more seamless integration into existing MRI scanners to improve medical care.
Collapse
Affiliation(s)
- Feng Lin
- School of Law, City University of Hong Kong, Hong Kong, China
| | - Martin R Prince
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States.,Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Cao R, Li J, Zhang C, Zuo Z, Hu S. Photoacoustic microscopy of obesity-induced cerebrovascular alterations. Neuroimage 2018; 188:369-379. [PMID: 30553918 DOI: 10.1016/j.neuroimage.2018.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral small vessel disease has been linked to cognitive, psychiatric and physical disabilities, especially in the elderly. However, the underlying pathophysiology remains incompletely understood, largely due to the limited accessibility of these small vessels in the live brain. Here, we report an intravital imaging and analysis platform for high-resolution, quantitative and comprehensive characterization of pathological alterations in the mouse cerebral microvasculature. By exploiting multi-parametric photoacoustic microscopy (PAM), microvascular structure, blood perfusion, oxygenation and flow were imaged in the awake brain. With the aid of vessel segmentation, these structural and functional parameters were extracted at the single-microvessel level, from which vascular density, tortuosity, wall shear stress, resistance and associated cerebral oxygen extraction fraction and metabolism were also quantified. With the use of vasodilatory stimulus, multifaceted cerebrovascular reactivity (CVR) was characterized in vivo. By extending the classic Evans blue assay to in vivo, permeability of the blood-brain barrier (BBB) was dynamically evaluated. The utility of this enabling technique was examined by studying cerebrovascular alterations in an established mouse model of high-fat diet-induced obesity. Our results revealed increased vascular density, reduced arterial flow, enhanced oxygen extraction, impaired BBB integrity, and increased multifaceted CVR in the obese brain. Interestingly, the 'counterintuitive' increase of CVR was supported by the elevated active endothelial nitric oxide synthase in the obese mouse. Providing comprehensive and quantitative insights into cerebral microvessels and their responses under pathological conditions, this technique opens a new door to mechanistic studies of the cerebral small vessel disease and its implications in neurodegeneration and stroke.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, USA
| | - Chenchu Zhang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, USA.
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA.
| |
Collapse
|
27
|
Acosta-Cabronero J, Milovic C, Mattern H, Tejos C, Speck O, Callaghan MF. A robust multi-scale approach to quantitative susceptibility mapping. Neuroimage 2018; 183:7-24. [PMID: 30075277 PMCID: PMC6215336 DOI: 10.1016/j.neuroimage.2018.07.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/29/2018] [Accepted: 07/29/2018] [Indexed: 12/11/2022] Open
Abstract
Quantitative Susceptibility Mapping (QSM), best known as a surrogate for tissue iron content, is becoming a highly relevant MRI contrast for monitoring cellular and vascular status in aging, addiction, traumatic brain injury and, in general, a wide range of neurological disorders. In this study we present a new Bayesian QSM algorithm, named Multi-Scale Dipole Inversion (MSDI), which builds on the nonlinear Morphology-Enabled Dipole Inversion (nMEDI) framework, incorporating three additional features: (i) improved implementation of Laplace's equation to reduce the influence of background fields through variable harmonic filtering and subsequent deconvolution, (ii) improved error control through dynamic phase-reliability compensation across spatial scales, and (iii) scalewise use of the morphological prior. More generally, this new pre-conditioned QSM formalism aims to reduce the impact of dipole-incompatible fields and measurement errors such as flow effects, poor signal-to-noise ratio or other data inconsistencies that can lead to streaking and shadowing artefacts. In terms of performance, MSDI is the first algorithm to rank in the top-10 for all metrics evaluated in the 2016 QSM Reconstruction Challenge. It also demonstrated lower variance than nMEDI and more stable behaviour in scan-rescan reproducibility experiments for different MRI acquisitions at 3 and 7 Tesla. In the present work, we also explored new forms of susceptibility MRI contrast making explicit use of the differential information across spatial scales. Specifically, we show MSDI-derived examples of: (i) enhanced anatomical detail with susceptibility inversions from short-range dipole fields (hereby referred to as High-Pass Susceptibility Mapping or HPSM), (ii) high specificity to venous-blood susceptibilities for highly regularised HPSM (making a case for MSDI-based Venography or VenoMSDI), (iii) improved tissue specificity (and possibly statistical conditioning) for Macroscopic-Vessel Suppressed Susceptibility Mapping (MVSSM), and (iv) high spatial specificity and definition for HPSM-based Susceptibility-Weighted Imaging (HPSM-SWI) and related intensity projections.
