1
|
de Riedmatten I, Spencer APC, Olszowy W, Jelescu IO. Apparent Diffusion Coefficient fMRI shines light on white matter resting-state connectivity compared to BOLD. Commun Biol 2025; 8:447. [PMID: 40091123 PMCID: PMC11911413 DOI: 10.1038/s42003-025-07889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) is used to derive functional connectivity (FC) between brain regions. Typically, blood oxygen level-dependent (BOLD) contrast is used. However, BOLD's reliance on neurovascular coupling poses challenges in reflecting brain activity accurately, leading to reduced sensitivity in white matter (WM). WM BOLD signals have long been considered physiological noise, although recent evidence shows that both stimulus-evoked and resting-state WM BOLD signals resemble those in gray matter (GM), albeit smaller in amplitude. We introduce apparent diffusion coefficient fMRI (ADC-fMRI) as a promising functional contrast for GM and WM FC, capturing activity-driven neuromorphological fluctuations. Our study compares BOLD-fMRI and ADC-fMRI FC in GM and WM, showing that ADC-fMRI mirrors BOLD-fMRI connectivity in GM, while capturing more robust FC in WM. ADC-fMRI displays higher average clustering and average node strength in WM, and higher inter-subject similarity, compared to BOLD. Taken together, this suggests that ADC-fMRI is a reliable tool for exploring FC that incorporates gray and white matter nodes in a novel way.
Collapse
Affiliation(s)
- Inès de Riedmatten
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
- School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Arthur P C Spencer
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Wiktor Olszowy
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Data Science Unit, Science and Research, dsm-firmenich AG, Kaiseraugst, Switzerland
| | - Ileana O Jelescu
- Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Calvo‐Imirizaldu M, Solis‐Barquero S, Aramendía‐Vidaurreta V, García de Eulate R, Domínguez P, Vidorreta M, Echeveste J, Argueta A, Cacho‐Asenjo E, Martinez‐Simon A, Bejarano B, Fernández‐Seara M. Cerebrovascular Reactivity Mapping in Brain Tumors Based on a Breath-Hold Task Using Arterial Spin Labeling. NMR IN BIOMEDICINE 2025; 38:e5317. [PMID: 39844376 PMCID: PMC11754703 DOI: 10.1002/nbm.5317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Hemodynamic measurements such as cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) can provide useful information for the diagnosis and characterization of brain tumors. Previous work showed that arterial spin labeling (ASL) in combination with vasoactive stimulation enabled simultaneous non-invasive evaluation of both parameters, however this approach had not been previously tested in tumors. The aim of this work was to investigate the application of this technique, using a pseudo-continuous ASL (PCASL) sequence combined with breath-holding at 3 T, to measure CBF and CVR in high-grade gliomas and metastatic lesions, and to explore differences across tumoral-peritumoral regions and tumor types. To that end, 27 patients with brain tumor were studied. Baseline CBF and CVR were measured in tumor, edema, and gray matter (GM) volumes-of-interest (VOIs). Peritumoral ipsilateral ring-shaped VOIs were also generated and mirrored to the contralateral hemisphere. Differences in baseline CBF and CVR were evaluated between contralateral and ipsilateral GM, contralateral and ipsilateral peritumoral rings, and among VOIs and tumor types. CBF in the tumor was higher in grade 4 gliomas than metastases. In grade 4 gliomas, edema had lower CBF than the tumor and contralateral GM. CVR values were different between grade 3 and grade 4 gliomas, and between grade 4 and metastases. CVR values in the tumor were lower compared to the contralateral GM. Differences in CVR between contralateral and ipsilateral-ring VOIs were also found in grade 4 gliomas, presumably suggesting tumor infiltration within the peritumoral tissue. A cut-off value for CVR of 27.9%-signal-change is suggested to differentiate between grade 3 and grade 4 gliomas (specificity = 83.3%, sensitivity = 70.6%). In conclusion, CBF and CVR mapping with ASL offered insights into the perilesional environment that could help to detect infiltrative disease, particularly in grade 4 gliomas. CVR emerged as a potential biomarker to differentiate between grade 3 and grade 4 gliomas.
Collapse
Affiliation(s)
| | - Sergio M. Solis‐Barquero
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Verónica Aramendía‐Vidaurreta
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Reyes García de Eulate
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | - Pablo Domínguez
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| | | | | | - Allan Argueta
- Department of PathologyClínica Universidad de NavarraPamplonaSpain
| | - Elena Cacho‐Asenjo
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Department of Anesthesia and Intensive CareClínica Universidad de NavarraPamplonaSpain
| | - Antonio Martinez‐Simon
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
- Department of Anesthesia and Intensive CareClínica Universidad de NavarraPamplonaSpain
| | | | - María A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- Navarra Institute for Health Research (IdiSNA)PamplonaSpain
| |
Collapse
|
3
|
Das S, Senarathna J, Ren Y, Dinh V, Ying M, Etienne-Cummings R, Pathak AP. BLEscope: A Bluetooth Low Energy (BLE) Microscope for Wireless Multicontrast Functional Imaging. IEEE Trans Biomed Eng 2025; 72:675-688. [PMID: 39316484 PMCID: PMC11881513 DOI: 10.1109/tbme.2024.3467221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Recent advances in low-power wireless-capable system-on-chips (SoCs) have accelerated diverse Internet of Things (IoT) applications, encompassing wearables, asset monitoring, and more. Concurrently, the field of neuroimaging has experienced escalating demand for lightweight, untethered, low-power systems capable of imaging in small animals. This article explores the feasibility of using a low-power asset monitoring system as the basis of a new architecture for fluorescence and hemodynamic contrast-based wireless functional imaging. The core system architecture hinges on the fusion of a Bluetooth Low Energy (BLE) 5.2 SoC and a low-power 560 × 560, 8-bit monochrome CMOS image sensor module. Successful integration of a multicontrast optical front-end consisting of a fluorescence channel (FL) and an intrinsic optical signal (IOS) channel resulted in the creation of a wireless microscope called 'BLEscope'. Next, we developed a wireless (i.e., BLE) protocol to remotely operate the BLEscope via a laptop and acquire in vivo images at 1 frame per second (fps). We then conducted a comprehensive characterization of the BLEscope to assess its optical capabilities and power consumption. We report a new benchmark for continuous wireless imaging of ∼1.5 hours with a 100 mAh battery. Via the FL channel of the BLEscope, we successfully tracked the kinetics of an intravenously injected fluorescent tracer and acquired images of fluorescent brain tumor cells in vivo. Via the IOS channel, we characterized the differential response of normal and tumor-associated blood vessels to a carbogen gas inhalation challenge. When miniaturized, the BLEscope will result in a new class of low-power, implantable or wireless microscopes that could transform preclinical and clinical neuroimaging applications.
Collapse
|
4
|
Solomons D, Rodriguez-Fernandez M, Mery-Muñoz F, Arraño-Carrasco L, Costabal FS, Mendez-Orellana C. Assessing Language Lateralization through Gray Matter Volume: Implications for Preoperative Planning in Brain Tumor Surgery. Brain Sci 2024; 14:954. [PMID: 39451969 PMCID: PMC11506207 DOI: 10.3390/brainsci14100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Functional MRI (fMRI) is widely used to assess language lateralization, but its application in patients with brain tumors can be hindered by cognitive impairments, compensatory neuroplasticity, and artifacts due to patient movement or severe aphasia. Gray matter volume (GMV) analysis via voxel-based morphometry (VBM) in language-related brain regions may offer a stable complementary approach. This study investigates the relationship between GMV and fMRI-derived language lateralization in healthy individuals and patients with left-hemisphere brain tumors, aiming to enhance accuracy in complex cases. METHODS The MRI data from 22 healthy participants and 28 individuals with left-hemisphere brain tumors were analyzed. Structural T1-weighted and functional images were obtained during three language tasks. Language lateralization was assessed based on activation in predefined regions of interest (ROIs), categorized as typical (left) or atypical (right or bilateral). The GMV in these ROIs was measured using VBM. Linear regressions explored GMV-lateralization associations, and logistic regressions predicted the lateralization based on the GMV. RESULTS In the healthy participants, typical left-hemispheric language dominance correlated with higher GMV in the left pars opercularis of the inferior frontal gyrus. The brain tumor participants with atypical lateralization showed increased GMV in six right-hemisphere ROIs. The GMV in the language ROIs predicted the fMRI language lateralization, with AUCs from 80.1% to 94.2% in the healthy participants and 78.3% to 92.6% in the tumor patients. CONCLUSIONS GMV analysis in language-related ROIs effectively complements fMRI for assessing language dominance, particularly when fMRI is challenging. It correlates with language lateralization in both healthy individuals and brain tumor patients, highlighting its potential in preoperative language mapping. Further research with larger samples is needed to refine its clinical utility.
Collapse
Affiliation(s)
- Daniel Solomons
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.S.); (M.R.-F.); (F.S.C.)
- Millennium Institute for Intelligent Healthcare Engineering—iHEALTH, Santiago 7820436, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.S.); (M.R.-F.); (F.S.C.)
- Millennium Institute for Intelligent Healthcare Engineering—iHEALTH, Santiago 7820436, Chile
| | - Francisco Mery-Muñoz
- Department of Neurosurgery, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Leonardo Arraño-Carrasco
- Department of Radiology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Francisco Sahli Costabal
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (D.S.); (M.R.-F.); (F.S.C.)
- Millennium Institute for Intelligent Healthcare Engineering—iHEALTH, Santiago 7820436, Chile
- Department of Mechanical and Metallurgical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Carolina Mendez-Orellana
- Speech and Language Pathology Department, Health Sciences School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
5
|
Abuelrub A, Paker B, Kilic T, Avsar T. Claudin and transmembrane receptor protein gene expressions are reversely correlated in peritumoral brain edema. Cancer Med 2024; 13:e70111. [PMID: 39189437 PMCID: PMC11347986 DOI: 10.1002/cam4.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
INTRODUCTION Peritumoral brain edema (PTBE) has been widely reported with many brain tumors, especially with glioma. Since the blood-brain barrier (BBB) is essential for maintaining minimal permeability, any alteration in the interaction of BBB components, specifically in astrocytes and tight junctions (TJ), can result in disrupting the homeostasis of the BBB and making it severely leaky, which subsequently generates edema. OBJECTIVE This study aimed to evaluate the functional gliovascular unit of the BBB by examining changes in the expression of claudin (CLDN) genes and the expression of transient receptor potential (TRP) membrane channels, additionally to define the correlation between their expressions. The evaluation was conducted using in vitro spheroid swelling models and tumor samples from glioma patients with PTBE. RESULTS The results of the spheroid model showed that the genes TRPC3, TRPC4, TRPC5, and TRPV1 were upregulated in glioma cells either wild-type isocitrate dehydrogenase 1 (IDH1) or the IDH1 R132H mutant, with or without NaCl treatment. Furthermore, TRP genes appeared to adversely correlate with the up regulation of CLDN1, CLDN3, and CLDN5 genes. Besides, the upregulation of TRPC1 and TRPC4 in IDH1mt-R132H glioma cells. On the other hand, the correlation analysis revealed different correlations between different proteins in PTBE. CLDN1 exhibits a slight positive correlation with CLDN3. Similarly, TRPV1 displays a slight positive correlation with TRPC1. In contrast, TRPC4 shows a slight negative correlation with TRPC5. On the other hand, TRPC3 demonstrates a slight positive correlation with TRPC5, while the non-PTBE analysis highlights a moderate positive correlation between CLDN1 and TRPM4 while CLDN3 exhibits a moderate negative correlation with TRPC4. Additionally, CLDN5 demonstrates a slight negative correlation with TRPC4 but a moderate positive correlation with TRPC3. Furthermore, TRPC1 have a slight negative correlation with TRPV1, TRPC3 exhibiting a slight positive correlation with TRPC4, and TRPV1 showing a slight negative correlation with TRPC5. CONCLUSION As a conclusion, the current study provided evidence of a slight negative correlation between TRPs and CLDN gene expression in PTBE patients and confirmatory results with some of the genes in cell model of edema.
Collapse
Affiliation(s)
- Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
| | - Berkay Paker
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
- Department of NeurosurgeryBahcesehir University School of MedicineIstanbulTurkey
| | - Turker Kilic
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
- Department of NeurosurgeryBahcesehir University School of MedicineIstanbulTurkey
| | - Timucin Avsar
- Neuroscience Laboratory, Health Sciences InstituteBahcesehir UniversityIstanbulTurkey
- Department of Medical BiologyBahcesehir University School of MedicineIstanbulTurkey
| |
Collapse
|
6
|
Coolen T, Mihai Dumitrescu A, Wens V, Bourguignon M, Rovai A, Sadeghi N, Urbain C, Goldman S, De Tiège X. Spectrotemporal cortical dynamics and semantic control during sentence completion. Clin Neurophysiol 2024; 163:90-101. [PMID: 38714152 DOI: 10.1016/j.clinph.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE To investigate cortical oscillations during a sentence completion task (SC) using magnetoencephalography (MEG), focusing on the semantic control network (SCN), its leftward asymmetry, and the effects of semantic control load. METHODS Twenty right-handed adults underwent MEG while performing SC, consisting of low cloze (LC: multiple responses) and high cloze (HC: single response) stimuli. Spectrotemporal power modulations as event-related synchronizations (ERS) and desynchronizations (ERD) were analyzed: first, at the whole-brain level; second, in key SCN regions, posterior middle/inferior temporal gyri (pMTG/ITG) and inferior frontal gyri (IFG), under different semantic control loads. RESULTS Three cortical response patterns emerged: early (0-200 ms) theta-band occipital ERS; intermediate (200-700 ms) semantic network alpha/beta-band ERD; late (700-3000 ms) dorsal language stream alpha/beta/gamma-band ERD. Under high semantic control load (LC), pMTG/ITG showed prolonged left-sided engagement (ERD) and right-sided inhibition (ERS). Left IFG exhibited heightened late (2500-2550 ms) beta-band ERD with increased semantic control load (LC vs. HC). CONCLUSIONS SC involves distinct cortical responses and depends on the left IFG and asymmetric engagement of the pMTG/ITG for semantic control. SIGNIFICANCE Future use of SC in neuromagnetic preoperative language mapping and for understanding the pathophysiology of language disorders in neurological conditions.
Collapse
Affiliation(s)
- Tim Coolen
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Radiology, Brussels, Belgium.
| | - Alexandru Mihai Dumitrescu
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Vincent Wens
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Mathieu Bourguignon
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratory of Neurophysiology and Movement Biomechanics, Brussels, Belgium
| | - Antonin Rovai
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Niloufar Sadeghi
- Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Department of Radiology, Brussels, Belgium
| | - Charline Urbain
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium; Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Centre for Research in Cognition and Neurosciences (CRCN), Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Brussels, Belgium
| | - Serge Goldman
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| | - Xavier De Tiège
- Université Libre de Bruxelles (ULB), ULB Neuroscience Institute (UNI), Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium
| |
Collapse
|
7
|
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp 2024; 8:73. [PMID: 38945979 PMCID: PMC11214939 DOI: 10.1186/s41747-024-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healtcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
8
|
Chabert S, Salas R, Cantor E, Veloz A, Cancino A, González M, Torres F, Bennett C. Hemodynamic response function description in patients with glioma. J Neuroradiol 2024; 51:101156. [PMID: 37805126 DOI: 10.1016/j.neurad.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Functional magnetic resonance imaging is a powerful tool that has provided many insights into cognitive sciences. Yet, as its analysis is mostly based on the knowledge of an a priori canonical hemodynamic response function (HRF), its reliability in patients' applications has been questioned. There have been reports of neurovascular uncoupling in patients with glioma, but no specific description of the Hemodynamic Response Function (HRF) in glioma has been reported so far. The aim of this work is to describe the HRF in patients with glioma. METHODS Forty patients were included. MR images were acquired on a 1.5T scanner. Activated clusters were identified using a fuzzy general linear model; HRFs were adjusted with a double-gamma function. Analyses were undertaken considering the tumor grade, age, sex, tumor location, and activated location. RESULTS Differences are found in the occipital, limbic, insular, and sub-lobar areas, but not in the frontal, temporal, and parietal lobes. The presence of a glioma slows the time-to-peak and onset times by 5.2 and 3.8 % respectively; high-grade gliomas present 8.1 % smaller HRF widths than low-grade gliomas. DISCUSSION AND CONCLUSION There is significant HRF variation due to the presence of glioma, but the magnitudes of the observed differences are small. Most processing pipelines should be robust enough for this magnitude of variation and little if any impact should be visible on functional maps. The differences that have been observed in the literature between functional mapping obtained with magnetic resonance vs. that obtained with direct electrostimulation during awake surgery are more probably due to the intrinsic difference in the mapping process: fMRI mapping detects all recruited areas while intra-surgical mapping indicates only the areas indispensable for the realization of a certain task. Surgical mapping might not be the gold standard to use when trying to validate the fMRI mapping process.
Collapse
Affiliation(s)
- Stéren Chabert
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile; Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile.
| | - Rodrigo Salas
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile; Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile
| | - Erika Cantor
- Institute of Statistics, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Veloz
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile
| | - Astrid Cancino
- Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile; Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaiso, Valparaiso, Chile
| | - Matías González
- Neurosurgery Department, Hospital Carlos van Buren, Valparaiso, Chile
| | - Francisco Torres
- Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile; Radiology Department, Hospital Carlos van Buren, Valparaiso, Chile
| | - Carlos Bennett
- Neurosurgery Department, Hospital Carlos van Buren, Valparaiso, Chile
| |
Collapse
|
9
|
Boccuni L, Roca-Ventura A, Buloz-Osorio E, Leno-Colorado D, Martín-Fernández J, Cabello-Toscano M, Perellón-Alfonso R, Pariente Zorrilla JC, Laredo C, Garrido C, Muñoz-Moreno E, Bargalló N, Villalba G, Martínez-Ricarte F, Trompetto C, Marinelli L, Sacchet MD, Bartrés-Faz D, Abellaneda-Pérez K, Pascual-Leone A, Tormos Muñoz JM. Exploring the neural basis of non-invasive prehabilitation in brain tumour patients: An fMRI-based case report of language network plasticity. Front Oncol 2024; 14:1390542. [PMID: 38826790 PMCID: PMC11140081 DOI: 10.3389/fonc.2024.1390542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Primary brain neoplasms are associated with elevated mortality and morbidity rates. Brain tumour surgery aims to achieve maximal tumour resection while minimizing damage to healthy brain tissue. Research on Neuromodulation Induced Cortical Prehabilitation (NICP) has highlighted the potential, before neurosurgery, of establishing new brain connections and transfer functional activity from one area of the brain to another. Nonetheless, the neural mechanisms underlying these processes, particularly in the context of space-occupying lesions, remain unclear. A patient with a left frontotemporoinsular tumour underwent a prehabilitation protocol providing 20 sessions of inhibitory non-invasive neuromodulation (rTMS and multichannel tDCS) over a language network coupled with intensive task training. Prehabilitation resulted in an increment of the distance between the tumour and the language network. Furthermore, enhanced functional connectivity within the language circuit was observed. The present innovative case-study exposed that inhibition of the functional network area surrounding the space-occupying lesion promotes a plastic change in the network's spatial organization, presumably through the establishment of novel functional pathways away from the lesion's site. While these outcomes are promising, prudence dictates the need for larger studies to confirm and generalize these findings.
Collapse
Affiliation(s)
- Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Department of Conegliano, Scientific Institute IRCCS E. Medea, Treviso, Italy
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Edgar Buloz-Osorio
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - David Leno-Colorado
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jesús Martín-Fernández
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier, France
- Department of Neurosurgery, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose Carlos Pariente Zorrilla
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Carlos Laredo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Cesar Garrido
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Emma Muñoz-Moreno
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Nuria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gloria Villalba
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain
| | | | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Alvaro Pascual-Leone
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Centre for Memory Health, Hebrew Senior Life, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Josep María Tormos Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Barcelona, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
10
|
Zaidi M, Ma J, Thomas BP, Peña S, Harrison CE, Chen J, Lin SH, Derner KA, Baxter JD, Liticker J, Malloy CR, Bartnik-Olson B, Park JM. Functional activation of pyruvate dehydrogenase in human brain using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2024; 91:1822-1833. [PMID: 38265104 PMCID: PMC10950523 DOI: 10.1002/mrm.30015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Pyruvate, produced from either glucose, glycogen, or lactate, is the dominant precursor of cerebral oxidative metabolism. Pyruvate dehydrogenase (PDH) flux is a direct measure of cerebral mitochondrial function and metabolism. Detection of [13 C]bicarbonate in the brain from hyperpolarized [1-13 C]pyruvate using carbon-13 (13 C) MRI provides a unique opportunity for assessing PDH flux in vivo. This study is to assess changes in cerebral PDH flux in response to visual stimuli using in vivo 13 C MRS with hyperpolarized [1-13 C]pyruvate. METHODS From seven sedentary adults in good general health, time-resolved [13 C]bicarbonate production was measured in the brain using 90° flip angles with minimal perturbation of its precursors, [1-13 C]pyruvate and [1-13 C]lactate, to test the hypothesis that the appearance of [13 C]bicarbonate signals in the brain reflects the metabolic changes associated with neuronal activation. With a separate group of healthy participants (n = 3), the likelihood of the bolus-injected [1-13 C]pyruvate being converted to [1-13 C]lactate prior to decarboxylation was investigated by measuring [13 C]bicarbonate production with and without [1-13 C]lactate saturation. RESULTS In the course of visual stimulation, the measured [13 C]bicarbonate signal normalized to the total 13 C signal in the visual cortex increased by 17.1% ± 15.9% (p = 0.017), whereas no significant change was detected in [1-13 C]lactate. Proton BOLD fMRI confirmed the regional activation in the visual cortex with the stimuli. Lactate saturation decreased bicarbonate-to-pyruvate ratio by 44.4% ± 9.3% (p < 0.01). CONCLUSION We demonstrated the utility of 13 C MRS with hyperpolarized [1-13 C]pyruvate for assessing the activation of cerebral PDH flux via the detection of [13 C]bicarbonate production.
Collapse
Affiliation(s)
- Maheen Zaidi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Junjie Ma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- GE Precision Healthcare, Jersey City, New Jersey, USA 07302
| | - Binu P. Thomas
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Salvador Peña
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Crystal E. Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Sung-Han Lin
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Kelley A. Derner
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeannie D. Baxter
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Craig R. Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University, Loma Linda, California, USA 92354
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| |
Collapse
|
11
|
Mandal AS, Wiener C, Assem M, Romero-Garcia R, Coelho P, McDonald A, Woodberry E, Morris RC, Price SJ, Duncan J, Santarius T, Suckling J, Hart MG, Erez Y. Tumour-infiltrated cortex participates in large-scale cognitive circuits. Cortex 2024; 173:1-15. [PMID: 38354669 PMCID: PMC10988771 DOI: 10.1016/j.cortex.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.