Collapse
Affiliation(s)
- Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | - Carlos Milovic
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile; Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute of Experimental Physics, Otto von Guericke University, Magdeburg, Germany
| | - Cristian Tejos
- Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Santiago, Chile; Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Department of Biomedical Magnetic Resonance, Institute of Experimental Physics, Otto von Guericke University, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Yang HCS, Liang Z, Yao JF, Shen X, Frederick BD, Tong Y. Vascular effects of caffeine found in BOLD fMRI. J Neurosci Res 2018; 97:456-466. [PMID: 30488978 DOI: 10.1002/jnr.24360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 11/11/2022]
Abstract
The blood oxygen level-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI) measures neuronal activation indirectly. Previous studies have found aperiodic, systemic low-frequency oscillations (sLFOs, ~0.1 Hz) in BOLD signals from resting state (RS) fMRI, which reflects the non-neuronal cerebral perfusion information. In this study, we investigated the possibility of extracting vascular information from the sLFOs in RS BOLD fMRI, which could provide complementary information to the neuronal activations. Two features of BOLD signals were exploited. First, time delays between the sLFOs of big blood vessels and brain voxels were calculated to determine cerebral circulation times and blood arrival times. Second, voxel-wise standard deviations (SD) of LFOs were calculated to represent the blood densities. We explored those features on the publicly available Myconnectome data set (a 2-year study of an individual subject (Male)), which contains 45 RS scans acquired after the subject had coffee, and 45 coffee-free RS scans, acquired on different days. Our results showed that shorter time delays and smaller SDs were detected in caffeinated scans. This is consistent with the vasoconstriction effects of caffeine, which leads to increased blood flow velocity. We also compared our results with previous findings on neuronal networks from the same data set. Our finding showed that brain regions with the significant vascular effect of caffeine coincide with those with a significant neuronal effect, indicating close interaction. This study provides methods to assess the physiological information from RS fMRI. Together with the neuronal information, we can study simultaneously the underlying correlations and interactions between vascular and neuronal networks, especially in pharmacological studies.
Collapse
Affiliation(s)
- Ho-Ching Shawn Yang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Zhenhu Liang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Jinxia Fiona Yao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Xin Shen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Blaise deB Frederick
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
29
|
Leatherday C, Dehkharghani S, Nahab F, Allen JW, Wu J, Hu R, Qiu D. Cerebral MR oximetry during acetazolamide augmentation: Beyond cerebrovascular reactivity in hemodynamic failure. J Magn Reson Imaging 2018; 50:175-182. [PMID: 30390367 DOI: 10.1002/jmri.26546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxygen extraction fraction (OEF) elevation predicts increased ischemic stroke incidence among patients with carotid steno-occlusive disease, and can be estimated from quantitative susceptibility mapping (QSM) MRI. PURPOSE To explore QSM oximetry during acetazolamide (ACZ) challenge, hypothesizing that detectable OEF alterations will reflect hemodynamic compromise in unilateral cerebrovascular disease (CVD) patients. STUDY TYPE Retrospective. SUBJECTS Fourteen unilateral CVD patients, and 24 healthy controls (HC). FIELD STRENGTH/SEQUENCE Multiecho gradient echo (GRE) and T1 -weighted images at 3T. ASSESSMENT We constructed QSM images and R2* maps from multiecho GRE images. QSM-OEF maps were generated from the susceptibility difference between venous blood and background brain tissue. Intrasubject diseased/contralateral hemisphere OEF ratios in the middle cerebral artery (MCA) territories were calculated. Intravascular susceptibility in the straight sinus (SS) and MCA was also measured. STATISTICAL TESTS The result significance was determined using t-tests and Pearson's correlation. RESULTS Mean and standard deviation for the patient diseased/contralateral OEF ratios were 1.15 ± 0.14 at baseline and 1.23 ± 0.17 post-ACZ. Disease group R2* ratios were 0.95 ± 0.05 at baseline and 1.03 ± 0.08 post-ACZ. Left/right OEF and R2* ratios for the HC group were 0.98 ± 0.06 and 0.99 ± 0.038, respectively. Susceptibility (ppb) in the SS and MCA in patients was 162.63 ± 35.4 and -22.33 ± 13.70, respectively, at baseline, 124.56 ± 37.43 and -19.27 ± 23.14 post-ACZ. The HC group SS and MCA susceptibility was 146.10 ± 24.79 and -19.59 ± 12.37, respectively. Patient group OEF ratios were greater than 1.0 before and after ACZ challenge (P < 0.01 and < 0.001, respectively, one-sample t-test), and were greater than HC ratios (P < 0.001 unpaired t-test). OEF and R2* ratios increased from baseline to post-ACZ (P = 0.024, 0.004, respectively, paired t-test). Detectable blood oxygenation change was confirmed by finding SS susceptibility decreased from baseline to post-ACZ (P < 0.001, paired t-test), while MCA susceptibility did not change significantly (P = 0.67, paired t-test). DATA CONCLUSION These results suggest QSM is sensitive to dynamic OEF modulation during hemodynamic augmentation. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:175-182.
Collapse
Affiliation(s)
| | | | - Fadi Nahab
- Neurology, Emory University, Atlanta, Georgia, USA
| | - Jason W Allen
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA.,Neurology, Emory University, Atlanta, Georgia, USA
| | - Junjie Wu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Ranliang Hu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| | - Deqiang Qiu
- Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
30
|
Susceptibility mapping of the dural sinuses and other superficial veins in the brain. Magn Reson Imaging 2018; 57:19-27. [PMID: 30355528 DOI: 10.1016/j.mri.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022]
Abstract
Quantitative susceptibility mapping (QSM) is a means to obtain direct measurements of local tissue susceptibility distribution. Usually the focus is on imaging tissues in the brain, and the region of the brain studied is dictated by an eroded skull stripped mask. Producing the pristine local phase behavior for regions at the edge of the brain has been difficult in the past. For structures such as the superior sagittal sinus (SSS) that run alongside the surface of the brain and under the skull bones, a considerable part of the external phase from the dipole effect is lost due to the short T2* of the bones. In this paper, we propose a method that seeks to reconstruct the susceptibility distribution inside the dural sinuses by ensuring that the entire geometry of the dural sinuses is preserved with the help of an MR angiogram and venogram (MRAV). Having a geometrical model of the vessels makes it possible to estimate the missing phase outside the brain as well, by using the forward phase model and, hence, allowing a complete phase map to be reconstructed. Fifteen healthy volunteers were scanned using a susceptibility weighted imaging (SWI) sequence with interleaved rephased-dephased echoes. QSM results were compared between the conventional techniques and the proposed method of phase preservation outside the brain and inside the dural sinuses. This method demonstrates the reconstruction of the SSS, whereas conventional methods are either unable to preserve this structure or unable to provide complete phase information. The mean and standard deviation inside the SSS for all volunteers was 435 ± 5 ppb (this is the inter-subject error). To validate the proposed approach, the mean susceptibility inside the straight sinus showed good agreement between conventional approach and the proposed method. The results presented in this study indicate the potential of generating the susceptibility map for the whole brain, including the SSS (as well as potentially all the cortical veins).
Collapse
|
31
|
Hernandez-Garcia L, Nielsen JF, Noll DC. Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL. Magn Reson Med 2018; 81:1004-1015. [PMID: 30187951 DOI: 10.1002/mrm.27461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE This work aims to investigate the utility of velocity selective inversion pulses for perfusion weighted functional MRI. METHODS Tracer kinetic properties of velocity selective inversion (VSI) pulses as an input function for an arterial spin labeling (ASL) experiment were characterized in a group of healthy participants. Numerical simulations were conducted to search for a robust set of timing parameters for FMRI time series acquisition with maximal signal to noise ratio efficiency. The performance of three VSI pulse sequences with different timing parameters was compared with a pseudocontinuous ASL sequence in a simple FMRI experiment conducted on healthy participants. RESULTS The fit to the tracer kinetic model yielded arterial CBV of 1.24% ± 0.52% and 0.45 ± 0.11% and perfusion rates of 60.8 ± 32.3 and 34.4 ± 5.4 mL/min/100 g for gray and white matter, respectively. Bolus arrival times were estimated as 75.7 ± 21 ms and 349 ± 78 ms for gray and white matter, respectively. The FMRI experiments showed that VSI pulses yield comparable sensitivity to PCASL with similar timing parameters (TR = 4 s). However, VSI pulses could be used at a faster acquisition speed (TR = 3 s) and were more sensitive to neuronal activity than PCASL pulses, as evidenced by the 31% higher Z scores obtained on average in the active regions. CONCLUSION VSI pulses can be very beneficial for perfusion weighted functional MRI because of their tracer kinetic characteristics, which allow a faster acquisition rate while maintaining an efficient labeling input function.