Collapse
Affiliation(s)
- Ayan S Mandal
- Brain-Gene Development Lab, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, USA; Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK.
| | - Chemda Wiener
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel
| | - Moataz Assem
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Rafael Romero-Garcia
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
| | | | - Alexa McDonald
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Emma Woodberry
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Robert C Morris
- Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, UK
| | - Stephen J Price
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, UK
| | - John Duncan
- Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, UK; Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, UK
| | - Michael G Hart
- St George's, University of London & St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Neurosciences Research Centre, Cranmer Terrace, London, UK
| | - Yaara Erez
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan, Israel; Medical Research Council, Cognition and Brain Sciences Unit, University of Cambridge, UK; Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
12
|
Kung YC, Li CW, Hsu AL, Liu CY, Wu CW, Chang WC, Lin CP. Neurovascular coupling in eye-open-eye-close task and resting state: Spectral correspondence between concurrent EEG and fMRI. Neuroimage 2024; 289:120535. [PMID: 38342188 DOI: 10.1016/j.neuroimage.2024.120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Neurovascular coupling serves as an essential neurophysiological mechanism in functional neuroimaging, which is generally presumed to be robust and invariant across different physiological states, encompassing both task engagement and resting state. Nevertheless, emerging evidence suggests that neurovascular coupling may exhibit state dependency, even in normal human participants. To investigate this premise, we analyzed the cross-frequency spectral correspondence between concurrently recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data, utilizing them as proxies for neurovascular coupling during the two conditions: an eye-open-eye-close (EOEC) task and a resting state. We hypothesized that given the state dependency of neurovascular coupling, EEG-fMRI spectral correspondences would change between the two conditions in the visual system. During the EOEC task, we observed a negative phase-amplitude-coupling (PAC) between EEG alpha-band and fMRI visual activity. Conversely, in the resting state, a pronounced amplitude-amplitude-coupling (AAC) emerged between EEG and fMRI signals, as evidenced by the spectral correspondence between the EEG gamma-band of the midline occipital channel (Oz) and the high-frequency fMRI signals (0.15-0.25 Hz) in the visual network. This study reveals distinct scenarios of EEG-fMRI spectral correspondence in healthy participants, corroborating the state-dependent nature of neurovascular coupling.
Collapse
Affiliation(s)
- Yi-Chia Kung
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ai-Ling Hsu
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Yun Liu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan; Research Center of Sleep Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
13
|
Su L, Zhu K, Ge X, Wu Y, Zhang J, Wang G, Liu D, Chen L, Li Q, Chen J, Song J. X-ray Activated Nanoprodrug for Visualization of Cortical Microvascular Alterations and NIR-II Image-Guided Chemo-Radiotherapy of Glioblastoma. NANO LETTERS 2024; 24:3727-3736. [PMID: 38498766 DOI: 10.1021/acs.nanolett.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The permeability of the highly selective blood-brain barrier (BBB) to anticancer drugs and the difficulties in defining deep tumor boundaries often reduce the effectiveness of glioma treatment. Thus, exploring the combination of multiple treatment modalities under the guidance of second-generation near-infrared (NIR-II) window fluorescence (FL) imaging is considered a strategic approach in glioma theranostics. Herein, a hybrid X-ray-activated nanoprodrug was developed to precisely visualize the structural features of glioma microvasculature and delineate the boundary of glioma for synergistic chemo-radiotherapy. The nanoprodrug comprised down-converted nanoparticle (DCNP) coated with X-ray sensitive poly(Se-Se/DOX-co-acrylic acid) and targeted Angiopep-2 peptide (DCNP@P(Se-DOX)@ANG). Because of its ultrasmall size and the presence of DOX, the nanoprodrug could easily cross BBB to precisely monitor and localize glioblastoma via intracranial NIR-II FL imaging and synergistically administer antiglioblastoma chemo-radiotherapy through specific X-ray-induced DOX release and radiosensitization. This study provides a novel and effective strategy for glioblastoma imaging and chemo-radiotherapy.
Collapse
Affiliation(s)
- Lichao Su
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Xiaoguang Ge
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| | - Jieping Zhang
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Guoyu Wang
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Daojia Liu
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Ling Chen
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Qingqing Li
- College of Chemical Engineering and College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Junqiang Chen
- Department of Radiation Oncology, Department of Nuclear Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou 350014, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China
| |
Collapse
|
14
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
15
|
Agarwal S, Welker KM, Black DF, Little JT, DeLone DR, Messina SA, Passe TJ, Bettegowda C, Pillai JJ. Detection and Mitigation of Neurovascular Uncoupling in Brain Gliomas. Cancers (Basel) 2023; 15:4473. [PMID: 37760443 PMCID: PMC10527022 DOI: 10.3390/cancers15184473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) technique is useful for preoperative mapping of brain functional networks in tumor patients, providing reliable in vivo detection of eloquent cortex to help reduce the risk of postsurgical morbidity. BOLD task-based fMRI (tb-fMRI) is the most often used noninvasive method that can reliably map cortical networks, including those associated with sensorimotor, language, and visual functions. BOLD resting-state fMRI (rs-fMRI) is emerging as a promising ancillary tool for visualization of diverse functional networks. Although fMRI is a powerful tool that can be used as an adjunct for brain tumor surgery planning, it has some constraints that should be taken into consideration for proper clinical interpretation. BOLD fMRI interpretation may be limited by neurovascular uncoupling (NVU) induced by brain tumors. Cerebrovascular reactivity (CVR) mapping obtained using breath-hold methods is an effective method for evaluating NVU potential.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Kirk M. Welker
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David F. Black
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Jason T. Little
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - David R. DeLone
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Steven A. Messina
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Theodore J. Passe
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Jay J. Pillai
- Division of Neuroradiology, Department of Radiology, Mayo Clinic Rochester & Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (K.M.W.); (D.F.B.); (J.T.L.); (D.R.D.); (S.A.M.); (T.J.P.)
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| |
Collapse
|
16
|
Pasquini L, Yildirim O, Silveira P, Tamer C, Napolitano A, Lucignani M, Jenabi M, Peck KK, Holodny A. Effect of tumor genetics, pathology, and location on fMRI of language reorganization in brain tumor patients. Eur Radiol 2023; 33:6069-6078. [PMID: 37074422 PMCID: PMC10415458 DOI: 10.1007/s00330-023-09610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVES Language reorganization may follow tumor invasion of the dominant hemisphere. Tumor location, grade, and genetics influence the communication between eloquent areas and tumor growth dynamics, which are drivers of language plasticity. We evaluated tumor-induced language reorganization studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness). METHODS The study was retrospective cross-sectional. We included patients with left-hemispheric tumors (study group) and right-hemispheric tumors (controls). We calculated five fMRI laterality indexes (LI): hemispheric, temporal lobe, frontal lobe, Broca's area (BA), Wernicke's area (WA). We defined LI ≥ 0.2 as left-lateralized (LL) and LI < 0.2 as atypical lateralized (AL). Chi-square test (p < 0.05) was employed to identify the relationship between LI and tumor/patient variables in the study group. For those variables having significant results, confounding factors were evaluated in a multinomial logistic regression model. RESULTS We included 405 patients (235 M, mean age: 51 years old) and 49 controls (36 M, mean age: 51 years old). Contralateral language reorganization was more common in patients than controls. The statistical analysis demonstrated significant association between BA LI and patient sex (p = 0.005); frontal LI, BA LI, and tumor location in BA (p < 0.001); hemispheric LI and fibroblast growth factor receptor (FGFR) mutation (p = 0.019); WA LI and O6-methylguanine-DNA methyltransferase promoter (MGMT) methylation in high-grade gliomas (p = 0.016). CONCLUSIONS Tumor genetics, pathology, and location influence language laterality, possibly due to cortical plasticity. Increased fMRI activation in the right hemisphere was seen in patients with tumors in the frontal lobe, BA and WA, FGFR mutation, and MGMT promoter methylation. KEY POINTS • Patients harboring left-hemispheric tumors present with contralateral translocation of language function. Influential variables for this phenomenon included frontal tumor location, BA location, WA location, sex, MGMT promoter methylation, and FGFR mutation. • Tumor location, grade, and genetics may influence language plasticity, thereby affecting both communication between eloquent areas and tumor growth dynamics. • In this retrospective cross-sectional study, we evaluated language reorganization in 405 brain tumor patients by studying the relationship of fMRI language laterality to tumor-related variables (grade, genetics, location), and patient-related variables (age, sex, handedness).
Collapse
Affiliation(s)
- Luca Pasquini
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- NESMOS Department, Neuroradiology Unit, Sant'Andrea Hospital, La Sapienza University, 00189, Rome, Italy.
| | - Onur Yildirim
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Silveira
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Christel Tamer
- Diagnostic Radiology Department, American University of Beirut Medical Center, Beirut, 1107 2020, Lebanon
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Mehrnaz Jenabi
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kyung K Peck
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, Weill Cornell Graduate School of the Medical Sciences, New York, NY, 10065, USA
| |
Collapse
|
17
|
Pasquini L, Peck KK, Jenabi M, Holodny A. Functional MRI in Neuro-Oncology: State of the Art and Future Directions. Radiology 2023; 308:e222028. [PMID: 37668519 PMCID: PMC10546288 DOI: 10.1148/radiol.222028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 09/06/2023]
Abstract
Since its discovery in the early 1990s, functional MRI (fMRI) has been used to study human brain function. One well-established application of fMRI in the clinical setting is the neurosurgical planning of patients with brain tumors near eloquent cortical areas. Clinical fMRI aims to preoperatively identify eloquent cortices that serve essential functions in daily life, such as hand movement and language. The primary goal of neurosurgery is to maximize tumor resection while sparing eloquent cortices adjacent to the tumor. When a lesion presents in the vicinity of an eloquent cortex, surgeons may use fMRI to plan their best surgical approach by determining the proximity of the lesion to regions of activation, providing guidance for awake brain surgery and intraoperative brain mapping. The acquisition of fMRI requires patient preparation prior to imaging, determination of functional paradigms, monitoring of patient performance, and both processing and analysis of images. Interpretation of fMRI maps requires a strong understanding of functional neuroanatomy and familiarity with the technical limitations frequently present in brain tumor imaging, including neurovascular uncoupling, patient compliance, and data analysis. This review discusses clinical fMRI in neuro-oncology, relevant ongoing research topics, and prospective future developments in this exciting discipline.
Collapse
Affiliation(s)
- Luca Pasquini
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Kyung K. Peck
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Mehrnaz Jenabi
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| | - Andrei Holodny
- From the Neuroradiology Service, Department of Radiology (L.P.,
K.K.P., M.J., A.H.), Department of Medical Physics (K.K.P.), and Brain Tumor
Center (A.H.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York,
NY 10065; Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital,
La Sapienza University, Rome, Italy (L.P.); Department of Radiology, Weill
Medical College of Cornell University, New York, NY (A.H.); and Department of
Neuroscience, Weill Cornell Medicine Graduate School of Medical Sciences, New
York, NY (A.H.)
| |
Collapse
|
18
|
Lawrence A, Carvajal M, Ormsby J. Beyond Broca's and Wernicke's: Functional Mapping of Ancillary Language Centers Prior to Brain Tumor Surgery. Tomography 2023; 9:1254-1275. [PMID: 37489468 PMCID: PMC10366753 DOI: 10.3390/tomography9040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Functional MRI is a well-established tool used for pre-surgical planning to help the neurosurgeon have a roadmap of critical functional areas that should be avoided, if possible, during surgery to minimize morbidity for patients with brain tumors (though this also has applications for surgical resection of epileptogenic tissue and vascular lesions). This article reviews the locations of secondary language centers within the brain along with imaging findings to help improve our confidence in our knowledge on language lateralization. Brief overviews of these language centers and their contributions to the language networks will be discussed. These language centers include primary language centers of "Broca's Area" and "Wernicke's Area". However, there are multiple secondary language centers such as the dorsal lateral prefrontal cortex (DLPFC), frontal eye fields, pre- supplemental motor area (pre-SMA), Basal Temporal Language Area (BTLA), along with other areas of activation. Knowing these foci helps to increase self-assurance when discussing the nature of laterality with the neurosurgeon. By knowing secondary language centers for language lateralization, via fMRI, one can feel confident on providing neurosurgeon colleagues with appropriate information on the laterality of language in preparation for surgery.
Collapse
Affiliation(s)
- Ashley Lawrence
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Michael Carvajal
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Jacob Ormsby
- Department of Radiology, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| |
Collapse
|
19
|
Piccirilli E, Sestieri C, Di Clemente L, Delli Pizzi A, Colasurdo M, Panara V, Caulo M. The effect of different brain lesions on the reorganization of language functions within the dominant hemisphere assessed with task-based BOLD-fMRI. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01642-5. [PMID: 37184809 DOI: 10.1007/s11547-023-01642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND PURPOSE Language reorganization has been described in brain lesions with respect to their location and timing, but little is known with respect to their etiology. We used fMRI to investigate the effects of different types of left hemisphere lesions (GL = gliomas, TLE = temporal lobe epilepsy and CA = cavernous angioma) on the topographic intra-hemispheric language plasticity, also considering their location. METHODS Forty-seven right-handed patients with 3 different left hemisphere lesions (16 GL, 15 TLE and 16 CA) and 17 healthy controls underwent BOLD fMRI with a verb-generation task. Euclidean distance was used to measure activation peak shifts among groups with respect to reference Tailarach coordinates of Inferior Frontal Gyrus, Superior Temporal Sulcus and Temporo-Parietal Junction. Mixed-model ANOVAs were used to test for differences in activation peak shifts. RESULTS Significant activation peak shifts were found in GL patients with respect both to HC and other groups (TLA and CA). In addition, in the same group of patients a significant effect of tumor location (anterior or posterior) was detected. CONCLUSIONS We demonstrated that intra-hemispheric language plasticity is influenced by the type of lesion affecting the left hemisphere and that fMRI is especially valuable in the preoperative assessment of such reorganization in glioma patients.
Collapse
Affiliation(s)
- Eleonora Piccirilli
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, Chieti, Italy
- Department of Imaging, Ospedale Pediatrico Bambino Gesù, IRCSS, Rome, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, 66100, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, Chieti, Italy
| | - Loris Di Clemente
- Institute for Advanced Biomedical Technologies (ITAB), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, Chieti, Italy
| | - Andrea Delli Pizzi
- Department of Innovative Technologies in Medicine and Dentistry, Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, Chieti, Italy
- Department of Radiology, SS. Annunziata University Hospital, Chieti, Italy
| | - Marco Colasurdo
- Department of Radiology, SS. Annunziata University Hospital, Chieti, Italy
| | - Valentina Panara
- Institute for Advanced Biomedical Technologies (ITAB), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, Chieti, Italy
- Department of Radiology, SS. Annunziata University Hospital, Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences (DNISC), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, 66100, Chieti, Italy.
- Institute for Advanced Biomedical Technologies (ITAB), Università Degli Studi Gabriele d'Annunzio Di Chieti Pescara, Chieti, Italy.
- Department of Radiology, SS. Annunziata University Hospital, Chieti, Italy.
| |
Collapse
|
20
|
Eraky AM. Radiological Biomarkers for Brain Metastases Prognosis: Quantitative Magnetic Resonance Imaging (MRI) Modalities As Non-invasive Biomarkers for the Effect of Radiotherapy. Cureus 2023; 15:e38353. [PMID: 37266043 PMCID: PMC10229388 DOI: 10.7759/cureus.38353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Radiotherapy effect is achieved by its ability to cause DNA damage and induce apoptosis. In contrast, radiation can induce tumor cells' proliferation, invasiveness, and epithelial-mesenchymal transition (EMT). Besides developing radioresistance, this paradoxical effect of radiotherapy is considered a challenging problem in the field of radiotherapy. This highlights the importance of developing new modalities to diagnose radioresistance early to avoid any unnecessary exposure to radiation and differentiate between metastases recurrence versus post-radiation changes. Quantitative magnetic resonance imaging (MRI) techniques including diffusion-weighted imaging (DWI), dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast-enhanced (DCE) represent potential biomarkers to diagnose metastases recurrence and radioresistance. In this review, we will focus on recent studies discussing the possibility of using DWI, DSC, ASL, and DCE to diagnose radioresistance and recurrence in patients with brain metastases.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurological Surgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
21
|
Soloukey S, Vincent AJPE, Smits M, De Zeeuw CI, Koekkoek SKE, Dirven CMF, Kruizinga P. Functional imaging of the exposed brain. Front Neurosci 2023; 17:1087912. [PMID: 36845427 PMCID: PMC9947297 DOI: 10.3389/fnins.2023.1087912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
When the brain is exposed, such as after a craniotomy in neurosurgical procedures, we are provided with the unique opportunity for real-time imaging of brain functionality. Real-time functional maps of the exposed brain are vital to ensuring safe and effective navigation during these neurosurgical procedures. However, current neurosurgical practice has yet to fully harness this potential as it pre-dominantly relies on inherently limited techniques such as electrical stimulation to provide functional feedback to guide surgical decision-making. A wealth of especially experimental imaging techniques show unique potential to improve intra-operative decision-making and neurosurgical safety, and as an added bonus, improve our fundamental neuroscientific understanding of human brain function. In this review we compare and contrast close to twenty candidate imaging techniques based on their underlying biological substrate, technical characteristics and ability to meet clinical constraints such as compatibility with surgical workflow. Our review gives insight into the interplay between technical parameters such sampling method, data rate and a technique's real-time imaging potential in the operating room. By the end of the review, the reader will understand why new, real-time volumetric imaging techniques such as functional Ultrasound (fUS) and functional Photoacoustic Computed Tomography (fPACT) hold great clinical potential for procedures in especially highly eloquent areas, despite the higher data rates involved. Finally, we will highlight the neuroscientific perspective on the exposed brain. While different neurosurgical procedures ask for different functional maps to navigate surgical territories, neuroscience potentially benefits from all these maps. In the surgical context we can uniquely combine healthy volunteer studies, lesion studies and even reversible lesion studies in in the same individual. Ultimately, individual cases will build a greater understanding of human brain function in general, which in turn will improve neurosurgeons' future navigational efforts.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
22
|
Chaganti J. Editorial for "Cerebrovascular Reactivity Mapping Using Resting-State Functional MRI in Patients With Gliomas". J Magn Reson Imaging 2022; 56:1872-1873. [PMID: 35393730 DOI: 10.1002/jmri.28192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Joga Chaganti
- St Vincent's Hospital, St Vincent's Hospital, 390,Victoria Street, Sydney, NSW, 2100, Australia
| |
Collapse
|
23
|
Ojha A, Miller JG, King LS, Davis EG, Humphreys KL, Gotlib IH. Empathy for others versus for one's child: Associations with mothers' brain activation during a social cognitive task and with their toddlers' functioning. Dev Psychobiol 2022; 64:e22313. [PMID: 36282757 PMCID: PMC9608359 DOI: 10.1002/dev.22313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023]
Abstract
Caregivers who are higher in dispositional empathy tend to have children with better developmental outcomes; however, few studies have considered the role of child-directed (i.e., "parental") empathy, which may be relevant for the caregiver-child relationship. We hypothesized that mothers' parental empathy during their child's infancy will be a stronger predictor of their child's social-emotional functioning as a toddler than will mothers' dispositional empathy. We further explored whether parental and dispositional empathy have shared or distinct patterns of neural activation during a social-cognitive movie-watching task. In 118 mother-infant dyads, greater parental empathy assessed when infants were 6 months old was associated with more social-emotional competencies and fewer problems in the children 1 year later, even after adjusting for dispositional empathy. In contrast, dispositional empathy was not associated with child functioning when controlling for parental empathy. In a subset of 20 mothers, insula activation was positively associated with specific facets of both dispositional and parental empathy, whereas right temporoparietal junction activation was associated only with parental empathy. Thus, dispositional and parental empathy appear to be dissociable by both brain and behavioral metrics. Parental empathy may be a viable target for interventions, especially for toddlers at risk for developing social-emotional difficulties.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, PA
- Center for Neural Basis of Cognition, University of Pittsburgh, PA
| | | | - Lucy S. King
- Department of Psychology, Stanford University, Stanford, CA
| | - Elena G. Davis
- Department of Psychology, Stanford University, Stanford, CA
| | - Kathryn L. Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN
| | - Ian H. Gotlib
- Department of Psychology, Stanford University, Stanford, CA
| |
Collapse
|
24
|
Senarathna J, Kovler M, Prasad A, Bhargava A, Thakor N, Sodhi CP, Hackam DJ, Pathak AP. In vivo phenotyping of the microvasculature in necrotizing enterocolitis with multicontrast optical imaging. Microcirculation 2022; 29:e12768. [PMID: 35593520 PMCID: PMC9633336 DOI: 10.1111/micc.12768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Necrotizing enterocolitis (NEC) is the most prevalent gastrointestinal emergency in premature infants and is characterized by a dysfunctional gut microcirculation. Therefore, there is a dire need for in vivo methods to characterize NEC-induced changes in the structure and function of the gut microcirculation, that is, its vascular phenotype. Since in vivo gut imaging methods are often slow and employ a single-contrast mechanism, we developed a rapid multicontrast imaging technique and a novel analyses pipeline for phenotyping the gut microcirculation. METHODS Using an experimental NEC model, we acquired in vivo images of the gut microvasculature and blood flow over a 5000 × 7000 μm2 field of view at 5 μm resolution via the following two endogenous contrast mechanisms: intrinsic optical signals and laser speckles. Next, we transformed intestinal images into rectilinear "flat maps," and delineated 1A/V gut microvessels and their perfusion territories as "intestinal vascular units" (IVUs). Employing IVUs, we quantified and visualized NEC-induced changes to the gut vascular phenotype. RESULTS In vivo imaging required 60-100 s per animal. Relative to the healthy gut, NEC intestines showed a significant overall decrease (i.e. 64-72%) in perfusion, accompanied by vasoconstriction (i.e. 9-12%) and a reduction in perfusion entropy (19%)within sections of the vascular bed. CONCLUSIONS Multicontrast imaging coupled with IVU-based in vivo vascular phenotyping is a powerful new tool for elucidating NEC pathogenesis.
Collapse
Affiliation(s)
- Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mark Kovler
- Department of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ayush Prasad
- Department of BiophysicsThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Nitish V. Thakor
- Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Chhinder P. Sodhi
- Department of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Cell BiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David J. Hackam
- Department of Genetic MedicineThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of SurgeryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Cell BiologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimoreMarylandUSA,Department of OncologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA,Department of Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
25
|
Aabedi AA, Young JS, Chang EF, Berger MS, Hervey-Jumper SL. Involvement of White Matter Language Tracts in Glioma: Clinical Implications, Operative Management, and Functional Recovery After Injury. Front Neurosci 2022; 16:932478. [PMID: 35898410 PMCID: PMC9309688 DOI: 10.3389/fnins.2022.932478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
To achieve optimal survival and quality of life outcomes in patients with glioma, the extent of tumor resection must be maximized without causing injury to eloquent structures. Preservation of language function is of particular importance to patients and requires careful mapping to reveal the locations of cortical language hubs and their structural and functional connections. Within this language network, accurate mapping of eloquent white matter tracts is critical, given the high risk of permanent neurological impairment if they are injured during surgery. In this review, we start by describing the clinical implications of gliomas involving white matter language tracts. Next, we highlight the advantages and limitations of methods commonly used to identify these tracts during surgery including structural imaging techniques, functional imaging, non-invasive stimulation, and finally, awake craniotomy. We provide a rationale for combining these complementary techniques as part of a multimodal mapping paradigm to optimize postoperative language outcomes. Next, we review local and long-range adaptations that take place as the language network undergoes remodeling after tumor growth and surgical resection. We discuss the probable cellular mechanisms underlying this plasticity with emphasis on the white matter, which until recently was thought to have a limited role in adults. Finally, we provide an overview of emerging developments in targeting the glioma-neuronal network interface to achieve better disease control and promote recovery after injury.