Collapse
Affiliation(s)
| | | | - Douglas C Noll
- University of Michigan FMRI Laboratory, Ann Arbor, Michigan
| |
Collapse
|
32
|
Chai C, Liu S, Fan L, Liu L, Li J, Zuo C, Qian T, Haacke EM, Shen W, Xia S. Reduced deep regional cerebral venous oxygen saturation in hemodialysis patients using quantitative susceptibility mapping. Metab Brain Dis 2018; 33:313-323. [PMID: 29249064 DOI: 10.1007/s11011-017-0164-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/29/2017] [Indexed: 01/07/2023]
Abstract
Cerebral venous oxygen saturation (SvO2) is an important indicator of brain function. There was debate about lower cerebral oxygen metabolism in hemodialysis patients and there were no reports about the changes of deep regional cerebral SvO2 in hemodialysis patients. In this study, we aim to explore the deep regional cerebral SvO2 from straight sinus using quantitative susceptibility mapping (QSM) and the correlation with clinical risk factors and neuropsychiatric testing. 52 hemodialysis patients and 54 age-and gender-matched healthy controls were enrolled. QSM reconstructed from original phase data of 3.0 T susceptibility-weighted imaging was used to measure the susceptibility of straight sinus. The susceptibility was used to calculate the deep regional cerebral SvO2 and compare with healthy individuals. Correlation analysis was performed to investigate the correlation between deep regional cerebral SvO2, clinical risk factors and neuropsychiatric testing. The deep regional cerebral SvO2 of hemodialysis patients (72.5 ± 3.7%) was significantly lower than healthy controls (76.0 ± 2.1%) (P < 0.001). There was no significant difference in the measured volume of interests of straight sinus between hemodialysis patients (250.92 ± 46.65) and healthy controls (249.68 ± 49.68) (P = 0.859). There were no significant correlations between the measured susceptibility and volume of interests in hemodialysis patients (P = 0.204) and healthy controls (P = 0.562), respectively. Hematocrit (r = 0.480, P < 0.001, FDR corrected), hemoglobin (r = 0.440, P < 0.001, FDR corrected), red blood cell (r = 0.446, P = 0.003, FDR corrected), dialysis duration (r = 0.505, P = 0.002, FDR corrected) and parathyroid hormone (r = -0.451, P = 0.007, FDR corrected) were risk factors for decreased deep regional cerebral SvO2 in patients. The Mini-Mental State Examination (MMSE) scores of hemodialysis patients were significantly lower than healthy controls (P < 0.001). However, the deep regional cerebral SvO2 did not correlate with MMSE scores (P = 0.630). In summary, the decreased deep regional cerebral SvO2 occurred in hemodialysis patients and dialysis duration, parathyroid hormone, hematocrit, hemoglobin and red blood cell may be clinical risk factors.
Collapse
Affiliation(s)
- Chao Chai
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Saifeng Liu
- The MRI Institute for Biomedical Research, N9A6T2, Waterloo, ON, Canada
| | - Linlin Fan
- Department of Prophylactic Inoculation and Statistics, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Lei Liu
- School of Graduates, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jinping Li
- Department of Hemodialysis, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Chao Zuo
- School of Graduates, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Tianyi Qian
- MR Collaboration, Siemens Healthcare, Northeast Asia, Beijing, 100102, China
| | - E Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, 48202, USA
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Shuang Xia
- Department of Radiology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
33
|
Decreased susceptibility of major veins in mild traumatic brain injury is correlated with post-concussive symptoms: A quantitative susceptibility mapping study. NEUROIMAGE-CLINICAL 2017; 15:625-632. [PMID: 28664033 PMCID: PMC5479969 DOI: 10.1016/j.nicl.2017.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/04/2017] [Accepted: 06/07/2017] [Indexed: 01/28/2023]
Abstract
Cerebral venous oxygen saturation (SvO2) is an important biomarker of brain function. In this study, we aimed to explore the relative changes of regional cerebral SvO2 among axonal injury (AI) patients, non-AI patients and healthy controls (HCs) using quantitative susceptibility mapping (QSM). 48 patients and 32 HCs were enrolled. The patients were divided into two groups depending on the imaging based evidence of AI. QSM was used to measure the susceptibility of major cerebral veins. Nonparametric testing was performed for susceptibility differences among the non-AI patient group, AI patient group and healthy control group. Correlation was performed between the susceptibility of major cerebral veins, elapsed time post trauma (ETPT) and post-concussive symptom scores. The ROC analysis was performed for the diagnostic efficiency of susceptibility to discriminate mTBI patients from HCs. The susceptibility of the straight sinus in non-AI and AI patients was significantly lower than that in HCs (P < 0.001, P = 0.004, respectively, Bonferroni corrected), which may indicate an increased regional cerebral SvO2 in patients. The susceptibility of the straight sinus in non-AI patients positively correlated with ETPT (r = 0.573, P = 0.003, FDR corrected) while that in AI patients negatively correlated with the Rivermead Post Concussion Symptoms Questionnaire scores (r = − 0.582, P = 0.018, FDR corrected). The sensitivity, specificity and AUC values of susceptibility for the discrimination between mTBI patients and HCs were 88%, 69% and 0.84. In conclusion, the susceptibility of the straight sinus can be used as a biomarker to monitor the progress of mild TBI and to differentiate mTBI patients from healthy controls. Mild traumatic brain injury caused decreased venous susceptibility. The venous susceptibility can discriminate mTBI patients from healthy controls. Decreased susceptibility may indicate increased venous oxygen saturation (SvO2). Increased SvO2 of patients without axonal injury decreased with time post-injury. Increased SvO2 of axonal injury patients indicated severe post-concussive symptoms.
Collapse
|