Collapse
Affiliation(s)
| | | | | | | | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
26
|
The Curative Effect of Pregabalin in the Treatment of Postherpetic Neuralgia Analyzed by Deep Learning-Based Brain Resting-State Functional Magnetic Resonance Images. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2250621. [PMID: 35615728 PMCID: PMC9113910 DOI: 10.1155/2022/2250621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
This work aimed to investigate the brain resting-state functional magnetic resonance imaging (fMRI) technology based on the depth autoencoders algorithm and to evaluate the clinically curative effect of pregabalin in the treatment of postherpetic neuralgia (PHN). In this study, 40 patients with PHN were selected and rolled randomly into a treatment group and a control group (20 cases in each group). Then, a depth autoencoders algorithm was constructed and applied in the brain resting-state fMRI technology. The brains of 40 patients with PHN treated with pregabalin were scanned, and the time curve extracted from MRI images was convolved by linear drift removal bandpass filtering to reduce low-frequency drift and high-frequency noise, so the low-frequency amplitude was calculated. Based on the low-frequency amplitude method, the calculated low-frequency signal energy was eventually divided by the total power of the entire frequency band to obtain the low-frequency amplitude rate value. The amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (f-ALFF) before and after treatment were compared between the treatment group and the control group, and the visual analog scale (VAS) after treatment was also observed. After 4 weeks of taking the drug, the VAS scores of patients from the treatment group in the first week (6.5 ± 0.8 points), the second week (6.5 ± 0.8 points), the third week (3.1 ± 0.3 points), and the fourth week (2.3 ± 0.4 points) after treatment were lower steeply than the scores before treatment (8.3 ± 1.1 points) (P < 0.05). Resting-state fMRI images showed that the f-ALFF of the 4 brain areas in the treatment group was higher than that of the control group, mainly including the bilateral frontal lobes, bilateral parietal lobes, left parietal lobes, and right posterior cerebellar lobes. Besides, the f-ALFF of the 6 brain areas in the treatment group was lower than that of the control group, mainly including the right frontal lobe, right parietal lobe, right middle frontal gyrus, precuneus, left frontal lobe, and superior frontal gyrus. In conclusion, the resting-state fMRI technology based on the depth autoencoders algorithm could efficiently display the brain area characteristic changes of patients with PHN before and after treatment, thereby providing a reference for the diagnosis of the patient's condition.
Collapse
|
27
|
Gong X, Jin T, Wang Y, Zhang R, Qi W, Xi L. Photoacoustic microscopy visualizes glioma-induced disruptions of cortical microvascular structure and function. J Neural Eng 2022; 19. [PMID: 35316796 DOI: 10.1088/1741-2552/ac5fcc] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022]
Abstract
Glioma growth may cause pervasive disruptions of brain vascular structure and function. Revealing both structural and functional alterations at a fine spatial scale is challenging for existing imaging techniques, which could confound the understanding of the basic mechanisms of brain diseases. In this study, we apply photoacoustic microscopy with a high spatial-temporal resolution and a wide field of view (FOV) to investigate the glioma-induced alterations of cortical vascular morphology, hemodynamic response, as well as functional connectivity at resting- and stimulated- states. We find that glioma promotes the growth of microvessels and leads to the increase of vascular proportion in the cerebral cortex by deriving structural parameters. The glioma also causes the loss of response in the ipsilateral hemisphere and abnormal response in the contralateral hemisphere, and further induces brain-wide alterations of functional connectivity in resting and stimulated states. The observed results show the foundation of employing photoacoustic microscopy as a potential technique in revealing the underlying mechanisms of brain diseases.
Collapse
Affiliation(s)
- Xinrui Gong
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, 518055, CHINA
| | - Tian Jin
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Yongchao Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Ruoxi Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Weizhi Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P.R. China, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|
28
|
Stadlbauer A, Kinfe TM, Zimmermann M, Eyüpoglu I, Brandner N, Buchfelder M, Zaiss M, Dörfler A, Brandner S. Association between tissue hypoxia, perfusion restrictions, and microvascular architecture alterations with lesion-induced impairment of neurovascular coupling. J Cereb Blood Flow Metab 2022; 42:526-539. [PMID: 32787542 PMCID: PMC8985434 DOI: 10.1177/0271678x20947546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has been mainly utilized for the preoperative localization of eloquent cortical areas. However, lesion-induced impairment of neurovascular coupling (NVC) in the lesion border zone may lead to false-negative fMRI results. The purpose of this study was to determine physiological factors impacting the NVC. Twenty patients suffering from brain lesions were preoperatively examined using multimodal neuroimaging including fMRI, magnetoencephalography (MEG) during language or sensorimotor tasks (depending on lesion location), and a novel physiologic MRI approach for the combined quantification of oxygen metabolism, perfusion state, and microvascular architecture. Congruence of brain activity patterns between fMRI and MEG were found in 13 patients. In contrast, we observed missing fMRI activity in perilesional cortex that demonstrated MEG activity in seven patients, which was interpreted as lesion-induced impairment of NVC. In these brain regions with impaired NVC, physiologic MRI revealed significant brain tissue hypoxia, as well as significantly decreased macro- and microvascular perfusion and microvascular architecture. We demonstrated that perilesional hypoxia with reduced vascular perfusion and architecture is associated with lesion-induced impairment of NVC. Our physiologic MRI approach is a clinically applicable method for preoperative risk assessment for the presence of false-negative fMRI results and may prevent severe postoperative functional deficits.
Collapse
Affiliation(s)
- Andreas Stadlbauer
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany.,Institute of Medical Radiology, University Clinic of St. Pölten, St. Pölten, Austria
| | - Thomas M Kinfe
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany.,Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Max Zimmermann
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany.,Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Ilker Eyüpoglu
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Nadja Brandner
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Brandner
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Sprugnoli G, Rigolo L, Faria M, Juvekar P, Tie Y, Rossi S, Sverzellati N, Golby AJ, Santarnecchi E. Tumor BOLD connectivity profile correlates with glioma patients' survival. Neurooncol Adv 2022; 4:vdac153. [PMID: 36532508 PMCID: PMC9753902 DOI: 10.1093/noajnl/vdac153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Presence of residual neurovascular activity within glioma lesions have been recently demonstrated via functional MRI (fMRI) along with active electrical synapses between glioma cells and healthy neurons that influence survival. In this study, we aimed to investigate whether gliomas demonstrate synchronized neurovascular activity with the rest of the brain, by measuring Blood Oxygen Level Dependent (BOLD) signal synchronization, that is, functional connectivity (FC), while also testing whether the strength of such connectivity might predict patients' overall survival (OS). METHODS Resting-state fMRI scans of patients who underwent pre-surgical brain mapping were analyzed (total sample, n = 54; newly diagnosed patients, n = 18; recurrent glioma group, n = 36). A seed-to-voxel analysis was conducted to estimate the FC signal profile of the tumor mass. A regression model was then built to investigate the potential correlation between tumor FC and individual OS. Finally, an unsupervised, cross-validated clustering analysis was performed including tumor FC and clinical OS predictors (e.g., Karnofsky Performance Status - KPS - score, tumor volume, and genetic profile) to verify the performance of tumor FC in predicting OS with respect to validated radiological, demographic, genetic and clinical prognostic factors. RESULTS In both newly diagnosed and recurrent glioma patients a significant pattern of BOLD synchronization between the solid tumor and distant brain regions was found. Crucially, glioma-brain FC positively correlated with variance in individual survival in both newly diagnosed glioma group (r = 0.90-0.96; P < .001; R 2 = 81-92%) and in the recurrent glioma group (r = 0.72; P < .001; R 2 = 52%), outperforming standard clinical, radiological and genetic predictors. CONCLUSIONS Results suggest glioma's synchronization with distant brain regions should be further explored as a possible diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program and Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Rigolo
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meghan Faria
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Parikshit Juvekar
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yanmei Tie
- Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), University of Siena, Italy
| | - Nicola Sverzellati
- Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Alexandra J Golby
- Alexandra J. Golby, MD, Image Guided Neurosurgery Laboratory, Department of Neurosurgery and Radiology, Brigham and Women’s Hospital, Harvard Medical School, Neurosciences Center, 60 Fenwood Road, 1st Floor, Hale Building for Transformative Medicine, Boston, MA, 02115, USA ()
| | - Emiliano Santarnecchi
- Corresponding Authors: Emiliano Santarnecchi, PhD, PhD, Precision Neuroscience & Neuromodulation Program and Network Control Laboratory, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA ()
| |
Collapse
|
30
|
Ekert JO, Kirkman MA, Seghier ML, Green DW, Price CJ. A Data-Based Approach for Selecting Pre- and Intra-Operative Language Mapping Tasks. Front Neurosci 2021; 15:743402. [PMID: 34899156 PMCID: PMC8656425 DOI: 10.3389/fnins.2021.743402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pre- and intra-operative language mapping in neurosurgery patients frequently involves an object naming task. The choice of the optimal object naming paradigm remains challenging due to lack of normative data and standardization in mapping practices. The aim of this study was to identify object naming paradigms that robustly and consistently activate classical language regions and could therefore be used to improve the sensitivity of language mapping in brain tumor and epilepsy patients. Methods: Functional magnetic resonance imaging (fMRI) data from two independent groups of healthy controls (total = 79) were used to generate threshold-weighted voxel-based consistency maps. This novel approach allowed us to compare inter-subject consistency of activation for naming single objects in the visual and auditory modality and naming two objects in a phrase or a sentence. Results: We found that the consistency of activation in language regions was greater for naming two objects per picture than one object per picture, even when controlling for the number of names produced in 5 s. Conclusion: More consistent activation in language areas for naming two objects compared to one object suggests that two-object naming tasks may be more suitable for delimiting language eloquent regions with pre- and intra-operative language testing. More broadly, we propose that the functional specificity of brain mapping paradigms for a whole range of different linguistic and non-linguistic functions could be enhanced by referring to databased models of inter-subject consistency and variability in typical and atypical brain responses.
Collapse
Affiliation(s)
- Justyna O. Ekert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Matthew A. Kirkman
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham, United Kingdom
| | - Mohamed L. Seghier
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - David W. Green
- Department of Experimental Psychology, University College London, London, United Kingdom
| | - Cathy J. Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
31
|
Pak RW, Kang J, Boctor E, Kang JU. Optimization of Near-Infrared Fluorescence Voltage-Sensitive Dye Imaging for Neuronal Activity Monitoring in the Rodent Brain. Front Neurosci 2021; 15:742405. [PMID: 34776848 PMCID: PMC8582490 DOI: 10.3389/fnins.2021.742405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Many currently employed clinical brain functional imaging technologies rely on indirect measures of activity such as hemodynamics resulting in low temporal and spatial resolutions. To improve upon this, optical systems were developed in conjunction with methods to deliver near-IR voltage-sensitive dye (VSD) to provide activity-dependent optical contrast to establish a clinical tool to facilitate direct monitoring of neuron depolarization through the intact skull. Following the previously developed VSD delivery protocol through the blood-brain barrier, IR-780 perchlorate VSD concentrations in the brain were varied and stimulus-evoked responses were observed. In this paper, a range of optimal VSD tissue concentrations was established that maximized fluorescence fractional change for detection of membrane potential responses to external stimuli through a series of phantom, in vitro, ex vivo, and in vivo experiments in mouse models.
Collapse
Affiliation(s)
- Rebecca W Pak
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jeeun Kang
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Emad Boctor
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| | - Jin U Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
32
|
Vachha BA, Huang RY. BOLD Asynchrony: An imaging biomarker of tumor burden in IDH-mutated gliomas. Neuro Oncol 2021; 24:88-89. [PMID: 34695182 DOI: 10.1093/neuonc/noab248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Behroze Adi Vachha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston Massachusetts
| |
Collapse
|
33
|
Fesharaki NJ, Mathew AB, Mathis JR, Huddleston WE, Reuss JL, Pillai JJ, DeYoe EA. Effects of Thresholding on Voxel-Wise Correspondence of Breath-Hold and Resting-State Maps of Cerebrovascular Reactivity. Front Neurosci 2021; 15:654957. [PMID: 34504411 PMCID: PMC8421787 DOI: 10.3389/fnins.2021.654957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging for presurgical brain mapping enables neurosurgeons to identify viable tissue near a site of operable pathology which might be at risk of surgery-induced damage. However, focal brain pathology (e.g., tumors) may selectively disrupt neurovascular coupling while leaving the underlying neurons functionally intact. Such neurovascular uncoupling can result in false negatives on brain activation maps thereby compromising their use for surgical planning. One way to detect potential neurovascular uncoupling is to map cerebrovascular reactivity using either an active breath-hold challenge or a passive resting-state scan. The equivalence of these two methods has yet to be fully established, especially at a voxel level of resolution. To quantitatively compare breath-hold and resting-state maps of cerebrovascular reactivity, we first identified threshold settings that optimized coverage of gray matter while minimizing false responses in white matter. When so optimized, the resting-state metric had moderately better gray matter coverage and specificity. We then assessed the spatial correspondence between the two metrics within cortical gray matter, again, across a wide range of thresholds. Optimal spatial correspondence was strongly dependent on threshold settings which if improperly set tended to produce statistically biased maps. When optimized, the two CVR maps did have moderately good correspondence with each other (mean accuracy of 73.6%). Our results show that while the breath-hold and resting-state maps may appear qualitatively similar they are not quantitatively identical at a voxel level of resolution.
Collapse
Affiliation(s)
- Nooshin J Fesharaki
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amy B Mathew
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jedidiah R Mathis
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wendy E Huddleston
- College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - James L Reuss
- Prism Clinical Imaging, Inc., Milwaukee, WI, United States
| | - Jay J Pillai
- Neuroradiology Division, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
34
|
Jütten K, Weninger L, Mainz V, Gauggel S, Binkofski F, Wiesmann M, Merhof D, Clusmann H, Na CH. Dissociation of structural and functional connectomic coherence in glioma patients. Sci Rep 2021; 11:16790. [PMID: 34408195 PMCID: PMC8373888 DOI: 10.1038/s41598-021-95932-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 01/21/2023] Open
Abstract
With diffuse infiltrative glioma being increasingly recognized as a systemic brain disorder, the macroscopically apparent tumor lesion is suggested to impact on cerebral functional and structural integrity beyond the apparent lesion site. We investigated resting-state functional connectivity (FC) and diffusion-MRI-based structural connectivity (SC) (comprising edge-weight (EW) and fractional anisotropy (FA)) in isodehydrogenase mutated (IDHmut) and wildtype (IDHwt) patients and healthy controls. SC and FC were determined for whole-brain and the Default-Mode Network (DMN), mean intra- and interhemispheric SC and FC were compared across groups, and partial correlations were analyzed intra- and intermodally. With interhemispheric EW being reduced in both patient groups, IDHwt patients showed FA decreases in the ipsi- and contralesional hemisphere, whereas IDHmut patients revealed FA increases in the contralesional hemisphere. Healthy controls showed strong intramodal connectivity, each within the structural and functional connectome. Patients however showed a loss in structural and reductions in functional connectomic coherence, which appeared to be more pronounced in IDHwt glioma patients. Findings suggest a relative dissociation of structural and functional connectomic coherence in glioma patients at the time of diagnosis, with more structural connectomic aberrations being encountered in IDHwt glioma patients. Connectomic profiling may aid in phenotyping and monitoring prognostically differing tumor types.
Collapse
Affiliation(s)
- Kerstin Jütten
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Leon Weninger
- Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52074, Aachen, Germany
| | - Verena Mainz
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Siegfried Gauggel
- Institute of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstraße 19, 52074, Aachen, Germany
| | - Ferdinand Binkofski
- Division of Clinical Cognitive Sciences, RWTH Aachen University, Pauwelsstraße 17, 52074, Aachen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Dorit Merhof
- Imaging and Computer Vision, RWTH Aachen University, Templergraben 55, 52074, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Chuh-Hyoun Na
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.,Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
35
|
Maniar YM, Peck KK, Jenabi M, Gene M, Holodny AI. Functional MRI Shows Altered Deactivation and a Corresponding Decrease in Functional Connectivity of the Default Mode Network in Patients with Gliomas. AJNR Am J Neuroradiol 2021; 42:1505-1512. [PMID: 33985945 DOI: 10.3174/ajnr.a7138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE The default mode network normally decreases in activity during externally directed tasks. Although default mode network connectivity is disrupted in numerous brain pathologies, default mode network deactivation has not been studied in patients with brain tumors. We investigated default mode network deactivation with language task-based fMRI by measuring the anticorrelation of a critical default mode network node, the posterior cingulate cortex, in patients with gliomas and controls; furthermore, we examined default mode network functional connectivity in these patients with task-based and resting-state fMRI. MATERIALS AND METHODS In 10 healthy controls and 30 patients with gliomas, the posterior cingulate cortex was identified on task-based fMRI and was used as an ROI to create connectivity maps from task-based and resting-state fMRI data. We compared the average correlation in each default mode network region between patients and controls for each correlation map and stratified patients by tumor location, hemisphere, and grade. RESULTS Patients with gliomas (P = .001) and, in particular, patients with tumors near the posterior default mode network (P < .001) showed less posterior cingulate cortex anticorrelation in task-based fMRI than controls. Patients with both left- and right-hemisphere tumors, as well as those with grade IV tumors, showed significantly lower posterior cingulate cortex anticorrelation than controls (P = .02, .03, and <.001, respectively). Functional connectivity in each default mode network region was not significantly different between task-based and resting-state maps. CONCLUSIONS Task-based fMRI showed impaired deactivation of the default mode network in patients with gliomas. The functional connectivity of the default mode network in both task-based and resting-state fMRI in patients with gliomas using the posterior cingulate cortex identified in task-based fMRI as an ROI for seed-based correlation analysis has strong overlap.
Collapse
Affiliation(s)
- Y M Maniar
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - K K Peck
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medical Physics (K.K.P.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - M Jenabi
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - M Gene
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - A I Holodny
- From the Department of Radiology (Y.M.M., K.K.P., M.J., M.G., A.I.H.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (A.I.H.), Weill Medical College of Cornell University, New York, New York
- Department of Neuroscience (A.I.H.), Weill-Cornell Graduate School of the Medical Sciences, New York, New York
| |
Collapse
|
36
|
Petridis PD, Horenstein C, Pereira B, Wu P, Samanamud J, Marie T, Boyett D, Sudhakar T, Sheth SA, McKhann GM, Sisti MB, Bruce JN, Canoll P, Grinband J. BOLD Asynchrony Elucidates Tumor Burden in IDH-Mutated Gliomas. Neuro Oncol 2021; 24:78-87. [PMID: 34214170 DOI: 10.1093/neuonc/noab154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Gliomas comprise the most common type of primary brain tumor, are highly invasive, and often fatal. IDH-mutated gliomas are particularly challenging to image and there is currently no clinically accepted method for identifying the extent of tumor burden in these neoplasms. This uncertainty poses a challenge to clinicians who must balance the need to treat the tumor while sparing healthy brain from iatrogenic damage. The purpose of this study was to investigate the feasibility of using resting-state blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) to detect glioma-related asynchrony in vascular dynamics for distinguishing tumor from healthy brain. METHODS Twenty-four stereotactically localized biopsies were obtained during open surgical resection from ten treatment-naïve patients with IDH-mutated gliomas who received standard of care preoperative imaging as well as echo-planar resting-state BOLD fMRI. Signal intensity for BOLD asynchrony and standard of care imaging was compared to cell counts of total cellularity (H&E), tumor density (IDH1 & Sox2), cellular proliferation (Ki67), and neuronal density (NeuN), for each corresponding sample. RESULTS BOLD asynchrony was directly related to total cellularity (H&E, p = 4 x 10 -5), tumor density (IDH1, p = 4 x 10 -5; Sox2, p = 3 x 10 -5), cellular proliferation (Ki67, p = 0.002), and as well as inversely related to neuronal density (NeuN, p = 1 x 10 -4). CONCLUSIONS Asynchrony in vascular dynamics, as measured by resting-state BOLD fMRI, correlates with tumor burden and provides a radiographic delineation of tumor boundaries in IDH-mutated gliomas.
Collapse
Affiliation(s)
- Petros D Petridis
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA.,Department of Psychiatry, New York University, New York, New York, USA
| | - Craig Horenstein
- Department of Radiology, School of Medicine at Hofstra/Northwell, Manhasset, New York USA
| | - Brianna Pereira
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Peter Wu
- Vagelos College of Physicians & Surgeons, Columbia University, New York, New York USA
| | - Jorge Samanamud
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tamara Marie
- Department of Pediatrics Oncology, Columbia University, New York, New York USA
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Tejaswi Sudhakar
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University, New York, New York USA
| | - Peter Canoll
- Department of Pathology & Cell Biology, Columbia University, New York, New York USA
| | - Jack Grinband
- Department of Radiology, Columbia University, New York, New York, USA.,Department of Psychiatry, Columbia University, New York, New York, USA
| |
Collapse
|
37
|
Quiñones I, Amoruso L, Pomposo Gastelu IC, Gil-Robles S, Carreiras M. What Can Glioma Patients Teach Us about Language (Re)Organization in the Bilingual Brain: Evidence from fMRI and MEG. Cancers (Basel) 2021; 13:2593. [PMID: 34070619 PMCID: PMC8198785 DOI: 10.3390/cancers13112593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Recent evidence suggests that the presence of brain tumors (e.g., low-grade gliomas) triggers language reorganization. Neuroplasticity mechanisms called into play can transfer linguistic functions from damaged to healthy areas unaffected by the tumor. This phenomenon has been reported in monolingual patients, but much less is known about the neuroplasticity of language in the bilingual brain. A central question is whether processing a first or second language involves the same or different cortical territories and whether damage results in diverse recovery patterns depending on the language involved. This question becomes critical for preserving language areas in bilingual brain-tumor patients to prevent involuntary pathological symptoms following resection. While most studies have focused on intraoperative mapping, here, we go further, reporting clinical cases for five bilingual patients tested before and after tumor resection, using a novel multimethod approach merging neuroimaging information from fMRI and MEG to map the longitudinal reshaping of the language system. Here, we present four main findings. First, all patients preserved linguistic function in both languages after surgery, suggesting that the surgical intervention with intraoperative language mapping was successful in preserving cortical and subcortical structures necessary for brain plasticity at the functional level. Second, we found reorganization of the language network after tumor resection in both languages, mainly reflected by a shift of activity to right hemisphere nodes and the recruitment of ipsilesional left nodes. Third, we found that this reorganization varied according to the language involved, indicating that L1 and L2 follow different reshaping patterns after surgery. Fourth, oscillatory longitudinal effects were correlated with BOLD laterality changes in superior parietal and middle frontal areas. These findings may reflect that neuroplasticity impacts on the compensatory involvement of executive control regions, supporting the allocation of cognitive resources as a consequence of increased attentional demands. Furthermore, these results hint at the complementary role of this neuroimaging approach in language mapping, with fMRI offering excellent spatial localization and MEG providing optimal spectrotemporal resolution.
Collapse
Affiliation(s)
- Ileana Quiñones
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
| | - Lucia Amoruso
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | | | - Santiago Gil-Robles
- BioCruces Research Institute, 48015 Bilbao, Spain;
- Department of Neurosurgery, Hospital Quironsalud, 28223 Madrid, Spain
| | - Manuel Carreiras
- Neurobiology of Language Group, Basque Center on Cognition, Brain and Language (BCBL), 20009 Donostia-San Sebastián, Spain; (L.A.); (M.C.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Basque Language and Communication, University of the Basque Country, UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
38
|
Połczyńska MM. Organizing Variables Affecting fMRI Estimates of Language Dominance in Patients with Brain Tumors. Brain Sci 2021; 11:brainsci11060694. [PMID: 34070413 PMCID: PMC8226970 DOI: 10.3390/brainsci11060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous variables can affect the assessment of language dominance using presurgical functional magnetic resonance (fMRI) in patients with brain tumors. This work organizes the variables into confounding and modulating factors. Confounding factors give the appearance of changed language dominance. Most confounding factors are fMRI-specific and they can substantially disrupt the evaluation of language dominance. Confounding factors can be divided into two categories: tumor-related and fMRI analysis. The tumor-related confounds further subdivide into tumor characteristics (e.g., tumor grade) and tumor-induced conditions (aphasia). The fMRI analysis confounds represent technical aspects of fMRI methods (e.g., a fixed versus an individual threshold). Modulating factors can modify language dominance without confounding it. They are not fMRI-specific, and they can impact language dominance both in healthy individuals and neurosurgical patients. The effect of most modulating factors on fMRI language dominance is smaller than that of confounding factors. Modulating factors include demographics (e.g., age) and linguistic variables (e.g., early bilingualism). Three cases of brain tumors in the left hemisphere are presented to illustrate how modulating confounding and modulating factors can impact fMRI estimates of language dominance. Distinguishing between confounding and modulating factors can help interpret the results of presurgical language mapping with fMRI.
Collapse
Affiliation(s)
- Monika M Połczyńska
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90025, USA
| |
Collapse
|
39
|
Jalilianhasanpour R, Beheshtian E, Ryan D, Luna LP, Agarwal S, Pillai JJ, Sair HI, Gujar SK. Role of Functional Magnetic Resonance Imaging in the Presurgical Mapping of Brain Tumors. Radiol Clin North Am 2021; 59:377-393. [PMID: 33926684 DOI: 10.1016/j.rcl.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
When planning for brain tumor resection, a balance between maximizing resection and minimizing injury to eloquent brain parenchyma is paramount. The advent of blood oxygenation level-dependent functional magnetic resonance (fMR) imaging has allowed researchers and clinicians to reliably measure physiologic fluctuations in brain oxygenation related to neuronal activity with good spatial resolution. fMR imaging can offer a unique insight into preoperative planning for brain tumors by identifying eloquent areas of the brain affected or spared by the neoplasm. This article discusses the fMR imaging techniques and their applications in neurosurgical planning.
Collapse
Affiliation(s)
- Rozita Jalilianhasanpour
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Elham Beheshtian
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Daniel Ryan
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Licia P Luna
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Sachin K Gujar
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
40
|
Stoecklein VM, Stoecklein S, Galiè F, Ren J, Schmutzer M, Unterrainer M, Albert NL, Kreth FW, Thon N, Liebig T, Ertl-Wagner B, Tonn JC, Liu H. Resting-state fMRI detects alterations in whole brain connectivity related to tumor biology in glioma patients. Neuro Oncol 2021; 22:1388-1398. [PMID: 32107555 DOI: 10.1093/neuonc/noaa044] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Systemic infiltration of the brain by tumor cells is a hallmark of glioma pathogenesis which may cause disturbances in functional connectivity. We hypothesized that aggressive high-grade tumors cause more damage to functional connectivity than low-grade tumors. METHODS We designed an imaging tool based on resting-state functional (f)MRI to individually quantify abnormality of functional connectivity and tested it in a prospective cohort of patients with newly diagnosed glioma. RESULTS Thirty-four patients were analyzed (World Health Organization [WHO] grade II, n = 13; grade III, n = 6; grade IV, n = 15; mean age, 48.7 y). Connectivity abnormality could be observed not only in the lesioned brain area but also in the contralateral hemisphere with a close correlation between connectivity abnormality and aggressiveness of the tumor as indicated by WHO grade. Isocitrate dehydrogenase 1 (IDH1) mutation status was also associated with abnormal connectivity, with more alterations in IDH1 wildtype tumors independent of tumor size. Finally, deficits in neuropsychological performance were correlated with connectivity abnormality. CONCLUSION Here, we suggested an individually applicable resting-state fMRI marker in glioma patients. Analysis of the functional connectome using this marker revealed that abnormalities of functional connectivity could be detected not only adjacent to the visible lesion but also in distant brain tissue, even in the contralesional hemisphere. These changes were associated with tumor biology and cognitive function. The ability of our novel method to capture tumor effects in nonlesional brain suggests a potential clinical value for both individualizing and monitoring glioma therapy.
Collapse
Affiliation(s)
- Veit M Stoecklein
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Sophia Stoecklein
- Department of Radiology, Ludwig Maximilians University Munich, Munich, Germany
| | - Franziska Galiè
- Department of Radiology, Ludwig Maximilians University Munich, Munich, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael Schmutzer
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, Ludwig Maximilians University, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians University, Munich, Germany
| | - Friedrich-W Kreth
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Niklas Thon
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Liebig
- Institute of Neuroradiology, Ludwig Maximilians University, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, Ludwig Maximilians University Munich, Munich, Germany.,Department of Radiology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joerg-C Tonn
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany.,German Cancer Consortium , partner site Munich, German Cancer Research Center, Heidelberg, Germany
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
41
|
Brahimaj BC, Kochanski RB, Pearce JJ, Guryildirim M, Gerard CS, Kocak M, Sani S, Byrne RW. Structural and Functional Imaging in Glioma Management. Neurosurgery 2021; 88:211-221. [PMID: 33313852 DOI: 10.1093/neuros/nyaa360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
The goal of glioma surgery is maximal safe resection in order to provide optimal tumor control and survival benefit to the patient. There are multiple imaging modalities beyond traditional contrast-enhanced magnetic resonance imaging (MRI) that have been incorporated into the preoperative workup of patients presenting with gliomas. The aim of these imaging modalities is to identify cortical and subcortical areas of eloquence, and their relationship to the lesion. In this article, multiple modalities are described with an emphasis on the underlying technology, clinical utilization, advantages, and disadvantages of each. functional MRI and its role in identifying hemispheric dominance and areas of language and motor are discussed. The nuances of magnetoencephalography and transcranial magnetic stimulation in localization of eloquent cortex are examined, as well as the role of diffusion tensor imaging in defining normal white matter tracts in glioma surgery. Lastly, we highlight the role of stimulated Raman spectroscopy in intraoperative histopathological diagnosis of tissue to guide tumor resection. Tumors may shift the normal arrangement of functional anatomy in the brain; thus, utilization of multiple modalities may be helpful in operative planning and patient counseling for successful surgery.
Collapse
Affiliation(s)
- Bledi C Brahimaj
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Ryan B Kochanski
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - John J Pearce
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Melike Guryildirim
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland
| | - Carter S Gerard
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - Mehmet Kocak
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Richard W Byrne
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
42
|
Distinct Cerebrovascular Reactivity Patterns for Brain Radiation Necrosis. Cancers (Basel) 2021; 13:cancers13081840. [PMID: 33924308 PMCID: PMC8069508 DOI: 10.3390/cancers13081840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Current imaging-based discrimination between radiation necrosis versus recurrent glioblastoma contrast-enhancing lesions remains imprecise but is paramount for prognostic and therapeutic evaluation. We examined whether patients with radiation necrosis exhibit distinct patterns of blood oxygenation-level dependent fMRI cerebrovascular reactivity (BOLD-CVR) as the first step to better distinguishing patients with radiation necrosis from recurrent glioblastoma compared with patients with newly diagnosed glioblastoma before surgery and radiotherapy. Methods: Eight consecutive patients with primary and secondary brain tumors and a multidisciplinary clinical and radiological diagnosis of radiation necrosis, and fourteen patients with a first diagnosis of glioblastoma underwent BOLD-CVR mapping. For all these patients, the contrast-enhancing lesion was derived from high-resolution T1-weighted MRI and rendered the volume-of-interest (VOI). From this primary VOI, additional 3 mm concentric expanding VOIs up to 30 mm were created for a detailed perilesional BOLD-CVR tissue analysis between the two groups. Receiver operating characteristic curves assessed the discriminative properties of BOLD-CVR for both groups. Results: Mean intralesional BOLD-CVR values were markedly lower in radiation necrosis than in glioblastoma contrast-enhancing lesions (0.001 ± 0.06 vs. 0.057 ± 0.05; p = 0.04). Perilesionally, a characteristic BOLD-CVR pattern was observed for radiation necrosis and glioblastoma patients, with an improvement of BOLD-CVR values in the radiation necrosis group and persisting lower perilesional BOLD-CVR values in glioblastoma patients. The ROC analysis discriminated against both groups when these two parameters were analyzed together (area under the curve: 0.85, 95% CI: 0.65-1.00). Conclusions: In this preliminary analysis, distinctive intralesional and perilesional BOLD-cerebrovascular reactivity patterns are found for radiation necrosis.
Collapse
|
43
|
Guerraty M, Bhargava A, Senarathna J, Mendelson AA, Pathak AP. Advances in translational imaging of the microcirculation. Microcirculation 2021; 28:e12683. [PMID: 33524206 PMCID: PMC8647298 DOI: 10.1111/micc.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
The past few decades have seen an explosion in the development and use of methods for imaging the human microcirculation during health and disease. The confluence of innovative imaging technologies, affordable computing power, and economies of scale have ushered in a new era of "translational" imaging that permit us to peer into blood vessels of various organs in the human body. These imaging techniques include near-infrared spectroscopy (NIRS), positron emission tomography (PET), and magnetic resonance imaging (MRI) that are sensitive to microvascular-derived signals, as well as computed tomography (CT), optical imaging, and ultrasound (US) imaging that are capable of directly acquiring images at, or close to microvascular spatial resolution. Collectively, these imaging modalities enable us to characterize the morphological and functional changes in a tissue's microcirculation that are known to accompany the initiation and progression of numerous pathologies. Although there have been significant advances for imaging the microcirculation in preclinical models, this review focuses on developments in the assessment of the microcirculation in patients with optical imaging, NIRS, PET, US, MRI, and CT, to name a few. The goal of this review is to serve as a springboard for exploring the burgeoning role of translational imaging technologies for interrogating the structural and functional status of the microcirculation in humans, and highlight the breadth of current clinical applications. Making the human microcirculation "visible" in vivo to clinicians and researchers alike will facilitate bench-to-bedside discoveries and enhance the diagnosis and management of disease.
Collapse
Affiliation(s)
- Marie Guerraty
- Division of Cardiovascular Medicine, Department of
Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,
USA
| | - Akanksha Bhargava
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janaka Senarathna
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asher A. Mendelson
- Department of Medicine, Section of Critical Care, Rady
Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arvind P. Pathak
- Russell H. Morgan Department of Radiology and Radiological
Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, The Johns Hopkins
University School of Medicine, Baltimore, MD, USA
- Department of Electrical Engineering, Johns Hopkins
University, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns
Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
44
|
Matsumoto KI, Mitchell JB, Krishna MC. Multimodal Functional Imaging for Cancer/Tumor Microenvironments Based on MRI, EPRI, and PET. Molecules 2021; 26:1614. [PMID: 33799481 PMCID: PMC8002164 DOI: 10.3390/molecules26061614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Radiation therapy is one of the main modalities to treat cancer/tumor. The response to radiation therapy, however, can be influenced by physiological and/or pathological conditions in the target tissues, especially by the low partial oxygen pressure and altered redox status in cancer/tumor tissues. Visualizing such cancer/tumor patho-physiological microenvironment would be a useful not only for planning radiotherapy but also to detect cancer/tumor in an earlier stage. Tumor hypoxia could be sensed by positron emission tomography (PET), electron paramagnetic resonance (EPR) oxygen mapping, and in vivo dynamic nuclear polarization (DNP) MRI. Tissue oxygenation could be visualized on a real-time basis by blood oxygen level dependent (BOLD) and/or tissue oxygen level dependent (TOLD) MRI signal. EPR imaging (EPRI) and/or T1-weighted MRI techniques can visualize tissue redox status non-invasively based on paramagnetic and diamagnetic conversions of nitroxyl radical contrast agent. 13C-DNP MRI can visualize glycometabolism of tumor/cancer tissues. Accurate co-registration of those multimodal images could make mechanisms of drug and/or relation of resulted biological effects clear. A multimodal instrument, such as PET-MRI, may have another possibility to link multiple functions. Functional imaging techniques individually developed to date have been converged on the concept of theranostics.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Quantum Medical Science Directorate, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| | - Murali C. Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA;
| |
Collapse
|
45
|
Yang J, Gohel S, Zhang Z, Hatzoglou V, Holodny AI, Vachha BA. Glioma-Induced Disruption of Resting-State Functional Connectivity and Amplitude of Low-Frequency Fluctuations in the Salience Network. AJNR Am J Neuroradiol 2021; 42:551-558. [PMID: 33384293 DOI: 10.3174/ajnr.a6929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive challenges are prevalent in survivors of glioma, but their neurobiology is incompletely understood. The purpose of this study was to investigate the effect of glioma presence and tumor characteristics on resting-state functional connectivity and amplitude of low-frequency fluctuations of the salience network, a key neural network associated with cognition. MATERIALS AND METHODS Sixty-nine patients with glioma (mean age, 48.74 [SD, 14.32] years) who underwent resting-state fMRI were compared with 31 healthy controls (mean age, 49.68 [SD, 15.54] years). We identified 4 salience network ROIs: left/right dorsal anterior cingulate cortex and left/right anterior insula. Average salience network resting-state functional connectivity and amplitude of low-frequency fluctuations within the 4 salience network ROIs were computed. RESULTS Patients with gliomas showed decreased overall salience network resting-state functional connectivity (P = .001) and increased amplitude of low-frequency fluctuations in all salience network ROIs (P < .01) except in the left dorsal anterior cingulate cortex. Compared with controls, patients with left-sided gliomas showed increased amplitude of low-frequency fluctuations in the right dorsal anterior cingulate cortex (P = .002) and right anterior insula (P < .001), and patients with right-sided gliomas showed increased amplitude of low-frequency fluctuations in the left anterior insula (P = .002). Anterior tumors were associated with decreased salience network resting-state functional connectivity (P < .001) and increased amplitude of low-frequency fluctuations in the right anterior insula, left anterior insula, and right dorsal anterior cingulate cortex. Patients with high-grade gliomas had decreased salience network resting-state functional connectivity compared with healthy controls (P < .05). The right anterior insula showed increased amplitude of low-frequency fluctuations in patients with grade II and IV gliomas compared with controls (P < .01). CONCLUSIONS By demonstrating decreased resting-state functional connectivity and an increased amplitude of low-frequency fluctuations related to the salience network in patients with glioma, this study adds to our understanding of the neurobiology underpinning observable cognitive deficits in these patients. In addition to more conventional functional connectivity, amplitude of low-frequency fluctuations is a promising functional-imaging biomarker of tumor-induced vascular and neural pathology.
Collapse
Affiliation(s)
- J Yang
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- New York University Grossman School of Medicine (J.Y.), New York University, New York, New York
| | - S Gohel
- Department of Health Informatics (S.G.), Rutgers University School of Health Professions, Newark, New Jersey
| | - Z Zhang
- Epidemiology and Biostatistics (Z.Z.)
| | - V Hatzoglou
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
| | - A I Holodny
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
- Department of Neuroscience (A.I.H.), Weill-Cornell Graduate School of the Medical Sciences, New York, New York
| | - B A Vachha
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
46
|
Manan HA, Franz EA, Yahya N. The utilisation of resting-state fMRI as a pre-operative mapping tool in patients with brain tumours in comparison to task-based fMRI and intraoperative mapping: A systematic review. Eur J Cancer Care (Engl) 2021; 30:e13428. [PMID: 33592671 DOI: 10.1111/ecc.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Resting-state functional Magnetic Resonance Imaging (rs-fMRI) is suggested to be a viable option for pre-operative mapping for patients with brain tumours. However, it remains an open issue whether the tool is useful in the clinical setting compared to task-based fMRI (T-fMRI) and intraoperative mapping. Thus, a systematic review was conducted to investigate the usefulness of this technique. METHODS A systematic literature search of rs-fMRI methods applied as a pre-operative mapping tool was conducted using the PubMed/MEDLINE and Cochrane Library electronic databases following PRISMA guidelines. RESULTS Results demonstrated that 50% (six out of twelve) of the studies comparing rs-fMRI and T-fMRI showed good concordance for both language and sensorimotor networks. In comparison to intraoperative mapping, 86% (six out of seven) studies found a good agreement to rs-fMRI. Finally, 87% (twenty out of twenty-three) studies agreed that rs-fMRI is a suitable and useful pre-operative mapping tool. CONCLUSIONS rs-fMRI is a promising technique for pre-operative mapping in assessing the functional brain areas. However, the agreement between rs-fMRI with other techniques, including T-fMRI and intraoperative maps, is not yet optimal. Studies to ascertain and improve the sophistication in pre-processing of rs-fMRI imaging data are needed.
Collapse
Affiliation(s)
- Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elizabeth A Franz
- Department of Psychology and fMRIotago, University of Otago, Dunedin, New Zealand
| | - Noorazrul Yahya
- Diagnostic Imaging & Radiotherapy Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Chen HSM, Kumar VA, Johnson JM, Chen MM, Noll KR, Hou P, Prabhu SS, Schomer DF, Liu HL. Effect of brain normalization methods on the construction of functional connectomes from resting-state functional MRI in patients with gliomas. Magn Reson Med 2021; 86:487-498. [PMID: 33533052 DOI: 10.1002/mrm.28690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE Spatial normalization is an essential step in resting-state functional MRI connectomic analysis with atlas-based parcellation, but brain lesions can confound it. Cost-function masking (CFM) is a popular compensation approach, but may not benefit modern normalization methods. This study compared three normalization methods with and without CFM and determined their impact on connectomic measures in patients with glioma. METHODS Fifty patients with glioma were included. T1 -weighted images were normalized using three different methods in SPM12, with and without CFM, which were then overlaid on the ICBM152 template and scored by two neuroradiologists. The Dice coefficient of gray-matter correspondence was also calculated. Normalized resting-state functional MRI data were parcellated using the AAL90 atlas to construct an individual connectivity matrix and calculate connectomic measures. The R2 among the different normalization methods was calculated for the connectivity matrices and connectomic measures. RESULTS The older method (Original) performed significantly worse than the modern methods (Default and DARTEL; P < .005 in observer ranking). The use of CFM did not significantly improve the normalization results. The Original method had lower correlation with the Default and DARTEL methods (R2 = 0.71-0.74) than Default with DARTEL (R2 = 0.96) in the connectivity matrix. The clustering coefficient appears to be the most, and modularity the least, sensitive connectomic measures to normalization performance. CONCLUSION The spatial normalization method can have an impact on resting-state functional MRI connectome and connectomic measures derived using atlas-based brain parcellation. In patients with glioma, this study demonstrated that Default and DARTEL performed better than the Original method, and that CFM made no significant difference.
Collapse
Affiliation(s)
- Henry Szu-Meng Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason M Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Melissa M Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Hou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Donald F Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
48
|
Daniel AGS, Hacker CD, Lee JJ, Dierker D, Humphries JB, Shimony JS, Leuthardt EC. Homotopic functional connectivity disruptions in glioma patients are associated with tumor malignancy and overall survival. Neurooncol Adv 2021; 3:vdab176. [PMID: 34988455 PMCID: PMC8694208 DOI: 10.1093/noajnl/vdab176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Gliomas exhibit widespread bilateral functional connectivity (FC) alterations that may be associated with tumor grade. Limited studies have examined the connection-level mechanisms responsible for these effects. Given the typically strong FC observed between mirroring/homotopic brain regions in healthy subjects, we hypothesized that homotopic connectivity (HC) is altered in low-grade and high-grade glioma patients and the extent of disruption is associated with tumor grade and predictive of overall survival (OS) in a cohort of de novo high-grade glioma (World Health Organization [WHO] grade 4) patients. METHODS We used a mirrored FC-derived cortical parcellation to extract blood-oxygen-level-dependent (BOLD) signals and to quantify FC differences between homotopic pairs in normal-appearing brain in a retrospective cohort of glioma patients and healthy controls. RESULTS Fifty-nine glioma patients (WHO grade 2, n = 9; grade 4 = 50; mean age, 57.5 years) and 30 healthy subjects (mean age, 65.9 years) were analyzed. High-grade glioma patients showed lower HC compared with low-grade glioma patients and healthy controls across several cortical locations and resting-state networks. Connectivity disruptions were also strongly correlated with hemodynamic lags between homotopic regions. Finally, in high-grade glioma patients with known survival times (n = 42), HC in somatomotor and dorsal attention networks were significantly correlated with OS. CONCLUSIONS These findings demonstrate an association between tumor grade and HC alterations that may underlie global FC changes and provide prognostic information.
Collapse
Affiliation(s)
- Andy G S Daniel
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Carl D Hacker
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John J Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph B Humphries
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric C Leuthardt
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Mechanical Engineering and Materials Science, McKelvey School of Engineering, Washington University, St. Louis, MO 63130, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Brain Laser Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
49
|
Li M, Liu Q, Guo R, Yang S, Jiang P, Chen X, Wu J, Cao Y, Wang S. Perinidal Angiogenesis Is a Predictor for Neurovascular Uncoupling in the Periphery of Brain Arteriovenous Malformations: A Task-Based and Resting-State fMRI Study. J Magn Reson Imaging 2020; 54:186-196. [PMID: 33345355 DOI: 10.1002/jmri.27469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Potential neurovascular uncoupling (NVU) related to perinidal angiogenesis (PA) of brain arteriovenous malformations (AVMs) may cause inappropriate presurgical mapping using functional magnetic resonance imaging (fMRI), resulting in overconfident resection and postoperative morbidity. PURPOSE To evaluate the potential impact of PA upon fMRI blood oxygen level-dependent signal in the periphery of AVMs. STUDY TYPE Prospective. POPULATION Twenty-one patients with AVMs located in the primary sensorimotor cortex (SM1) undergoing task-based fMRI (hand motor), and 19 patients with supratentorial AVMs undergoing resting-state fMRI. FIELD STRENGTH/SEQUENCE 3.0T, echo-planar, time-of-flight, and magnetization-prepared rapid gradient-echo. ASSESSMENT The presence of PA was determined by three observers (Y.C., J.W., and X.C.) according to digital subtraction angiography and MR angiography. Interhemispheric asymmetry of fMRI activations contralateral to hand movements was evaluated with the interhemispheric ratio of the average t-value within ipsilesional SM1 to contralesional SM1. Regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF) were extracted from ring-shaped perinidal regions and contralateral homologous regions, and the corresponding interhemispheric ratios were calculated. The effect of PA on the interhemispheric asymmetry of motor activations, ReHo, and fALFF was estimated. STATISTICAL TESTS Pearson analysis, paired and independent t-test, multiple linear regression, Friedman test, and factorial analysis of variance were used. RESULTS Motor activations were significantly reduced in ipsilesional SM1 compared to contralesional SM1 (P < 0.05). The presence of PA was the independent predictor of activation loss in ipsilateral SM1(P < 0.05). Furthermore, perinidal regions exhibited reduced ReHo compared to the homologous regions (P < 0.05). PA was significantly associated with the decline of ReHo and fALFF in perinidal regions (P < 0.05, for both). DATA CONCLUSION The presence of PA can predict perinidal NVU that may confound the interpretation of both task-based and resting-state fMRI, highlighting the importance of alternative approaches of brain functional localization in improving treatment of AVMs. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rui Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuzhe Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
50
|
Abstract
Neurovascular uncoupling (NVU) is one of the most important confounds of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMR imaging) in the setting of focal brain lesions such as brain tumors. This article reviews the assessment of NVU related to focal brain lesions with emphasis on the use of cerebrovascular reactivity mapping measurement methods and resting state BOLD fMR imaging metrics in the detection of NVU, as well as the use of amplitude of low-frequency fluctuation metrics to mitigate the effects of NVU on clinical fMR imaging activation.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | - Haris I Sair
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA.
| |
Collapse
|